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Abstract

A model spin system with disorder is examined. The disorder is not necessarily
quenched but it may evolve on a time scale that can be tuned. The annealed and
quenched cases, obtained .as limit cases are, respectively, the infinite range Ashkin-
Teller (P==2 colors) model and the Hopfield neural net (finite number of patterns P=2).
The intermediate-dynamics model behaves like a Hopfield associative memory in short
time scales and like an Ashkin-Teller system in the long run. The time evolution of
the order parameters is obtained from the master equations in the mean field approx-

imation. PACS : 05.50.+q, 87.10.e+10, 75.10 Hk, 64.60 Cn, 89.70.+c

Compétition between different interactions tight lead to very interesting and com-
plex behavior in models that arise in many different areas, from the physics of dis-
ordered systems and ncural nets to e.g. economy, biology and cognitive psychology.
A very useful approximation in the Statistical Mechanics study of disordered systems
has been to comsider the disorder completely static. The quenched disorder approxi-
mation sometimes simplifies the problems to a level amenable to analytical treatment.
While the coupling “constants” in spin sysiems or synaptic couplings in neural nets
are kept fixed the spins or neural activation evolve rapidly [1,2,3]. Another possibility,
which receives the name of annealed approximation, is to let the disorder evolve in
the same time scale as the spins or neural activation. The choice of the most suitable

approximation in a given problem is based on physical or neurophysiclogical grounds.

Tt is nevertheless quite obvious that sometimes it might be necessary to consider the
case where the disorder evolves on a time scale intermediate between both limiting
behaviors. The aim of this paper is to present a model system where the spins in-
teract through couplings which themselves evolve with an intermediate characteristic
dynamical time scale. This time scale can be tunéd and the two limits, annealed and
quenched can be recovered. Of course this type of problem is expected to be very hard
in general. The simple nature of the model here presented can therefore be excused on
the grounds that some simplifications are necessary if analytical results are expected.

A related problem has been recently studied in a quite different system and under
different approximations by Coolen, Penney and Sherrington [4].

The basic observation behind the treatment here presented is the following, A
system with at least two different classes of spins interacting through translationally
invariant constant inferactions resembles a disordered system if some of the classes

evolve on a different time scale, much longer, say, than the others. Consider the




master equation for the markovian time evolution of the probability distribution of the
spin configurations (two classes). The Glauber transition probabilities can be thought
of as the product of two terms, one the probabilty per unit time of choosing a given
spin to be flipped, the other as the probability, once chosen, of being actually flipped.
It is through this last term that the modei equilibrium properties are determined, for
example if they satisfy detailed balance (with the correct Gibbs distribution}. To deal
with intermediate dynamics the first factor has to be appropriately modifed so that
one of the classes, in the average, is chosen with a different probabilty than the other.
In this way, on a short time scale, the fast, or frequently chosen, spins evolve under a
set of effective interactions that are almost quenched.

The method is better explained through a simple example but it is possible to extend
it to more general settings. Consider the Hopfield model for an associative memory
with two patterns. At each site § = 1,..., N there is an Ising variable S; = +1. The

Hamiltonian is
L N N N
H= N (JI(E E18:)° + LD €28:) + (D 55151'2)2) . (1)
i=1 i=1 i=]
The two first terms are the usual hebbian contributions from each pattern while the
third is just a constant if the disorder is taken as quenched. J; and J; are constant

coupling constants., The introduction of the new sets of variables o, = +1, 7, £ 1 and

4; £ 1, subject to the constraint oil; = 7; at each site 7 and defined by

a; = f,-lSi, (2)
p = €25, (3)
7= &, (4)

leads to the following form for the Hamiltonian
1 N N N .
H = ﬁ (JI(Z 0'1')2 -+ JI(Z ﬂi)z + JQ(Z T;,) ) . (5)
i=1 (=1

i=1 i
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Note that the form of this Hamiltonian is exactly the same as that of the infinite range
symmetric Ashkin Teller model (ATM)[5]. But this is not the ATM if the {n} are
quenched. The difference is not in the form of the Hamiltonian but in the dynamics
of the different degrees of freedom. In the ATM all the different classes of spins o, u, T
evolve under similar dynamics. Let P({oy, s, 7:}; t)_be the probability of the ATM
system being in a configuration {o, 4, 7} at time ¢. Its time evolution is given by the
master equation:

P({o,p,tht+1) = P({o, p, 7} )+

+ E[P({fi0>fiﬂa T}; t)W{f,:O‘, f,‘,U.,‘T — T, fy T) - P({U: #’31-}; t)W(G, My T — fia, fiﬂ':T)]
+Z[P({f10, Hy fiT};t)W(fia:#afiT - o, i, T) - P({GHU') T};t)W(O‘,}L,T i f,’O’,‘u, fiT)]

+ Z[P({O’, fi”s fiT}; t)W(‘73 filuw fiT = O, [, T) - P({O’, F"!T}; tJW(U) H, T 0o, .finu) fIT)] (6)

where f; is the spin flip operator at site i, The W's are the transition rates and contain
all the information about the system. The three terms in brackets, in the previous
equation correspond to the increase or deciease of probability due to transitions into
and out of a given state, from each of the possible spin flip types, that is fiip of one of
the three pairs: {oy, i}, {03, 7} or {u;,»}. Note that single spin flips are impossible
since the constraint o;u; = 7 has to be satisfied at each site 7. The choice of the
transition probabilities is quite arbitrary, and the only requirement imposed is that the
equilibrium distribution be the Gibbs distribution for the appropriate Hamiltonian. As
usual, detailed balance ensures the correct equilibrium. For the ATM the Glauber-like

probabilities are

Wifio, fism = 0,4, 7)] = X (+ ++)/D,
Wie g7 = fioy fip, )} = X (— - +)/D,
W(a, fis fir — 0,10, 7)] = X (+ + +)/D,
Wi(o,pm— 0, fip, fir)] = X(+ - ~)/D,
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W(fio"n/-‘,fi"r d (7,‘!1.,1’)] = X(++ +)/D?

W(o 7 — fioy s )] = X (= + ~)/D, W

where the denominator is D=X(+++) + X (-~ +} -+ X(+ - -~} + X(~+~), and

X(e1, €2, €3) = (e5)" (€, (e-)%™. (8)
The ¢; are + or — and
J;
ey = eXp(%Eaj)
i#i
A7
€y = exp(W1 Z 1)
J#i
J:
&r = exp(& SN (9)
N J#i

Define the usual order parameters m, =< % 5 p; >, for p = g, i, T respectively where
the angular brackets denote averages with respect to the probability distribution at time
t. Multiplying by 3°¥ | o;/N on both sides of the master equation, summing over all the
configurations of {o, i, 7}, and making the usual single site mean field approximations,

equations for the time evolution of the order parameters, are obtained:

ryz +xfyz —yf2z - 2fzy

Amgy(t+ 1) = —m,(t
YR gy b

(10)

where z = exp(8J1m,), y = exp(8Jym,,) and z = exp(fJom,). The other two equa-
tions are obtained by cyclic permutations of #,y and 2. In equilibrinm the Am,'s are
zero and the fixed points are just the mean field equations . The phase diagram of this
model (e.g.[5]) is shown in the 3J; > 0, 8y > 0 space in fig(1)

A Monte Carlo simulation of the ATM model could proceed by choosing a random
site 7 and then choosing with equal probability the pair of spins to be tentatively
flipped with probabilities given by eq.(7). If the choice of the two pairs {¢,7) and

(u,7) is less probable than that of (7, ) then the system will evolve, in short time
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Figure 1: Phase Diagram of the ATM : Paramagnetic Phase in light grey. The dark

region is the phase with m, # 0 and the white region is ferromagnetic. The solid lines

are second order transitions and the dashed line is a first order

scales, in an almost fixed configuration {r}. The asymptotic behavior of the system
should nevertheless be characterized by the Gibbs distribution of the ATM, although it
might take longer for the {7} to eqﬁilibra.te. A set of transition probabilities which: (i)
can be interpreted as a probabilty per unit time w of choosing the pair (o, 1) and = of
choosing (p,7) or (o, 7) times a transition probability, (i) satisfy detailed balance for
the ATM for u,w # 0, (iii} have the correct limits for w = « (ATM) and « = 0,w % 0
(Hopfield model) and (iv) leads in a simple manner to mean field equations, is given

below.

W(f,'ﬂ', f{[.t,‘?' - g, M,fn = wX(+ + +)/Do‘,u:




W(o,u,7 = fid, futs7)] = wX (= = +)/ Doy
Wi, fip, fir = 0,1, 7)] = uX (+ + +)/ Dyr,
Wlo, i, 7 — o, fip, fit)] = uX (+ = =)/ Dyr,
W(fioy i fit = o, 7)) = wX (+ + +)/ Do,

W(U:“aT_'f{aﬁ-‘:fiT)] ﬁL"'X-(-'F_J/‘-Do";n (11)

The X’s are the same as before, while the denominators are contrived to simplify the
algebra without spoiling the detailed balance. Notice that in each of the pairs of terms

within the same brackets in eq(6) the denominators are the same. Defining

d(w,u) = w(eseue, +e; e er) + uleye, eyt + e le e ) (12)
then
1] 1+ 1.— T
-1 * i i
Daulwrw) =5 [d(w,u} N d(u,w)]
{14 e 1—ga
-1 < i i
Dyt w,u) = [d(w’u) + d(u,w)] (13)
_ 114 1—y
1 Sl LI o ST
Dorlw,w) =3 [d(w,u) " d(u,W)]

The denominators associated with the transitions of a given pair of spins are invariant
under the operator f; acting on the pair of spins, thus ensuring conditon (iv) above.
The same approximations that lead to the mean field equation {eq.(10)} of the ATM
lead to the three evolution equations for the order parameters (p = o, 1, T)
Am,=— ) my FY + Ff (14)
P,
The F’s are functions of r = u/w. and of {z,y, z) of eq.{10). For the o eguation, they

are given below

(zyz — z/ay} + r{zyz —y/2z) | 1(e/yz — y/ze) +r(—z/zy + z/yz)
(zyz + zfzy) +7(e/yz +yfzz) 2 rzyz + z/zy) + (z/yz + y/2z)

LI

0 =

1
2

b

T

o= 1 (zyz + zlzy) + r(zyz + y/22) + Hefyz +y/oa) + r(z/ay + 2 /yz)
2{zyz + 2/ay) + r(afyz + y/5w) T 2 rays + zfzy) + (¢/yz + y/zz) ’
Fo = L {2vz + 2/ay) — rlwyz - y/za) 4 1 (=fvz+y/z2) + rlzfoy — a/yz)
2(zyz + z/zy) + r(z/yz + y/zz) 2 r(eyz + z/zy) + (2/yz + y/zz) '
o o L{—zyz + z/ay) + r(zyz + y/2z) 1 (z/yz — y/2x) — r{z/zy + a/ z)
Fo * ¥
" 2Gurt ey + e+ yfz) 2 ey ofo) F (ofye tylem) . D)

The coeficients of the u equation are obtained in the same way,

and as expected

from symmetry, satisfy the following relations
Fi{z,y,2) = F§ (y,x, z),
Fi{z,v,2) = F(y, 7, 2),
Fi(zy,2) = F{ (y, 2, 2),

Ff(w:y!z) =Fl{y,z, Z). (16)

And finally, for the 7 equation

Fre’ [ (2wyz — z/yz ~ y/2a) (2z/ay — z/yz — y/zz
2 [(zyz + z/2y) +r(zfys +y[zm) " r(zyz + 2/zy) + (z/yz + y/”)]
F = T [ (z/yz + y/zz) _ (z/yz + y/2z)
2 [(eyz + 2/29) + r{zfyz + y/ez)  r(zyz + 2/2) + (2/vz T y/zm)] ’
R =,

_r [ 2zyz +zfyz +y/zz 2zfzy +xfyz +y/zz 17
T2 (zyz + z/zy) )+ r(efyz + y/zx) r(myz+z/my)+(a:/yz+y/z;c)]' (17)

1o

In the annealed limit, 7 = 1, when the two dynamic scales are the same, then

eq.{10} together with its permutations are recovered, while for r = 0, the quenched

limit, the evolution is given by

1 -
+2m tanh(m, + m,) + !

Amg(t+ 1} = —m,(t) +

—m,
5 tanh{m, —m,), (18)

14m, -
Amy(t 4 1) = ~my 2 + T2 tanh(rm, +1m,)

ics tanh(m, —m,), (19)

Am, = 0.




These are the correct evolution equations for the order parameters in the Hopfield
model with two memory patterns and with correlation < 162 >= m,.,

Results from the numerical iteration of the evolution equations {eqs.(14)) are shown
in figs(2)-(3). These are the flows in the m, and ™y, plane, for different sets of initial

conditions.
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Figure 2: m, vs. m,, initial value of m, = 0.1 (8J; = 2.0,8J, = 0.5.) {a) The ATM,
r =1, (b}r = 0.01, the system evolves to the Hopfield fixed points in a short time
scale and very slowly (thick line is due to crowding of symbols) to the ATM. (c) The

Hopfield model, 7 = 0

In general for r # 0, the system behaves in short time scales as a Hopfield associative
memory and the order parameters (m,,m,) flows are directed towards the Hopfield
fixed points. These, however should be better called pseudo-fixed points, since they too
are evolving, in the slower time scale, as the correlation of the patterns, < e >=m,,
evolves to its equilibrium value m®(8.J;, 3J,). In figs(2a-c) the couplings are such that
the annealed (ATM) system is in the ferromagnetic phase. It can be seen that the
system flows to a fixed point where all the order parameters, including m., are large

(2a). At this value of 3J;, the Hopfield model can retrieve and distinguish both patterns
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(2¢). In the intermediate dyné.mics case (2b) the “memory” patterns are very slowly
becoming more correlated and so the system, which behaves in the fast scale as an
associative memory, eventually cannot separate the two patterns anymore, but it still
remains in a ferromagnetic (mixture) phase.

The transition from the paramagnetic to ferromagnetic phase and part of the line
separating the two ordered phascs in the ATM are first order (dashed line fig.1), so
there is a region where simple iteration of the mean field equations leads to results
that depend on the initial values. An example in the region of spinodal decomposition,

sensitive to the initial values, is shown in fig. 3.a.

&

;//
oy /0
. v

Figure 3: Same as figure 2. initial value of m, = 0.1 ( 8J; = 0.85,8J; = 0.85.) (a)

7 =1ATM, (b)r = 0.15, (¢) r = 0

The basin of attraction of the ferromagnetic fixed point is reduced when the quench-
ing is increased, The flow is almost all towards the fixed point associated to the Hopfield
model for the initial value of the patterns’ correlation m, =< £1£2 > .

In fig.(4} the ATM is shown in the paramagnetic phase. For m,{0) sufficiently large
the Hopfield model is in the ferromagnetic mixed phase. The infermediate dynamics

model flows (4.b) toward the ferromagnetic pseudo fixed point at the begining of the
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Figure 4: Same as figure 2. initial value of m, = 0.7 (B, =09,84, = 0.00L (a)
r=1ATM, (b}r =02, (¢) r =0

iterations and eventually turas towards the origin,

In conclusion a method for analysing the behavior of unquenched disorder, in a
simple model has been presented. The system with intermediate dynamics flows rapidly
to the pseudo equilibrium of the quenched model and follows the evolution of these
pseudo fixed points as they slowly approach the fixed points of the annealed system.
Other models with two different time scales can be treated using the same methods, the
extension to the Hopfield model with a finite P is the next natural step. The diluted
Ising model with unquenched disorder is now under investigation. The question of
how to treat unquenched random disorder for more complex systems which in the
quenched limit have a spinglass phase and thus require more sophisticated methods {
e.g. replica or cavity methods} than the Hopfield model with finite P remains, however
unanswered. It is possible that the confluence of pseudo fixed points, as in figure (2b),
occurs in a hierarchy of steps, remanescent of the large number of relaxation times of
the quenched complex system.
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