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Abstract

In this work we discuss aspects of interest for a general phase dia-
gram of matter in specific conditions (neutron-proton asymmetry and
with anti-matter) which may be relevant for the description of dense
stars. The inclusion of light isovector spin zero mesons in relativistic
models of nuclear systems is discussed and deviations from the usual
results for the symmetry energy term are found seemingly in quali-
tative agreement with developments recently done for non relativistic
description of nuclear matter. Remarks for the description baryonic
and anti-baryonic bound states are done.
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1 Introduction

In this work basically two aspects of nuclear matter (n.m.) properties at
specific conditions are investigated: with neutron-proton density asymme-
try and n.m. with anti-matter component(s). For the former aspect, the
symmetry energy of nuclear matter is the relevant parameter being basically
the difference in the binding energy of a neutron and a proton in the nuclear
medium. It is useful to parametrize the asymmetry with parameter such as
d = N — Z (for finite systems) or & = (pn, — pp)/p. Usually, at the satura-
tion density where nuclear matter matchs finite nuclei in several respects,
it is given/represented basically by two terms: c o + ara?, where ¢, and
ar (the symmetry energy coefficient - s.e.c.) symmetry are constants coef-
ficients. The first one breaks isospin symmetry explicitely and it is found
to be smaller than the second. The value of a, at the saturation density is
expected to be around 28 —34 MeV and its behavior with the nuclear density
has been quite studied [1, 2]. The s.e.c. can be obtained as a function of the
nuclear matter isovector polarizability [3] and it can be expected to depend
itself on the n-p asymmetry leading to different more involved dependence of
the symmetry energy on «, mainly for large n-p asymmetries [4]. Concern-

‘ing the presence of anti-matter bound states in the known Universe there is

very scarse information [5].

It is kown that nuclear dynamics plays a relevant role in the structure
of dense stars and Supernovae, which can therefore be considered as sources
of information for the phase diagram of matter. A large symmetry energy
(coefficient), a,, leads to smaller electron capture {quasi-static phase) which
may eventually lead to greater energy realese of Supernovae, to larger final
proton fraction and faster cooling (via neutrino emission) {6, 4]. Nuclear
interactions are dependent on the temperature and baryonic density, de-
pending as well as on the neutron-proton {or flavor) asymmetries which
may be result of the breakdwon of isospin symmetry, knowledge that should
be extended to encompass the eventual presence of antimatter fields.

In this work the (isovector) symmetry energy term is studied in the
framework of a relativistic model of nuclear matter which includes massive

-iso-scalar and iso-vector fields, the chiral partners {o, ) and (8, fy), which

are considered here in an "effective quadriplet”. All the bosonic compo-
nents are considered to develop classical counterparts in the lines of usual
relativistic models and extensions. The n-p asymmetry is introduced with
the inclusion of the isovector rho mesons, what is not considered fully here.
The effective neutron and proton masses, and therefore the respective den-




sities, differ in isospin and n-p asymmetric medium. In the next section the
model is exhibited for an expected value (classical part) of the bosonic fields.
Then the nuclear densities are briefly commented as well as the dynamical
equations and the solutions for the bosons. Finally the possible formation
of anti-matter bound states is discussed.

2  Finite density linear sigma model with other
light mesons

The linear realizations of chiral symmetry, eventually flavor symmetry for
strange systems, are implemented in Lagrangian densities containing (lighter)
scalars and pseudo-scalars mesons from a QCD octet /nonet [7]. We simplify
the usual SU(3} x SU(3) version of the Linear sigma model, shown for ex-
ample in [8] which includes some strange light mesons [9]:

£ = Ry(x) (4D = g0 + i75.7.7) + g5(7.5 + a0) = 20fie) Ne(x) + % (0,5.6"% + 6,ILO"TL) +
2
| +E2—Tr|z: +illf? - iFW,F”” — MTr(|(Z + ) %) = Ap(Tr{|% +4TI%) + %m%,vﬁw +Ly+ L
(1)
where the three last terms stand for the isovector mesons, which for SU(2)
~ chiral picture are the rho and A;. These degrees of freedom are neces-
sarily more relevant below the deconfinement phase transition. The scalar
(pseudoscalar) matrix was chosen to be written as: & = 3, A0, (Il =
3 e A" ®.”) where the A, are the Gell-Mann matrices in the adjoint repre-
sentation and ¢, ("7,”) nine scalar (nine pseudoscalar) fields, reducing to
eight each multiplet. As stated above only some of these fields will be consid-
ered in this work. The covariant derivative (with the coupling to the vector
and isovector fields) is: Di". The rho and A1 mesons contributions will not
be considered for quantitave analysis in the present work. The complete
(self consistent) calculation it is left for a forthcoming paper. The mini-
mization of the spin zero potential for the SU(3) symmetric limit yields the
strange-chiral radius vg that can be defined with a coupling: A\ = Az +A1/2,
reading: v = y?/(4A3), where u? is the mass from the Lagrangian. This is
the analogous to the chiral radius in SU(2) x SU(2) with the Lagrangian
term written as: —Ag(T'r{E? + I1?| — v3)?. The vector fields are introduced
‘with the usual "gauge invariant” kinetic terms F,,.
We will choose to deal with four spin zero mesons: the SU(2) quadriplet
(o,m) and another one containing strangeness degrees of freedom: (ag,d).




All these four fields are considered to develop classical components (denoted
with overlines) which shift them: ¢ — 6 +0, # = &+ m, ag = do + ay, etc.
The masses of these mesons are found from the Lagrangian density after
these shiftings as the coefficient of the shifted fields.

2.1 Nuclear densities and pions

The nucleon effective masses are to depend on the classical scalar and
pseudo-scalar fields. They can be written as:

s = 85 < Nog|(Tg + iv57.7) | Nps > +0(8) = gs(7 £ 7o Ms) + 9553,( )
2

where a,b are isospin indexes, M, is a matrix dependent on the nucleons

~ gpins in the medium which (probably) have small components because gs is

large. We can forsee that different effective masses for protons and neutrons

should lead to different densities in addition to the usual different momenta

at the Fermi surfaces. Furthermore, for the other components of the classical

" pion field 7; and @, different from zero, the neutron may oscillate into
proton, and vice versa, in a dense medium [10].

The expressions for the baryonic density and quantized fermionic den-
sity are considered to be those from the usual Fermi liquid picture in terms
of the Fermi momenta. They are written in terms of the components of
the solution of the Dirac equation for the nucleon. The pseudoscalar bary-
onic density emerges from the solution of in medium Dirac equation as:
Pps X (v — Du}(E + m)d.f where u,v are the spinor components of the
baryon field solution coupled to vector fields and @, the transposed hermi-
tian components. This quantity, although much smaller than the baryonic
and scalar densities, should not be (necessarily} expected to be zero. This
quantity in the equation of motion of the (classical part of the) pseudoscalar
mesons may yield non trivial non zero results.

2.2  Stability Equations

The equations of motion for the fermionic and spin zero bosonic fields are
the Euler-Lagrange equations [11]. The vector fields are considered to satisfy
modified (variational) equations which take into account the interaction with
finite density baryons [10]. The stability of the bound system is garanteed
by the following conditions:

dEJA| 0 d*E/A

dp B £o ’ dp ZB

x K >0, (3)




where K is the nuclear incompressibility and pg is the stability density. The
usual procedure is to solve movement equation numerically and with these
solutions one verify whether these conditions are satisfied. Now, instead of
~.doing this, we search analytic solutions by considering the second of these
equations to be separated into three nearly independent equations for each
component of the system: 1) Hamiltonian terms with the fermionic density,
2) Hamiltonian terms mostly with spin-zero bosons, 3) Hamiltonian terms
~ which contain explicit vector fields. The solutions satisfy the equations of
motion {9, 10]. The equations are given by:

dpy _ pr
dPB I
d(a? + 7r§~— v?} (52 + 72 —0?) (4)
dpp B 2pp ’
dHy Hy
dpp  pB

This last equation is considered for the vector field, being Hy represents
the terms with vector fields. From the resulting stability equations [10, 9j
we have found an extended symmetry radius (Cs) which, together with the
‘sums of the pion and sigma masses {u,) as well as of the four spin zero
fields (u5...) at finite density, are given respectively by:

A
= -——(5°+ 7%+ ap> + & —v3),

PB _ ®)
u:?ot = A(2(a* + 7‘r2) + 0702 +8% —vd),

B2, = AA(E% + 72 + dp? + 8°) — 202).

We impose that the non strange limit of this picture (without A,ap and
- &) yields the usual relations of the SU(2) linear sigma model. This is im-
plemented by fixing the values of v such that: dy®+8 — v2 = —v?, with
My = gs3do = 1115 MeV. Besides that, the masses of g and d§ are also
fixed by expressions together with the other meson masses. The mass of
the delta meson derived from the Lagrangian terms shown above is smaller
than the sigma mass because for symmetric nuclear matter one should have
§ = 0 from its equation of movement. An extra ad hoc term was consider to
“mend” this. The ”symmetry radius”, C, is thus proportional to the sum
of the in medium masses of the spin zero particles.

Usually the neutron-proton asymmetry is parametrized by: a = (o, —
pp)/pB, which determines the fermionic and scalar densities. Furthermore




the nucleon effective masses {neutron and proton) are to be different due
to the coupling to (classical) fields of pions and delta as shown above. To
deal with these two different ways we develop the following approach. Ef-
fects of the classical scalar - isovector mesons on the effective masses are
_discussed leading to different baryonic (neutron,proton) densities. Secondly,
the effect of these different effective masses as well as of the different Fermi
momenta of neutrons and protons on the fermionic (and total energy) den-
sities are estimated. With this we give more reasons, from the point of view
of a relativistic model, for the non relativistic analysis with Skyrme forces
of References [4] (although they are not fully equivalent since we are not
calculating the isovector polarizability here).

Numerical results are shown in the following. The values of the pa-
rameters were considered to be: A = 40, M = 940 MeV, p, = 140 MeV,
te = 450 MeV, g5 = 10, g5 = 10, p5 = 980 MeV, p,, = 980 MeV. In
Figure 1 the effective masses of neutron and proton are shown as functions
“of the asymmetry parameter o for two cases, namely for the limit of their
effective masses in symmetric nuclear matter equal to M* = 0.7M and to
M* = 0.8M (dashed and solid lines respectively) taking into account the
contributions of the delta and of & - by their expected values, neutron (pro-
ton) effective mass with thick (normal) lines. For the contribution of 7 it
was normalized such that in symmetric nuclear matter this expected value
is zero, T = 0, by subtracting the value found in this limit of every solution,
at any neutron-pronton asymmetry. This is done for the sake of the main
argument. The total fermionic densities are shown in Figure 2 as functions
of @ with the different effective masses for protons and neutrons of Fig-
ure 1 (normal lines) and with equal effective masses (usual calculations) -
M* = cte (thick lines). The effective masses in symmetric nuclear matter
are M* = 0.7M and M* = 0.8 (dashed and solid lines respectively in both
figures). It is seen that the inclusion of different effective masses M7, M7
amplifies the symmetry energy for higher n-p asymmetries, as it could be
" expected.

The dynamics of the dense core of the Supernovae involves URCA pro-
cesses for which the symmetry energy is determinant in several aspects as
discussed in several references (2, 6]. For a large value of the symmetry en-
ergy (ar or Ag 1 [4]) the deleptonization (electron capture} in the quasi-static
phase of the supernovae mechanism should be smaller, what yields a larger
final proton fraction. The cooling via neutrino emission is to be modified as
well [6]. This conclusion goes compatibly with the analysis done for the SN
1987a. Further discussion is found in [2, 6, 4, 12].




2.3 Remarks on other channels of nuclear forces and Super-
novae

- Besides the isovector channel the spin dependent part of the effective nucleon
interactions may also be relevant for astrophysics. For example, the spin
channel of effective nuclear forces is relevant for the neutrino interaction
with matter (coupling to axial vector current with the scalar channel) [12]
and it also can lead to contributions to Electro-Magnetic fields in dense
stars, although they seem to provide large values {13]. As such, another
symmetry energy coeflicients (terms) can be defined as for example:

F
a x As:l,t:(} (Pup - Pdown)2 + . (6)

where pgpin is the density of nucleons with spin up/down. An increase of
the spin susceptibility (roughly the inverse of the spin s.e.c) lead to the
suppression of Gamow Teller transitions (supernovae) and it may lead to
instabilities of ferromagnetic polarized states. The spin-isospin channel has
been associated with instabilities which would lead to ”pion condensation”,
although this is not completely understood [14]. However all the symmetry
energy coefficients should be expected to depend on the neutron proton
asymmetry [4].

In the isoscalar channel it is possible to define other incompressibilities
~ than the usual one, K, measuring the stiffness (stability) of the phase di-
agram matter with respect to deformations compressions. This is known
to depend on the neutron proton asymmetry [4]. These four parts of the
nuclear interactions have been discussed in the frame of a non relativistic
model in these last references.

3 Anti-matter component(s)

The solution of the Dirac equation for the baryons with couplings to vector
fields (scalar/pseudoscalar classical fields contribute to change -or endow
the baryon with - masses) may be a mixture of nucleons and anti-nucleons
states which yield finite density state(s). Solutions for Dirac Equation with
classical vector fields do not have the symmetry of the matter-anti-matter
states characteristic from the free system [15, 5|. However it may be pos-
sible to have both coexisting in dense systems such as post-Supernovae or
even anti-stars (of any kind) constituted (mainly if not competely)} by anti-
matter in the Universe. These conclusions hold at finite temperature. We
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define the following densities respectively for baryons and anti-baryons N, N
NyuN =j, = pp = py and NTy,NT =5, — pg — pj. A coefficient
~ which measures the ratio of these components, if they do not annihilate
themselves, may be defined as: w = (pg — pg)/(p5 + pB). Furthermore
the classical vector fields, with different -variable- values, lead to “effective”
chemical potentials for each nucleon (positive and negative energies) compo-
nent. For particular values of V¥ the eingenvalues associated to anti-matter
may be favored leading preferentially to anti-matter (bound) states. More-
over there are solutions for which the energy eigenvalue becomes complex
which should, in principle, corresponding to an unstable state which should
decay if it exists. Anti-matter bound states {mixed with matter or not) could
be considered in the phase diagram of strong interacting systems as a third
axis (besides density and temperature} or eventually associated to the mat-
ter density - linear independent or not. In Reference [16] the effect of classical
tensor and vector fields were considered to the formation of superconductive
states at very high densities yielding condensates of di-antifermions besides
~ the usual di-fermions (di-quarks) condensates precluding the ideas of this
article and of Reference [9)].
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Figure 1 Effective masses of neutron (bold lines) and proton (normal
lines) in asymmetric nuclear matter for two cases when in symmetric nuclear
matter M* = 0.7M (dashed lines) and M* = 0.8M (solid lines).

Figure 2 Total fermionic energy density (p; (fm™*)) with effective nu-
cleon masses of symmetric nuclear matter M* = 0.7M (dashed lines) and
M* = 0.8M (solid lines) with and without different proton and neutron
masses, respectively normal and bold lines, for A = 40. Without different
masses the asymmetry is only due to k% # k%
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