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Abstract: We study periodic solutions of the equation lX )+ X(t) =
F{X(t—1)), with f(X)givenby fi{X) = AX(1—X)or fg(X) = wp{l—sinX),
grouped in some sets characterized by different dominant frequencies. Numerical
results with f(X} = f1(X) are given. Varying the parameter 7 we find a period-
doubling cascade (possibly complete) in one of these sets, with reasonable agree-
ment with the contraction rate of Feigenbaum. We show that, at least partially,
many other period-doubling cascades occur in other sets, at different values of 1,
and these cascades “tend” to satisfy the same contraction rate of Feigenbaum.
Based on results of Ikeda, Kondo & Akimoto (1982), Ikeda & Matsumoto (1987)
and Mallet-Paret {1988) we obtain a lower bound for the parameter value for the
existence of more complex dynamics. We conjecture that this fact is refated to the
violation of the so called “negative-feedback condition”.

1) Ihtroduction

Most of the physical systems that liave been' studied -have their evolution
determined only by their present state. This is the case of classical mechanics.
However, a great deal of dynamical phenomena has its evolution determined not
only by its present but also by its past. This kind of systemn appears, for example,
in particle dynamics with eletromagnetic interaction (Bel:(1982), Driver {1963)),
in many biological systems (Mackey & Glass (1977), Hadeler:(1979)) in optical
systems (Ikeda, Kondo & Akimoto (1982)), and in many other fields. .

Quite often, the dependence on the past that appears in realistic models 1s
quite complicated. In certain cases it is possible o restrict the dependence on the
past to a single time delay, which is one of the simplest cases of past dependence. In
this paper we shall study a particular kind of scalar delayed differential equation:

Skm+x@=fxe-n; W

where f(x) is unimodal and 7 is the tlme delay Among the pra.ctzcal apphcatxons
of equation (1) we-shall be concerned with two particular; ones.  First, z.model
for population dynamics of an isolated species. of fly with limited food supply
{Perez, Malta & Coutinho (1978)). In partlcular we are going to use an expression
proposed by Maynard Smith {1968), where:

) =h(X)=AX(1-X). | 2)

Second, a model for the dynamics in a nonlinear optical cavity ( Ikeda, Kondo &
Akimoto {1982)). In this case we have: .

HX) = folX) = mp[l — sin(X )} _ 3

Although (1) is a first order differential equation, the initial information which
defines a solution of (1) is a function ¢(t) defined in some unitary interval. Given
#(t}, t € [-1,0},0ne way to solve this equation is to integrate it step by step in the
intervals [t + n,¢ +n + 1], imposing continuity at the boundary of each mterval
This procedure leads to a function map defined by {1) as:

’ L)
Xana(0) = Xu(De™ 47 e, s))ds, @
. (1} .
0<8<1, n=0,1,2,..,

1




where: X.(8),is a continuous function defited oni0,1}, Xo(8) = o(8 + 1).

The solution of (1) with X(#) = ¢(t) for ¢ € [—-1,0], is given by X(t) = X(f +n —
V=X, (@), fort=0+n-1,t>0,nr=0,12,...,8¢c(0,1}.

Fhe above procedure makes clear that we are dealing with a system of infinite
dimensional “phase space” (Hale {1977}). The state of the system at each instant
t is given by the function X(¢ — 8),8 € {0,1]. Equation (1), with f(X) given
by :(2).or (3); may have a.very complex behaviour.with chaotic solutions and so
om,.and, due: to.its. reasonably: simple:formal -solution: {4}.it is a good paradigm
for studying non-trivial dynamics in systems with. infinite degrees of freedom {see
Ikeda. & Matsumoto (1987)). -

++This paper isiorgarized as follows:. Next section. begins: with a presentation of
:the, very: mte_x:estmg.results of: Mallet-Paiet: (1988), that impose severe restrictions
on.the behaviour of-the asymptotic solutions.of {1).for a certain class of f{(X). We
then: present: a: method: for- determining boundaries of selutions of (1} and make
-applications. ausing (2} and (3). . We establish:the ranges-of A aud 2 (appearmg in
(2) and: (3))-for-which the: Mallet-Paret: results are valid.

In. section. 3:we- briefly discuss the. phenomenology of the solutions of (1)
with f{X) given by (2) and (3) (see Ikeda, Kondo & Akimoto (1982); Ikeda &
Matsumoto: {1987)); stressing that this equation has many simultaneously stable
solutions. It is possible to' group a great number of these solutions in some sets
called “branches” (Ikeda,; Kondo & Akimoto (1982), lkeda & Matsumoto (1987)).
‘When:the Mallet-Pazet (1988) results hold for the solutions of (1}, these “brauahes“
“pluis/the connections between! them exhaust the ¢ global solution phase space” {or
‘thé: set of ‘solutions that are deﬁned for't'e (~oco, +oo)) and ‘that attracts the
solution: of all’ initial value problem). We then present a numerical study of the
bifurcation structure of some stable periodic solutions of branch 1 (or fundamental
branch, following lkeda, Kondo & Akimoto (1982)) for equation (1) with f(X)
‘given'by (2). There are evidences on behalf of the conjecture that this equation
has a full period-doubling cascade as we vary r or A separately, satisfying the
Feigenbaum contraction rate (Feigenbanm (1980)) on both 7 and A.

In section 4 we show that the period-doubling bifurcations that we find in
branch 1 imply many other period-doubling bifurcations in other branches for dif-
ferent values of 7. We also show that these other period-doubling bifurcations
“tend” to satisfy the contraction rate of Feigenbaum. This result is interest-
ing | because it esta.bhshes some relation between the bifurcation structure within
branches for dlﬁ'erent values of 7.

We conciude w1ti1 section 3, stressmg that the dynamxcs of (1), with f(x)
given by (2) or (3], can be understood in, two levels. . Fizst the dynamics within
the branches, as we have done’in section 3. And second the dynamics “between
branches”, as, for example, stated by the theorem of Mallet-Paret (1986) ( see also
Ikeda & Matsumoto (1987)). From our.estimates of the validity of the theorem
of Mallet-Paret for {1} with f(X} given by (3), and the numerical results of Ikeda,
Kondo & Akimoto. (1982), Ikeda & Matsumoto (1987), we conjecture that the
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“merging phenomenon™ (the fusion of solutions of different branches) observed in
the second work is related to the violation of the condmons of the theorem of
Mallet-Paret.

2)“Negative-feedback” condition, Morse Decomposition,
and boundary of oscillatory solutiouns.

We shall begin by presenting some results of Mallet-Paret (1988} which are
formulated for the scalar equation,

X() = g(X(1), X(t = 1)), (5)

with the requirement that the function g{£,n) satisfies the negative-feedback con-
dition, that means:

779'(0, Tl') >0, forall n # (R .
dg(&, : - ()

Before stating the results of Mallet-Paret it is necessary to introduce some
definitions. First, we say that the phase space Z of a given dynamical system
admits 2 Morse Decomposition { Conley (1978), Mallet-Paret (1988)), if it is pos-
sible to define a finite and ordered collection 5 < 52 < 53 < ...Sp of com-
pact invariant subsets (called Morse Sets) of = , such that if a(z} and w{xz) are
the alpha and the omega limit sets, respectively, { see Guckenheimer & Holmes
(1983)) of the orbit through x, + € =, then there exists N > K such that
a(r) € Sy and w C Sy furthermore, if V = K then the orbit through z is
contained in Sy. The Morse Sets Sy, together with the connecting orbit sets
CE ={r€Zlalz) €Sy and w(z)C Sk} for ¥ > K, exhaust the phase space

Now it is necessary to define the functional VX (t)] that , to each global
solution of {5} and ¢ € (—o0, 400}, associates an integer number greater than zero
in the following way:

- let @ be the ficst zero of X{#) for 8 € [t,o0);
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* - then V[X(#}] is equal to the number of zeros {counting multiplicity) of X{6)
“ford e (e —1,0l
- if ¢ does not exist then V[X{t)] = 1;

Mallet-Paret (1988) proved that for global solutions of (5), with g{£,7) sat-
isfying the negative-feedback condition (8), if £; < t3 then ViX(t)] = VX (¢
This means that the number of zeros of a global solution of (5), per unit interval,
that contains a zero on its right boundary, is non inereasing. He also showed that
V[X(t)] never assumes even integer values and that it is a bounded function.

Let us state the main resuit of Mallet-Paret (1988) in another way. Let us
call ¥ the set of global solutions of (5}, and let us define the sets:

Sv={Xe¥-{0}|V[X(t)]=N forall teR,
and  O0Za(X}Uw(X)} N=0,1,2,...

If: the origin is-hyperbolic we also define the set Sy. = {0} where N* is
the dimension- of the unstable manifold of the origin. Using these definitions
Mallet-Paret (1988) proved that the space of global sclutions of (5) has a Morse
decomposition, where the sets Sy are the Maorse sets. It is important to point out
* that the set ¥-attracts all the initial value problem of (3) (Mallet-Paret {1988),
Hale (1977)) and, therefore, it contains all the relevant information for asymptotic
studies.

Now, we want to.apply the Mallet-Paret results to equation (1) with f{X)
- given by (2). First of all we have to make a trivial translation on X such. that

the point: X,, defined by the nontrivial root of X = f{X), will be placed at the
origin-(see figure 1). _ :

~ Fronrfig.. 1b we notice that the function g(&,n) = £ +{—A+2)n ~ An? does

not satisfy the condition (6). Nevertheless, if we show that the asymptotic solutions

Kas(t) of (1), with f(X) given by (2), for a certain class of initial functions, satisfy

Xas(t) > 1 — X, or, equivalently, ¥,, > Y.(see figure 1), then we can trivially
- redefinefi (X') as: : :

o | R(X) if X21-Xey+e,
fI(X)_{fi(]___Xeq-l-e) .if X<1“Xe:+€! @

which'then satisfies the negative-feedback condition (6). -

In order to follow the program above; let us restrict our attention to equation
(1), with -f(X) given by (2), with initial functions ¢{1) satisfying 0 < @(t) <
1,t € {~-1,0] (we will denote by X(t,4) the solution X(t) with initial condition
#(t)). This condition ensures that the solutions remain in the interval I = (0,1)
for 0 < 4 < 4. In fact,

i) let t',#' > 0, be the first instant of time at which X(t', ¢)=0or X(itho)=1,

it) if X(t', ¢) = 0, then from {1), with f(X) given by (2), X(#) = A(X({t'=1)) >
0, so that X (¢, ¢} is increasing when it goes through zero, which is impossible
by hypothesis;

i) if X, ¢) = i, then from (1) with f{X) given by (2), _‘i'(t') = =14 fi{X(t' -
1)), butas fi(X)C I, for 0< X <1,and 0 < A < 4. then X{#') < 0, which

is again impossible.

As the solutions remain bounded they can be divided in two types. Either

they tend monotonically to one fixed point, in this case X = Xegor X = O or
they oscillate. The first case is not generic if the fixed points are unstable. Let us
analyse the second case.

It is easy to see from (4) that the solution X(¢,6), ¢ > 8, becomes simootlier
at each integration step ( Hele (1977}, Bellman & Cooke (1963)). Therefore we
can say that if ¢ > 1, then at each extremum of X{t, 4} we have X(t} = 0. Now
let X(#;) be the first maximum of X (£, ¢) for t > 1. At this point, from (1) with

f{X) given by (2}, we have:

X(tl) = fl(-Y(fl - 1)} < f!. mazs
where fimqr is the maximum of £, ie, 4/4. All other maxima of X(t,¢) for

t < #; will satisfy the same property. Now let X(t;) be the first maximum of
X(t, ¢) for £ > t; + 1, then we have:

X(fz) = fl('Y(tQ - ]-}) = fl(fl rna.z)>

see figure 1. Hence it follows that

f](flma::) <-X.(tv¢')~< flm.a.z-, fOT't> 1.

Therefore, if:

filfi maz) = AL{ASE) > 1~ X, is true, . €3]

then it is possible to redefine f1(X) as in {7), with f satisfying condition () (see

figure 1a}. .
From the inequality (8) we get the condition:

A < 3.67857...,

so that the set ¥, of the global solutions of (1) with f(X) given by{2), admits a
nontrivial Morse Decomposition as stated in the introduction.

The procedure above can be easily generalized for (1) with other functions
F{X) (umimodal or not). For example for the equation (1} with f(X) given by
{8), we have that if condition f2(0) < 7 — X,, is satisfied (see figure 2), then it is
possible to apply Mallet-Paret results. This condition implies that

g < 0.760....
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Notice that if (1) satisfies the negative-feedback condition, the result of Mallet-
Paret gives a good description of the general features of the global dynamics of
(1} When this condition is not satisfied the behaviour of the system can be more
complicated. An example of a phenomenon that cannot oceur if the system sat-
isfies the negative-feedback condition is-the connection between the fundamental
solution and its first odd harmonic, {Tkeda, Ilondo & Akimoto-{(1932}) and it can
occut-when the system does not satisfy this condition, as found by Ikeda , Kondo
& Akimoto (1082) on their study of equation (1} with f(X) given by (3). Asa
matter of fact our estimate g = 0.760... constitutes a lower bound for the exis-
tence of this connection. Ikeda, Kondo & Akimoto (1982) found it numerically for

" the parameter g = 0.775.. ., a value not far from the lower bound obtained by us.

3)Phenomenology of Periodic Solutions and Bifurcations

For some values of the parameters 4 and g it is not difficult to find numerical
periodic solutions of (1} with f{X) giver by (2} or (3), respectively (rigorous proof
of existence of such periodic solutions may be found in the mathematical literature;

. see for example Mallet-Paret (1988)). If equation (1) has a periodic solution Xg{t},

with period pe, for some value 7 = 7y then we can write:
1 -
;;XD(U + Xo{t) = f(Xa(t = 1 — npo)). 9)

Making the transformations ¢ = /{1 + npg} and X, = Xo(#(1 + npo )} we get:

1

oL Frpe) i) Ealt) = FIXalt = 1)) (10)

Therefore, if Xo(t) is a..solution_of (1) for 7 = ry with period p = pq, ther-

Xn{t) is also solution of (1).for v = 7, = 74{1 + npg} with period p = p, =
This relatior does not say anything about the stability of the solutions Xg(2)
and X,(¢). Probably Xo(t) is stable and X, (#) unstable (numerical evidence}.

~ Though, for small values of r, there may be situations in which both X(¢} and
. Xn(t) are stable {numerical evidence).

B .
14+rp~

When the function f(X) in {1} satisfies the negative-feedback conditicn (6},
the solutions for different values of v, X, (f} and X(¢#), are in different Morse
Sets.

The above procedure is independent of the negative-feedback condition (6},
hence we are going to group the solutions, obtained by re-scaling some specific
periodic solutions, in sets called “branches” (following Ikeda, Kondo & Akimoto
(1982)).

We know that equation (I), with f{X) given by {2) or (3), for some values
of 7, A (1), has periodic solutions, with period greater than two, originated from
the Hopf bifurcation of the nontrivial fixed point. If we apply the above scaling
procedure to these solutions, Xy(t) — X, —;(t), we can define many other peri-
odic solutions for different values of 7. The branch n is constituted by the solution
Xno1(t) plus all other solutions that have “approximately” the same dominant fre-
quency of X, for the same values of parameters (see [keda, Kondo & Akimoto).
It is important to note that when the negative-feedback condition (6) is satisfied
the branches coincide with the Morse Sets S, and they are better characterized
in this way. When the negative-feedback condition is not satisfied we can decide
if a solution belongs or not to some branch analysing its power spectrum. Notice
that in the latter case solutions can exist that cannot belong to ary branch or
that belong to two different branches {they have characteristic frequencies from
both branches) as it occurs in the “merging phenomenon” (fusion of two different .
branches) mentioned by Ikeda & Matsumoto (1987).

Given this “definition” of branch we are going to present some results about
the bifurcation structure of the branch 1 of equation (1) with f{X) given by (2)..

First of all, using a numerical procedure based on (4), we integrate (1) with
f(X) given by (2), for 3 < A < 4 and 7, € T < 7o, where 7. is the value of T
where the fixed point X, becomes unstable and 1o is the estimated Feigenbaum’s
accuwnulation point (see below). :

What we observe is that period-doubling is an important kind of bifurcation
that occurs in periodie solutions, and that for a wide range of v {4), fixed 4 (7},
we find a period-doubling cascade. As a matter of fact we could detect, in some.
cases, up to five period doublings for the same parameter, r or 4. Qur results are
summarized in figure 3 and table 1.

Our results agree with the conjecture that equation (1} with f(.X) given by
(2) kas a full period-doubling cascade in both directions v {4 = const.) and
A (7 = const.} for certain ranges of r and 4 (see Chow & Green (1985); Der-
stine et al. (1983); Gao et al. (1983); Gao, Yuan & Narducei (1983); Gao et al,
(1984); Ikeda, Kondo & Akimoto {1982); de Oliveira & Malta (1987)). In other
words, one of the possible “routes to chaos” in this system may be the Feigen-
baum’s route {Feigenbawm (1980}). It is interesting to point out that there is an
argument of Mailet-Paret & Nussbaum (1986) on behalf of a truncation of the
period-doubling cascade, 2t least for large 7, before the point of period-doubling
accumnulation. The support for this argument is that the solutions of (1) may have
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some singularities for large 7(see figure 4}, and that these singularities may work
as a noise:. This noise would be responsible for the premature truncation of the
period-doubling cascade (see Crutchfield & Huberman (1980)). If this truncation
existed our numerical precision would not allow for its detection. It should be
remarked that. the phenomenology of the stable periodic solutions belonging to
other branches are much more complicated than that of branch 1. Branches 2,
3,... also-exhibit period-doubling bifurcations giving rise to solutions called “iso-
-mers” by Ikeda & Matsumoto (1987). There can exist many simultancously stable
isomers and the bifurcation structure that leads to irregular solutions is not . well
understood. In the next section we present some implications to other branches
of our results for the branch 1. ' ' :

4) Relations between the bifurcation structire in different branches.

We can apply the same transformations used in the beginning of section 3
(see (9), (10)) to study the implications to other branches of the period-doubling
bifurcations of solutions of (1) belonging to acertain branch. First let us verify the
implications of the first period-doubling bifurcation in branch 1, that happens at
r =71 5 for fixed 4. For simplicity we shall assume that for r = 71 2 there exist two
solutions, X1 1(¢Yy-and X;.a(t) (the first index labels the branch and the second the
-order'of the solution in the period-doubling casvade), the first with period gy =p
and the second with period p; 5 = 2p. Making the same kind of transformation
that we made to get equation (16) from (9), we define new solutions {indicated by
the prime):

na(8) = X1 (1 + (r ~ Dpra)e),

T = oL+ (n = Upry), (11)
p'n;l = Lah forn=123,...

14(n—1)pg
' ( X:I,Z(t) = Xl.z((l -+ (1’17— l)pl‘g)t),

T;:Z = Tf,z(l -!--(TI - 1)?1.2)1 (12)
Pha= P12 forn=1,23,...

14+(n—1)p1p
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The solutions X, ; defined by {11) are obviously in the branch n due to our

. definition of branch, But we do not know to which branch belong the solutions

Kz As X1(t) and X, 5(t) are exactly the same function at r = ] z: we can do
a simple analysis of the relations between X}, 5(¢} and X 1(t). Remembering that
P12 = 2p and py; = p we have:
n2(th = X12((1+(n ~ 1)2p)t) = X1 1 (1 +(2n - 2)p)t)
K a{8) = X1 ({1 + (2 = L)p)e).

Now, if m—1=2n—-2, s0 that m = 2n—1, then X|, ;(¢) = X} _;(t). This means

that each function X}, (%) is related to a function X}, _; ,(t), n =1,2,3,..., for
7 =171 +2(n—1)p1,1}, in the same way as X; 1 (t) is related to X; 3 (¢). In other
words, the first period-doubling bifurcation in branch 1 .is directly related to the
“first” period-doubling bifurcation in the odd numbered branches. . . e

At this point it is convenient to generalize our notation, We shall assume that
solutions of equation (1) have a period-doubling cascade in branch 1 as determined
in the last section for f(X) given by (2). A solution of {1} belonging to branch
n and corresponding to the j# period-doubling in this branch will be denoted by
X5, ;(2). Notice that we are not.claiming that all these X, j(f) exist. We only
claim that at least some of these functions exist. The period of X, ; and the
values of the parameter 7 at which the solution exists will be denoted by p,,; and
Tn,j Tespectively. The particular value of the parameter =, =T/, corresponds
to the point at which the jih period-doubling bifurcation occurs.

With this notation, and using the residt that the first period-doubling bifurca-
tion of branch 1 implies the first period-doubling bifurcation in the odd numbered
branches, we can rewrite expressions {11} and (12) as:

;‘[,hl(f) = .Yl‘l((l -[' (11 — l)pl_l)f),
T = Tl +{n—1)p11),

P11
= — orn=1223,...
14 (n — }-}Pl.l f

Kon—1,2(t) = X12({1 + (n — Vpr.2)t),
i =Tl b = 1)pi ),

Prt

P12 . }
Pin-12 = 1+(ﬂ"“1)p1‘2 fornf1‘2,3,.,.. . -

Qur procedure can be generatized for the second, third,.. ., period-dbl_lbliug
bifurcations. In the case above the period-deubling bifurcation in branch 1 does
not have correspondence in branch 2 because, even though the solution X173 (£)
has a correspondence in branch 2, the solition X 3(¢) does not have a:diréct cor-
respondence in branch 2. At the second period-doubling bifurcation in branch ‘1
we have the same phenomenon. Even though the solution Xy () has a correspori-
dence in the branches 3, 5, 7, 9,..., the solution X 3{t) has correspondence only
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in the branches &, 9,..., and so vn. This is illustrated in figure &.

 The relations displayed in figure 5 are given by {after some index manipula-
tions):

Xt (neny jit) = Xl + (n = 1p j)t),

Trpal=aay; = "1+ (v = 1)pyi)s (13
Py
e e = e e orn=123,...
. Preal~(n-1;,j T4 (n— I)PI,J' f
: The-réla.tions'{l?») are appropriate for checking the contraction rate of the
parameter intervals of period-doubling ina branch L, L =1+ 2(M-1} where L is
a large number. Irr other words, we want to answer the question:

T |
I A Bl 5 46602, for large J,
Tij+r = 7o

.. (14)
sed TLi -1 .
isit true that ——=—=§ for large j7
. T} jer = TLj _
. From(lS) we have the ;L"_ela.tioné:
-'-Tf;;kztf_Z(‘.j = TI-J 1(1 4 alM- Hhpy i),
"i'f+2(,2(; g =771 + M- J)PI,J'_}:' ’ (15)
Tral-al- j41 = Tijerl{l+ 2AM=i=Dp, 111),

As 1}, is very close to 77 7, (j is large) it is reasonable to disregard the
continuous variation of the period due to the variation of 7 and to assume that:

P1,j-1 7= =27 Pl,j and Pl,j-l-lg?'pl,j- (15)

_Subs:titutihg.(.lﬁ) in (15) it is'é'asy'to_che:ck that (14) is true:. Therefore, if branch

1 exhibts a fuli period-doubling cacade satisfying the Feigenbaum’s contraction
rate, then-branch 1 + 2M -1 Af large, will exhibit at least M — 1 period-doubling
blfu.rcations and for large n, n < (M:= 1), the relation §, = 4.6692... will be
satisfied..

It should. be remmhed that if there cxists a period-doubling cascade in

bra.uch ‘_?_(we_ha:ue numerical evidences that this is true), the same procedure

can be applied to it, and analogous correspondence will be found between bifurca-

stions;in: branch 2. and bifurcations in. the even numbered braaches. For instance,
the, ﬁrst penod—doublsng bifurcation of branch 2 will correspond to the first period-
,doublmg; bifurcation in branches 4, §, 8,.. .; the second period-doubling will have
) correspondence in branches 6, 10, 14, 'md so on. As a maiter of fact, the above
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procedure can be applied to any member of the period-doubling cascade of any
branch.

One-of the difficulties of studying the stable solution of higher order branches
is the small domain of stability of these solutions. Moreover period-doubling cas-
cade of unstable solutions may exist and in this case we need a numerical scheme
different from that used in section 3 to follow it. We have made numerical tests
of the stability of the solutions determined by 113} in higher order branches, We
concluded that sometimes theré is a positive correlation between the stability of
the solutions of branch 1 and the correspending solutions of higher order branches,
and sometimes there is a negative correlation. Therefore it is quite possible that
period-dc;\ubling cascades of unstable solutions happen in higher order branches.

We close this section by poiting out that the solutions that are originated -
by period-doubling bifurcaticn, from the same re-scaled solution, in different
branches, may be quite different. This happens, for instance, with the first period-
doubling bifurcation in branches | and 2. To understand this phenomenon it is
sufficient to draw the square wave solutions of periods 2 and 2/3, respectively, of
the function map X(t) = f(X{t — 1)} associated with (1) for large 7, and analyse
the period-doubling bifurcation of each solution. It is easily seen that the two
resulting solutions are different. An analogous phenoemenon occurs for solutions of
{1), providing another explanation for the fact that the iirst period-doubling bi-
furcation of brasnch 1 is not directly related to the first period-doubling bifurcation
of branch 2.

5) Conclusion

Introducing a convenient “definition” of branch the study of the dynamics of
equation (1) is separated in two levels: the bifurcations of solutions belonging to a
particular branch and the connection between different branches (i.e. how are the
orbits that join these sets (see Mallet-Paret (1988)), or how they mix (see Ikeda,
Kondo & Akimoto (1982), Ikeda & Matswmoto (1987)).

From the results of Mallet-Paret (1988}, Ike_da, Kondo & Akimoto (1982) and
Ikeda & Matsumoto (1987), we notice that, possibly, both, the satisfaction of the
condition of negative-feedback and the violation of this condition, play important
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roles on the dynamics of (1). The “satisfaction” leads to Mallet-Paret results
and the “violation” is related to numerical results of Ikeda, Kondo & Akimoto
and Tkeda & Matsumoto that show that near the point where this condition is
uot satisfied important changes may occur in the system, such as the connection
between inferior and superior branches [Ikeda, Kondo & Akimoto}, and the “final
branching merging”. This last phenomenon is deseribed by Ikeda & Matsumoto
(1987), and is related to the fusion of chactic solutions of different branches giving
tise-to-a solution presenting what they call “developped chaos”. Again the point
at-which it occurs corresponds to p = 0.775 (see both Ikeda, Kondo & Akimoto
(1982) and Ikeda &Matsumoto (1987) to get this information}, for large 7, which
is-close to our lower-bound value, 0.76, for the violation of the negative-feedback
condition.. The: violation of the negative-feedback condition seems to imply the
existence of “connections”, and “merging” phenomena, but this is conjecture
that must be further investigated. C

We would like to stress that the relation between the solutions of equation
(1) belonging to different branches is a very interesting feature. It is possible for a
pattern that happened at some value of = to be repeated in another scale at some
other value: of r. Moreover analogous sequence of bifurcations may be repeated
- at different values of 7 in different scales, and this is a curious symmetry of the
systems described by equation (1).
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Table caption

alealiti covmbraet] = g A . : .
Table T - calculution of sone contraction rates 8, = X :_21_\ :1‘ where A, is the
nr2—An

value of the varving parameter {4 or 7} where the stable periodic solution of branch
1 suffered the nt*period-doubling bifurcation. This contraction is based on data
presented in figure 3 (dashed lines). The errors presented are due to numerical -

resolution problems.



_ Figure captions

F1gu1c 1: (a) the graph of function (2), and (b} the graph of (2) translated of
A=l
=

' Figure 2: Gréph of function (3) showing the fixed point X, of (1} with f(X)
given by (3).

"Figure 3: - full line: (from below to above} curves of first, second and third period-

doubling, and curve of accumulation of period-doubling; - dotted line: the corre-

“sponding period- doubimg and accumulation points-of the quadratic map; -dashed

~ lines:. bifurcation parameters used in the estimation of Feigenbaum's contraction

- rate (seetable 1), vertical lines, r = 4.013, r = 7.438, horizontal lincs, A = 3.65,
A= 3.85.

ﬁgure 4: A typical periodic solutxon of (1) with f(X) given by {2), with penod
near four, showing its smgu[ant:es (r =50.0,4 = 3.5).

Flgure 3¢ The point 1'1‘"1 represents the appearence of a periodic solution-in branch
1 with period greater than 2 (as it happens for (1) with f(X) given by (2), see
section 3}. Notice that the period-doubling bifurcations in branch 1 are mapped
into other branches bifurcations at different values of .

Fixed parameter

&y

- : S

A =2365 2135+£3x107° | 40642 %1072
- 1=385 146+ 8 x 102 4552 107
T = 7.438 453 E7x 107 7| 4B6+£2x10°°
T =4.013 462 £0x 1072 | 48+2x10°"

Table 1
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