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Abstract

It is shown that canonical quantization of the 4d Siegel superparticle yields
massless Wess—Zumino medel as an effective field theory. Quantum states of the
superparticle are realized in terms of real scalar superfields which prove to be the
sum of on-shell chiral and antichiral superfields.
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In recent years the connection between theories of first and second
quantized particles was under extensive investigation. On the one hand,
it presents a fertile ground to develop constrained dynamics methods. In
particular, classical mechanics and quantum mechanics for theories with
Grassmann odd variables have been developed [1-3]. On the other hand, it
allows to get a deeper insight into the structure of path integral calculations
via the comparison of proper time and BRST approaches [4-9].

One of the most interesting puzzles issued from the incorporation of
(world volume) supersymmetry into the scheme seems to be the infinitely
reducible constraints problem (see Ref. [10] for a review). Following the
conventional approach [11], care treatment of such constraints requires an
infinite ghost tower, which proved to be rather difficult to handle with [12-
14). Although cohomology of BRST operator can generally be evaluated
[13,14], the expression for the effective action looks formal.

Recently, a recipe how to supplement infinitely reducible first class con-
straints up to a constraint system of finite stage of reducibility has been
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proposed [15]. In this letter, which is a starting point for the forthcomingy
path integral test of the approach [15], we consider canonical quantiza-|:
tion of the 4d Siegel superparticle, the latter being the simplest model to
which the technique [15] applies. As shown below, an effective field theory
which corresponds to the first quantized Siegel superparticle is the mass- '_
less Wess—Zumino model in the component form [16]. We expect that the}:
knowledge of propagators of the first quantized theory will suggest consid-
erable simplification in forthcoming path integral calculations at the second
quantized level.

The action functional which describes the dynamics of the Siegel super-
particle in R** superspace reads [17] (we use the spinor notation from Ref.

18)

s=/ dT%HmHm + ifp — B, )]
with ) |
II™ = ™ — i80™6 + iB0™8 + iho™F — ipa™p. \
It is invariant under global supersymmetry transformations, as well a,séI
under local reparametrizations and k-symmetry [17,19). The coordinates |
(z™,6%,04) parametrize the standard R** superspace, while the varial:)lesﬁi
e and (1%, ) prove to be gauge fields for the local symmetries. The role|
of the pair (p%, ps) is to provide terms corresponding to {mixed) covariant
propagator for fermions in the action (1) [20].

The application of the Dirac-Bergmann algorithm to the theory (1} res-
ults in the constraints !

=0,  pud"pp=0, pgd"pmn=0, (2)

which form a closed algebra and, hence, are first class. In Eq. (2) (9, Ds, Ps)
denote momenta canonically conjugate to the variables (z", 6%, 0%) respect-|-
ively. The canonical Hamiltonian vanishes on the constraint surface in the
full agreement with the reparametrization invariance of the model.
Some remarks are relevant here. First, from Eq. (2) it follows

pg =0, pg- =0. (3)

This means that the C-constraint of the 10d ABC D-superparticle [21]
(which removes negative norm states from the quantum spectrum) auto-.

1Here, we partially reduced the original phase space by imposing a covariant gauge e = 1,3 =
0,9 = 0 to the first class constraints p, = 0,py = 0,pg = 0 and omitting the caronical pairs (e,pe)
(0, pe ), (6, 73), (2:1), (B, pp) alter introducing the associated Dirac bracket. The Dirac brackets for the -
remaining variables prove to coincide with the Poisson ones.
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matically holds in four dimensions. Second, the constraints (2) just coin-
cide with the first-class ones of the 4d Casalbuoni-Brink—Schwarz (CBS)
superparticle [22]. In Ref. [23] they have been used to covariantly quantize
the model within the framework of the Gupta-Bleuler method. We would
like to stress, however, that the najve omitting of second class constraints
intrinsic in the CBS theory (which generally leads to Siegel’s model [17,13])
in the approach of Ref. [23] will not reproduce the result of the Dirac quant-
ization presented below. It is worth mentioning also Ref. [24], where the
technique of quantization with a complex Hamiltonian has been applied
to establish a precise relation between on-shel] massive chiral superfields
and the corresponding particle mechanics. The massless limit of the pro-
cedure, however, leads to ghost excitations in the quantum spectrum [24]
and, hence, is ill defined. Third, a covariant gauge to Eq. (2) is known to
be problematic in the original phase space (the conventional noncovariant
gauge choice is ¥ = 7p¥, o = 0, 08 = 0). By this reason, we refrain
from fixing a gauge and proceed to covariant quantization.

Since commutation relations for the variables (2™, Pm)s (Oas o, ), (Ba, Pa,)
are canonical, we can realize them in the coordinate representation 2" = z”

~

Dm = =iy, 0% = 4%, P, = 10y, 8% = g4, Py, = id; on a Hilbert space
whose elements are chosen to be real scalar superfields

Viz,8, 9_)_= Alz) + 0y(z) + 57,5_(:6) + 92F(_:c) + 02 F(x)+
+80"0C, (x) + F20M(z) + 0%GX(z) + 8207 D(x). (4)
In what follows we assume the standard boundary condition

V(z,0,8) — 0. (5)

7 T—=Eoo
The physical states in a complete Hilbert space are defined in the usual
way [25,26]
#*|phys) = 0,
" pribg|phys) = 0, (6)
" pnpylphys) = 0.
In the representation chosen this yields

5" nd) — O, Fh n?L — 0’
(A = 0; (7.a)

(BP0 OnCa = 0, (676 P = 0, )

with all other component fields variishihg due to the boundary condition
(5). In obtaining Eq. (7) we used the identity

Tr (6"6™) = —2™™. (8)

It is instructive then to simplify Eq. (7.b). Taking a trace in the first
equation and making use of Eq. (8) one finds

oC, = 0, (9)

which (with the use of the relation o”¢™ + ™" = —27"™) allows one to
rewrite Eq. {7.b) in the form

(O'mn)aﬁamcn = 0:
ac,=10

(67)" §OmCn = 0, (10)

Multiplying the first equality in Eq. (10) by (¢*)5* and taking into account
the identity

Tr o™t — _%(T]mknnl gyl %emnkl? (11)
one gets
OhCi — OCy = —iepmnd C", (12)
which, together with its complex conjugate, implies
OnCh — 8,Cp, = 0, €ktmn0 " C" = 0. ' (13)
The only solution to Eqgs. (9), (13) is
C,, = 8,B, (14)

with B the on-shell massless real scalar field
OB =0. (15)
Thus, physical states of the first quantized Siegel superparticle look like
Vings(, 8, 8) = A(z) + §p(z) + 09p(z) + 6000, B(z), (16)

with A, B the on-shell massless real scalar fields (irreps of the Poi.ntce?ré
group of helicity 0) and ¢, the on-shell massless spinor fields (hehcxt1'es
1/2 and —1/2, respectively). Note that together they fit to form_ t-W:.') ir-
reducible representations of the super Poincaré group of superhelicities 0
and —1/2 [27].




It is worth mentioning that Eq. (6) can be rewritten in the manifestly
superinvariant form

5_71,@08”DHV — 0? 5_11.daanbdv — 0’ (17)

where D, D, are the covariant derivatives, or as a single massless Dirac
equation
Y10, ¥ = 0, (18)
DV
%
An effective field theory which reproduces equations (7.a), (15) is easy
to write

with ¥ = ( a (superfield) Majorana spinor.

1 -
S=/ d%{%a’”AamA + 50" BOmB + itbo" Ond}, (19)
which is invariant under global (on-shell) supersymmetry transformations
SA=ep+&p, 6B =ic)— i),

8 = i{o™€)I, A + (07€)0, B, (20}
§1) = —i(ea™)8, A + (ea™) O, B.

In Eq. {19) we recognize the massless Wess—Zumino model in the compon-

ent form [16].
As is known, the superfield formulation of the massless Wess—Zumino

model involves chiral and antichiral superfields {16,18],

S = [d*x 09, (21.q)
Ds® =0, (21.b)
Do® = 0. (21.¢)
The equations of motion read
D& =0, (22.a)
D*® =0. (22.b)

Let us show that the real scalar superfield (4) satisfying the constraints
(17) is the sum of on-shell massless chiral ((21.b), (22.a)) and antichiral
((21.c), (22.b)) superfields.

Let us consider Egs. (21.b), (22.a). The first of them implies the de-
composition [18,27] :

2(z,6,0) = afe) + 69(z) +0°f(a) +i00"Fopa(z) + 560"+ 10P 0, |

while the latter, being rewritten in the equivalent form )
%9, D, ® = 0, _ (24)
vields
" O =0, Oa =0, f=0. (25)
In order to get Egs. (24), (25) we used the identity
[D?, D) = —4i0™0,D%, (26) o

and assumed the standard boundé,ry condition. Note also that Eqs. (21.b), !
(24) together with the identity {Dg, Dg} = —2i0" 40, imply

0¢ =0, (27) 1
Thus, an on-shell chiral superfield can be written as

®(z,0,8) = a(z) + () + i00™00, (),

Oa(z) =0,  &"dp(z) = 0. (28)
Similarly, an on-shell antichiral superfield ({21.c), (22.b)) reads
®(z,8,0) = a(z) + §p(x) — i0o™80,a(z), :
Da(z) =0, & d,P(z) = 0. (29)
Considering now the sum
D+ P = (a+ &) + 6 + 6 4 007001 — @), (30)
and denoting

at+ta=A4A, ila—a)=hB, (31) 1.

one arrives just at Eq. (16). -
Thus, the real scalar superfield subject to the constraints (17) was
proven to be the sum of on-shell chiral and antichiral superfields

Vinys(, 8,8) = &(z,8,0) + ®(z,0,6). (32)

As is known, on-shell massless scalar chiral superfields form massless irre-
ducible representation of the super Poincaré group of superhelicity 0 [27].




Analogously, on-shell massless scalar antichiral superfields realize irrep of
superhelicity —1/2. We conclude that quantum states of the first quantized
Siegel superparticle form a reducible representation of the super Poincaré
group which contains superhelicities 0 and —1/2.

'To summarize, in this letter we have considered canonical quantiza-
tion of the Siegel superparticle in RY* superspace. Quantum states of
the model were proven to be the sum of on-shell chiral and antichiral su-
perfields. The corresponding effective field theory was shown to be the
massless Wess—Zumino model. Because propagators of the theory are well
known, it is tempting to reproduce Siegel’s action within the framework
of the proper-time approach, as well as, to compare the result with that
of the straightforward BFV quantization combined with the scheme [15].
This work is currently in progress.

As was mentioned above the C-constraint of the 10d ABC D-superparticle

[21] is not necessary in four dimensions. Note in this connection that
an alternative possibility (py + ip,0"0)(ps + i00™pn)s = 0, or (DoDyg —
DdDQ)V = 0 at the quantum level, leads to the trivial solution V' = 0 only
(see, however, Ref. [28]). By this reason, it is not obvious to us how to
extend the model! (1) up to a theory equivalent to the 4d CBS superparticle
along the lines of Ref. 21.

Due to the relation to superstring theory, the 10d case is of prime in-
terest. The operatorial quantization presented in this work is rather specific
in four dimensions. We hope, however, that BFV path integral quantiza-
tion will proceed along the same lines both in 4d and 10d. The results on
this subject will be present in a separate publication.
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