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Abstract

An N =1 local superfield formulation of Lagrangian quantization in non-Abelian hypergauges is
proposed on the basis of an extension of general reducible gauge theories to special superfield models
with a Grassmann paramneter #. We solve the problem of describing the quantum action and the gauge
algebra of an L-stage-reducible superfield model in terms of a BRST charge for a formal dynamical
system with first-class constraints of (L + 1)-stage reducibility. Starting from -local functions of the
quantum and gauge-fixing actions, with an essential use of Darboux coordinates on the antisymplectic
manifold, we construct a superfield generating functionals of Green’s functions, including the effective
action. We present two superfield forms of BRST transformations, considered as 8-shifts along vector
fields defined by Hamiltonian-like systems constructed in terms of the quantum and gauge-fixing
actions and an arbitrary #-local boson function, as well as via corresponding fermion functionals, in
terms of Peisson brackets with opposite Grassmann parities. The gauge independence of the S-matrix
is proved. The Ward identities are derived. A connection of the suggested N = 1 local superfield
quantization is established with the BV method and the multilevel Batalin—Tyutin formalism.

1 Introduction

The construction of superfield counterparts of the Lagrangian [1] and Hamiltonian [2, 3] quantization
schemes for gauge theories on the basis of BRST symmetry [4] has been covered in a number of papers
[5, 6, T1. These works are based on nontrivial {represented by the operator I = 8; +88;, [D, D], = 28;)
and trivial relations between the even ¢ and odd # components of supertime y = (£, ), introduced in [8].
In [5, 6, 7}, the geometric interpretation [9] of BRST transformations is realized by special translations
in superspace, which originally provided a basis for a superspace description [10] of quantum theories of
Yang—Mills type.

The superfield Lagrangian partition function of [5] is derived from a Hamiltonian partition function
through functional integration over so-called Pfaffian ghosts and momenta. On the other hand, the
quantization rules [6, 7] present a superfield modification of the BV method by including non-Abelian
hypergauges [11]. The corresponding hypergauge functions are introduced into a gauge-fixing action
which obeys (following the ideas of [12]) the same generating equation that holds for the quantum action
[6, 7], except that the first-order operator V in this equation is replaced by the first-order operator U.
The operators V, U7 are crucial ingredients of [6, 7] from the viewpoint of a superspace interpretation of
BRST transformations.

The formalism [6, 7] provides a comparatively detailed analysis of superfield quantization {BRST
invariance, S-matix gauge-independence). This analysis is based on the structure of solutions to the
generating equations [6, 7}; however, a detailed relation between these solutions and a gauge model is
not indicated. To achieve a better understanding of the quantum properties based on solutions of the
superfield generating equations, it is natural to equip the formalism [6, 7] with an explicit superfield
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description of gauge algebra structure functions that determine a given model. So far, this problem has
remained unsolved. For instance, the definition of a classical action of superfields, A (8) = A% + X\i@,
on & superspace with coordinates {(z#,8), u = 0,...,D — 1, as an integral of a nontrivial odd density,
L{A(x.0), O, A(x,0),...;z,0) = L(z,0), is a problem for every given model. Here, by trivial densities
£(x,0) we understand those of the form

f 4P df L{z, 6) = f d96 5o (A(6)) = So(A),

where Sp(A) is a usual classical action.

In this paper, we propose an N = 1 local superfield formalism of Lagrangian quantization, in which
the quantities of an initial classical theory are realized in the framework of a @-local superfield model
(LSM). The idea of LSM is to represent the objects of a gauge theory (classical action, generators of
gauge transformations, etc.) in terms of #-local functions, trivially related! to the spacetime coordinates.
Using an analogy with classical mechanics (or classical field theory), we reproduce the dynamics and
gauge invariance (in particular, BRST transformations) of the initial theory (the one with & = 0} in
terms of 6-local equations, called Lagrangian and Hamiltordan systems (LS, HS) with a dynamical 6.2

On the basis of the suggested formalism, we solve the following problems:

1. We develop a dual description® of an arbitrary reducible LSM of Ref. [15] in the case of irreducible
gauge theories (with bosonic classical fields), in terms of a BRST charge related to a formal dynamical
system with first-class constraints of a higher stage of reducibility.

2. An HS constructed from #-local quantities, i.e., a quantum action, a gauge-fixing action, and
an arbitrary bosonic function, encodes, through a 6-local antibracket, both anticanonical and BRST
transformations in terms of a universal set of equations underlying the gauge-independence of the S-
matrix. This set of equations is generated, in terms of an even superfield Poisson bracket, by a linear
combination of fermionic functionals corresponding to the above 8-local quantities, e.g., the quantum and
gauge-fixing actions and the bosonic function.

3. For the first time in the framework of superfield approach, we introduce a superfield effective action
(also in the case of non-Abelian hypergauges).

In addition to DeWitt's condensed notation [17], we partially use the conventions of Refs. [6, 7). For
the indices of quantities and geometric objects used for the description of a general and restricted LSM, we
reserve mainly the capital letters I, Py, As, CL and the small letters 4, pmin, @, cl, for instance, Mcyp,
IIT™* My, with the corresponding coordinates A7(6) and TP (0) = ($iimin, o} (). We distinguish
between two types of superfield derivatives: the right (left} variational derivative 63y F/3®4(8), and the
right (left) derivative 8(;)F(0)/0%4 (0} for a fixed §. Derivatives with respect to super{anti)fields and their
components are understood as right (left), for instance, §/5A4, or §/5®%(8), while the corresponding left
{right) derivatives are labelled by the subscript {(r). For right-hand derivatives with respect to .A7(8},
with a fixed 8, we use the notation F,; (8} = 8F(8)/8.A1(8). The §(8)-function and integration over &
are given, respectively, by 6{#) = # and left-hand differentiation over 8.

The rank of an even 6-local supermatrix K () with Zy-grading ¢ is characterized by a pair of numbers
i = (m4, m_}, where m (m_) is the rank of the Bose-Bose (Fermi~Fermi) block of the §-independent
part of the supermatrix K(8}): rank]K(8)| = rank||K(0)||. With respect to the same Grassmann parity
&, we understand the dimension of a smooth supersurface, also characterized by a pair of numbers, in the
sense of the definition [18] of a supermanifold, so that the above pair coincides with the corresponding
numbers of the Bose and Fermi components of z¢(0), being the §-independent parts of local coordinates
#*(6) parameterizing this supersurface. On these pairs, we consider the operations of component addition,
i+ 7 = (my + ny,m_ +n_), and comparison,

M=T <Mt =0y, M >0 (Mmy >ny, mo Zn_)or (Mg =0, My >0

!By trivial relation to spacetime coordinates, we imply, in contrast to Hamiltonian formalisi, that derivatives with
respect to the even t and odd & component of supertime are taken independently.
2By dynamical 8, we imply that this coordinate enters an LS or HS not as a parameter, but rather as part of a differential
operator 8y that describes the f-evolution of a system.
- 3By dual description, we understand such a treatment of a gange model that interrelates the Lagrangian and Hamiltonian

 “formalisms (the latter is understood in the sense of formal dynamical systems).




2 Lagrangian Formulation

In this section, we propose a Lagrangian formulation of an LSM as an extension of a usual model of
clagsical fields A%, ¢ = 1,..,n = ny + n_, to a #-local theory, defined on the odd tangent bundle
ToaaMeoL = IT My = {AT,8AT}(0), T = 1,...,N = Ny + N_4, (ng,n_) < (Ny,N-). The su-
perfields (A, 35.A7)(8) are defined on a superspace M = M x P parameterized by (*,6), where the

spacetime coordinates 2™ < ¢ C I include Lorentz vectors and spinors of the superspace M. We shall
investigate the superfield equations of motion, introduce the notions of reducible generel and special
superfield gauge theories and apply Noether’s first theorem to §-translations.

The basic objects of the Lagrangian formulation of an LSM are a Lagrangian action Sp: ITMcp, x {6}
— A1(6;R), being a C°(IIT Mqy)-function taking values in a real Grassmann algebra, A;(0; R}, and a
(nonequivalent) functional Z[A], whose f-density is defined with accuracy up to an arbitrary function

JUA, 854)(8),6) € ker{Bs}, £(f) =0,
Z[A] = 8sSL(6), £(2) = £(68) = (1,0,1), &Sy} = . )

The values &= (ep,£5,8), € = ep + £, of Zp-grading, with the auxiliary components ¢ 5, £p related to
the respective coordinates (2%,) of a superspace M, are defined on superfields A’() by the relation
AT = ((ep)1,{€7)1,€1)- Note that M may be realized as the quotient of a symmetry supergroup
J = J x P, P = exp(iupy), for the functional Z[A], where p and pg are, respectively, a nilpotent
parameter and a generator of 8-shifts, whereas J is chosen as the spacetime SUSY group. The quantities
€7, € p are the respective Grassmann parities of the coordinates of representation spaces of the supergroups
J, P. The introduced objects allow one to achieve a correct incorporation of the spin-statistic relation
into operator quantization.

Among the objects S1,(¢) and Z[A4], invariant under the action of a J-superfield representation T
restricted to J, T 5, it is only Sp(#) that transforms nontrivially with respect to the total representation
T under AY(8) — A1) = (T|; A) (8 — ),

351.6) = 51 (A(6), 00 A'(0),0) = 51.0) = =i | 3 + PuO}OWV) )| 5.6) @)

Here, we have introduced the nilpotent operator (8,1)(#) = 8, A1(8)8,/8AL(8) = [8s,U(9)]—, U(O) =
PLAY(8)0,/0A(0).

Assuming the existence of a critical superfield configuration for Z[A], one presents the dynamics of
an L.SM in terms of superfield Fuler-Lagrange equations:

Z[A 0
5,41{(91 - [BA;(EJ) = (=1)%d 5(3747”?)‘)3] Sulf) = £10)51(0) = @

equivalent, in view of 83.A7(9) = 0, to an LS characterized by 2N formally second-order differential
equations in &,

BAC) 5750 Aff’;ﬁggi @y =BAOEDLE) =0,
_ &5.(0) L[ 850 a8 1 _
0:(0) = 519y ~ [%a(afeﬁ'f(e)) OO 551y | = “

The Lagrangian constraints ©;(9) = ©;(A(6), 8p.A(0), 8) restrict the setting of the Cauchy problem for
the LS and may be functionally dependent, as first-order equations ind.
Provided that there exists (at least locally) a supersurface & © My, such that

Or(0)|y =0, dim T =M, rank ||£5(6:) {£7(61)SL(01)(—1)7] “2 =N-M, (5)
there exist M = M, + M_ independent identities:

/d&fj}g RL,(6:00) = 0, RIy,(0; 00) = ;((ag)’“a(a—ao)) Rl (A6),0.A(6),0).  (6)

411 denotes the exchange operation of the coordinates of a tangent fiber bundle TMoL over a configuration Al into
the coordinates of the opposite Grassmann parity [16], and Ny, N_ are the numbers of bosonic and fermionic fields,
among which there may be superfields corresponding to the ghosts of the minimal sector in the BV quantization scheme
(in condensed notation [17] used in this paper).




The generators ’f%jr% (8;6p) of general gauge transformations,
§ AI(H) fd@n'R. (8; 90):§A0 (6a), E_"(EAO) =&, Ap=1,..., Mp = Moy + Mp-.,

that leave Z[A] invariant, are functionally dependent under the assumption of locality and J-covariance,
provided that

=H<Hg.
=

rank

SR, (8) (80)*

kz0

The dependence of 7@5% {6;6y) implies the existence (on solutions of the LS) of proper zero-eigenvalue

eigenvectors, Eﬁ‘l’ (A{B0), 35, A(B0), Bo; B1), with a structure analogous to ’f%f% (8;69) in (6), which exhaust
the zero-modes of the generators, and are dependent in case

rank

=H0—M<H1.
=

> 2640 (60) (99,)"
k

As a result, the relations of dependence for eigenvectors that define a general Lg-stage reducible LSM are
given hy

fde B30, ) B 0 9)_fde 018"V L27 (A, 8 A)(Bs—2), 52, 6'56,)

Mo > Z (~1)* Mt = rank || 3 2472 (8,-2) (80,.)"| |
k=0 k20 5
— ‘ Ly __ ~ A k
My, = Z(“l)kMLgﬁk:—l = rank ZZAiifl(aLg_l) (89,59_1) )
k=0 k>0 5
E(Z4r ) =Ea, +Ea,p +(L,0,1), Z571(0_1;60) = R, (0-1;60),
LA (0-1,6,00) = KL (6-1,6',61) = ~(=1){ertDest g g 1 6;)., (7

fors=1,..,Ly, As =1,.., My = Myy + M,_, M = M_,. For L, = 0, the LSM is an irreducible general
gauge theory.

In case an LSM admits the form Sy.(6) = T (5.A(8)) — S (A(#), ), the functions ©7(8) are given on
the extended configuration space Mcy, x {#} by the relations

O5(8) = —5,r (A(8),8) (-1)*7 =0, (8)

being the usual extremals of the functional Sp(A) = 5 (A(0),0), corresponding to # = 0. In case § = 0,
condition {5) and identities {6) take the usual form

rank [|5,15 (A(6), )|y = N—M, S;(A(8).9) RUIAn (A(6),0) =0, 9
with linearly-dependent (for My > M) generators of special gauge transformations,
A (8) = Roly, (A(8),8) &5 (6),

with leave invariant only §(#), in contrast to T'(#). The dependence of generators Roin (8), as well as of

their zero-eigenvalue eigenvectors Zﬁf (A{#),8), and so on, can be expressed also by special relations of
reducibility for s = 1,..., Lg, namely,

ZLTHAB), )23 (A©),0) = S, (9)£ﬁ3—“(«4(9),9), HEQ™) =Eay +Ear
Z571(0) = Rolyy 8), L5377 (0) = KI(6) = ~ (=1 I (6). (10)

For My, = Zk So(—D¥My ;1 = rank ”ZALQ'1
theory of Lg-stage reducibility. The gauge algebra of such a theory is 8-locally embedded into the gauge

iy relations (8)—(10) determine a special gauge
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algebra of a general gauge theory with the functional Z[A] = 8(T () — 5(6)), which implies the relation
between the eigenvectors

E40H (A(B5-1) ,Bo-130) = —8(8s—1 — O3} ZA™ (A(B—1), B6-1) (11)

and the fact that the structure functions of the gauge algebra of a special gauge theory may depend
on dgAf (8) only parametrically. Note that an extended (as compared to {P, (§)}, a = 1,2} system of
projectors onto C°(IITMcqy,) x {8}, {Io(6),68/86, U (6)}, selects from (10) two kinds of gauge algebras:
one with structure equations and functions S{A(#)), Zij"‘ (A(8)) not depending on & in an explicit form;
another with the standard relations for the gauge algebra of a reducible model with quantities Sp(A),
Ze M (A),incase 0 =0, (ep)r = (ep)a, =0, 8 =1,..., L, and under the assumption of completeness of
the reduced generators R, (A(6)) and eigenvectors Za: ™ (A{(8)).

An extension of a usual field theory to a #-local LSM permits one to apply Noether’s first theorem [19]
o the invariance of the density 4651, (8) with respect to global #-transletions as symmetry transformations
of the superfields A/{#) and coordinates (2,8), (AL, 2M,8) — (AL, 2M,0 + p). By direct verification,
one establishes that the function

SL(A)

55 (4,06 4)0).9) = 5 4rigyy

a5.A%(8) — SL(B) (12)
is an LS integral of motion, i.e., a conserved quantity under the #-evolution, in case there holds the
equation

a .

—=51(6) + 2(8p TN (0)S1.{6) = 0. (13)

a6 £L8=0

I

In contrast to its analogue in a t-local field theory, the energy E(2), the function Sg(f) is an LS integral
also in the case of an explicit dependence on #. This fact takes place in case 51,(6) admits the structure

S (A, 04)(8),6) = S (A, 0p.A) (8) — 26(3,U)(6)SL(8), £15%) = 0. (14)

3 Hamiltonian Formulation

This section is devoted to a Hamiltonian formulation of an LSM, on the odd cotangent bundle T);u Mo =
I7T* Mcyg, = {.AI , A}} (8). Here, we shall establish a connection to the Lagrangian formalism and in-
vestigate the existence of a Noether integral, related to #-translations, that leads to the fulfillment of a
#-local master equation. ’

Independently, an L.SM can be formulated without an Mgy -extension, in terms of a Hamiltonian
action, being a C°(IIT* Mcy)-function, Sy : OT*Mcr x {#} — A1(#;R), depending on superan-
tifields A3(f) = (A} — 6.J;), included in the local coordinates of TIT*Mcy: TEL(A) = (Af, A3)(6),
(A} = £(A1) + (1,0,1). The equivalence of the Lagrangian and Hamiltonian formulations is implied
by the nondegeneracy of the supermatrix ||(57)7s(#}]| given by {4), in the framework of a Legendre
transformation of Sy,(f) with respect to 85.47(6),

a5.,(9)

Su(Tow(9),0) = A7 (0)05.4"(8) — SL(6), Aj(6) = B AIE)

(15)

where Sp{ToL(6),8) coincides with Sg(6) in terms of the IIT™* Mgr-coordinates.
The dynamics of an LSM is given by a generalized Hamiltonian system of 3N first-order equations in
#, equivalent to the LS equations in (4), and expressed through a #-local antibracket { -, - ), namely,

HTEL(O) = (TEL6). Su(8)),, OF (TeL(8),6) = O1(A(6), BpA(Tcr(6),6).6) =0,
aF,  OF aFL OF
BAI(0) BA(O)  BA;(6) dAL(6)

(F1,F2)e = (16)

with Hamiltonian constraints ©%(I'cr(8),8). The latter coincide with half of the equations of the HS
proper, due to transformations (15} and their consequences:

O (IcL(8), 8) = —05A3(8) — S,r (B)(=1)°*. 7
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Formula (17) establishes the equivalence of an HS with a generalized HS, and hence with an LS, in the
corresponding, formal in view of the degeneracy conditions (5), setting (# = 0, & = CL) of the Cauchy
problem for integral curves AL(8), I'F(0),

5 . — = n . oSL(f)

I ar fI _ I ar a1l L . [ AT *

(A 5 A ) (0) = (AL, FFAY), PL0) = (AL, 4 : Ay =P [a(agAf(éJ))
(we ignore the continuous part of the indices 7). The equivalence between an HS and a generalized
HS holds due to the coincidence {mutual inclusion) of the corresponding sets of solutions. Indeed, the
solutions of a generalized HS are included into those of an HS by construction, while the reverse is valid
due to (17).
The HS is defined through a variational problem for a functional identical with Z[A],

Zalld) = [ db | 5TE @b @%TE0) - Sur0).0)].

w£20) = (TEO),120)) . b O)whq(®) = . (19)

Definitions (8)—(10) remain the same for special gauge theories, while definitions (6), (7), in the case of
general gauge theories of Lg-stage reducibility, are transformed by the rule

2 (DelBo-1), 0513 65) = 27 (A(Be=1), Bo, s ALk (Bsm1), 05—1), 05-1385) , 5 =0,...,Ly. (20)

} (AL gAy (8

From egs. (13), as well as from transformations (15) and their consequence 2(5L + Su)(#) = 0, there

follows the invariance of Si{#) under f-shifts along arbitrary solutions I'F(#), or, equivalently, along an
(ep,e)-odd vector field Q(f) = adSu(0) = (Su(#), - )s. Therefore,

a
5,50(0) Ity 0) = 1 | 2gS1(®) ~ (Su(6), Su(0)),| =0, 6,51(6) = pdoSu(6) )
holds true, provided that Sy (8} can be presented, according to (13), in the form

Su (Tx(0),8) = Sk (Ti(8)) + 6 (S (Tw(6)), S (Tw(6))) » (22)

where (OpU)(0)S1.(8) = 1/2(Su(#), Su(8)), and S% (T'x(#)) is the Legendre transform of SP(8), defined
by (14).

If Su(8), or SL(#), does not depend on @ explicitly, then eq. (21), or (13), implies the fulfilment of
the equation (Su(8), Su(8)}s =0, or (FU)(8)5SL(0)] Atgy = 0, which has no counterpart in a ¢-local field
theory, and imposes the known condition (1] that Su(6), or S.(#), be proper, although for an I.SM at the
classical level. In this case, a @-superfield integrability® of the HS in (16) is guaranteed by the standard
properties of the antibracket, including the Jacobi identity:

1
(@)TE () = 5 (TE @), (Su(Tx(8)); Su(T«(8))) o) o = 0. (23)
This fact ensures the validity on C*®{TIT*Mcg, x {8}} of the #-translation formula
2, .
T Ol 5y = | 5 - 2d5u(0)| F(0) = s @), (24)
as well as the nilpotency of a BRST-like generator of 8-shifts along Q(8), ().

Depending on the realization of additional properties of a gauge theory (see Section 4), we shall
henceforth assume the fulfillment of the equation

1 £(T2
AMB)Sa(6) = 0, AME) = 5 (-1 (6) (TEO), (120), -) ) - (25)
Eq. (25) is equivalent to a vanishing divergence of the vector field Q(#), namely,
o a, ,
&y (BT Olr0) = 5rr gy (5TE @), ) = 285(6)Su(0) = 0. (26)

" This condition holds trivially for the symplectic analogue of formula (26). The validity of the Hamiltonian

master equation (Su(f), Su(f))e = 0 for £ Su(8) = 0 justifies the interpretation of the equivalent equation
in (13), for Z81.(6) =0, (39U){9)3L(9)|£5_5L=0 =0, as a Lagrangion master equation.

5The notion of 8-superfield integrability is introduced by analogy with the treatment of Ref. {14].
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4 Local Superfield Quantization

4.1 Superfield Quantum Action in Initial Coordinates

In this subsection, we shall transform the reducibility relations of a specially restricted LSM into a se-
quence of new gauge transformations for the ghost superfields of the minimal sector. Together with the
gauge transformations of the classical superfields A*(9), extracted from .A?(8), the new gauge transforma-
tions are translated into a Hamiltonian system related to the restricted HS. A requirement of superfield
integrability for the resulting HS produces a deformation of the #-local Hamiltonian in powers of the
ghosts and superantifields of the minimal sector, and leads to a quantum action, and, independently, to
a gauge-fixing action (see Subsection 4.3}, subject to different §-local master equations,

Given the standard distribution of ghost number [1] for ', (8), gh(A}) = —1 — gh(Af) = —1, the
choice gh{#,8) = (—1,1) implying the absence of ghosts among A7, and, in particular, the relations
{ep)r = 0, the quantization rules, firstly, consists in restricting an LSM (in both Lagrangian and Hamil-
tonian formulations) by the equations

(b, ) Sy @) = 0.0 (20

Given the existence of a potential term in Sgy(#), S{A(6),0) = S(A(#)) and the absence in Sy1)(f)
of a dimensional constant with a nonzero ghost number, solutions of egs. (27) select from an LSM a

~ standard field theory model with a classical action Sy(A) in which the fields A% are extended to A*(f).
Then an extended HS in {16) is transformed into a f-integrable system defined in IIT* Mg = {T0{8)} =
{(A5, A)(8)}, with ©7(A(8)) = ©;(A(6)),

FETE(6) = (TH(8), So(A(8)))p ©F (A(B)) = —(—1)% Soi (A(B)). (28)
The restricted special gauge transformations 6AH ) = Ri,, (A(8)) £5°(8), E(£5°(8)) = €y, with the

condition (ep)a, = 0, are embedded by the substitution £8°(f) = dES(8) = C*(8)dd, ap = 1,..,
Mg = Mp— +mMo4, into a Hamiltonian system with 2n equations for unknown I} (6), with the Hamiltonian
S9(Te1, Co)(8) = (Af Rk, (A)C*0)(6). A union of this system with the HS in (28), extended to 2(n +mq)
equations, has the form

TH (8) = (rf’ﬂlfl 0, sg](a))a, 5810 = (S0 + 59)(6), TH = (7, T%), T° = (€*,CL,). (29)
By virtue of (10}, the function S7{#) is invariant, modulo Sp,; (8), under special gauge transformations
of ghost superfields C*(#), with arbitrary functions £7*(#), (ep)e, =0, on the superspace M:

6C0(0) = 257 (A(6))67 (9), (&, gh)ér* (6) = (£ay + (1,0,1), 1) (30)

Making the substitution £81(8) = d£®1(8) = C*1(8)df, oy = 1,...,mq, and an enlargement of mq first-
order equations in @, with respect to the unknowns C*{#) in transformations (30), to an HS of 2mg
equations with the Hamiltonian S}(A,Cj,C1)(#) = (C5 Z59(A)C*1)(8), we obtain a system of the form
(29), written for 85T%"(8). The enlargement of the union of the latter HS with egs. (29) is formally
identical to the system (29) under the replacement

(T [0] 7 Shy) — (Fpm Sty : {Pﬁ[]” (T

o 1 TPy, TP = €, ce), 5{11] = Sﬂ] +Sll},

The iteration sequence related to a reformulation of the special gauge transformations of ghosts
C,...,C%-2, obtained from (possibly} enhanced® relations (10), leads, for an L-stage-reducible restricted
LSM at the s-th step with 0 < s < L and I'¥, = T”}*, to invariance transformations for §§~(6), modulo
So.: (), namely,

5From gh(A7) = 0 in eqs. (27), with {ep)a, = (EP); =0, 8=0,..., Ly, it follows that the values of W, M may be both
larger and smaller than the corresponding values M, M, in contrast to the values of 7, N. Indeed, for a restricted LSM,
the presence of additional gange symmetries is poss1ble, therefore, we suppose that (possibly) enhanced sets of restricted
functions ’Roﬁo (6), Z as ~1{8) exhaust, correspondingly, on the surface Sp,; (8) = 0, the zero-modes of both the Hessian
Sp,i5 {9) and sz:'f (9) As & consequence, this implies that the final stage of reducibility for a restricted model L is different
from Lg.
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GCxeH(0) = 25572 (A(0))E5(8), (€,8h)E5 () = (€, +5(1,0,1),8), (eP)a, =0,

S{71(0) = (Caun, 2 AC)0), (8,55 ) S0 = 0.0) 1)

The substitution £2+(@) = d£2+(8) = C2 (8)df, oy = 1, ..., My = Mmg_ + My, transforms special gauge
transformations {31} into m,..; equations with respect to unknown C%-1(f), extended by the introduction
of superantifields C;, _ {6) to an HS:

FpTezr (0) = (T (8): 51(8)) g, S1(6) = (Ca,_, 287 (AIC™)(0), The3! = (C*,C5, ). (32)

Having combined the system (32) with an HS of the same form, although with 651’?:? {#) and the
Hamiltonian S[sﬂl (8) = (So+3_2Z5 87)(6), and having expressed the result for 2 (n + 3¢ _, m,) equations

=0

with 57(6) = (57" + 57)(6), we obtain, by induction, the following HS:

a—1

L
SLE5 0) = (TEE 6), 551(0)), » SHy(6) = SolA(O)) + D o(Corny B ACTIE). ()

The function S[I;i(Q}, subject to the condition of a proper #-local solution of the classical master equa-

tion [1], with the antibracket extended in HT*M;G={F€E‘] () = I7*(8)=(2%, 8% )(@), Ax = n+

Zf:u my, k=min}, is a solution with accuracy up to O(C%), modulo Sy,;. The integrability of the
HS in (33) is guaranteed by a double deformation of .S'[LI] (6): first in powers of @} (¢) and then in powers
of C%(§), in the framework of the existence theorem [20] for the classical master equation in the minimal
sector:

a4
The proposed superfield algorithm for constructing the function Simin(8) may be considered as a
superfield version of the Koszul-Tate complex resolution [21]. We remind that the eulargement of
Stiymin(8) to Sue(Te(8)), Suik(8) = Serymin(¢) + Ef:o E§,=D(C;,%B§‘ﬁ‘)(9), being a proper solution [1] in
OT* My, = {I'7+(6)},
TPE(9) = (TPmin €O, BSS,C Boa, )8), 8 =0,...,5, s=0,..., L,

min * s’ Mgl Mslay

(& gh)C3 (6) = (€a, -+ (s + 1)(1,0,1), 28" — s — 1) = (&, gh) By () + ((1,0,1),-1)

{henceforth we assume k = ext and take into account that (&, gh)®%, (8) = —((1,0,1),1) — (&, gh)@+(0)),
with the pyramids of ghosts and Nakanishi-Lautrup superfields, and with a deformation in the Planck
constant f, determines the quantum action S§(I'(8), k), e.g., in case of an Abelian hypergauge defined
as an anticanonical phase transformation:

((SalTu(0), SalTu(®)), =0, (<16h, 25) Sua(u@) = (60,0), k= min (39

. . (@ (6 N

T24(8) — [P+ (0) = (@Ak(a), @5, (6) — 33%%) : SE(PO), k) = 4 Sy (Tr(8), ). (35)
The functions (S5, Suy} (9, i) obey egs. (25), (34) in case the fi-deformation of Sy.min(6) is their solution.
It is known that this choice of equations ensures the integrability of a non-equivalent HS constructed from
S¥. Suk, as well as the anticanonical [preserving the volume element dVi(6) = [1,, dT'%*(6)] nature of
this change of variables, corresponding to a #-shift by a constant parameter p along the corresponding

HS solutions. In its turn, the quantum master equation
AF(9) exp [

2

+ B8, n)] =0, E c {5, Sux} (36)

determines a non-integrable HS, with the respective anticanonical change of variables preserving dVj #) =
exp [(i/h} E(8, k)] dV3(8). It is the latter nonintegrable HS with the Hamiltonian S§ (8, ) that is crucial,
for # =0, in the BV formalism. This HS determines on IIT* M}, a §-local, but not nilpotent, generator
of BRST transformations, 5(¥)(8), which is associated with its f-nonintegrable consequence:

0, aSEE.n o
86 " 0% (6) 024 (6)

8 (2%, @) (0) = ((27%(6), 5§ (6. ), ,0), D (9) = (37)




4.2 Duality between the BV and BFV Superfield Quantities

In this subsection, we shall construct a dual description of an LSM. Namely, an embedding of a restricted
L.SM gauge algebra, described by the action Su.min(6) and by eq. (34), into the gauge algebra of a general
gauge theory in Lagrangian formalism, see egs. {6)}-(11), can be effectively realized by means of dual

- functional counterparts, with the opposite (ep, £)-parity, of the action and antibracket, following, in part,
the approach of Refs. [13, 15]. To this end, let us consider the functional

Zi[Tk] = —068mk(9) , (&, 80) 2, = ((1,0,1),1)

on the supermanifold IIT(ITT*AM;,) = {(TF*, 8oT%*){6}, ¥ = min} with natural (¢p,e)-even, symplectic,
and (gp, £)-odd Poisson structures. These structures define an (zp, £}-even functional { -, - } with canoni-
cal pairs {(®{*, 0e®%, ), (Bg‘iﬁ’“,@jgk)}(a), and (gp, £)-odd #-lacal, (-, _)grk,aar‘k), Poisson brackets. The
latter act on the superalgebra C°(TIT(TIT* M) x 0) and provide the lifting of the antibracket (-, - Jo
defined on II7™Mjy. For arbitrary functionals Fy[['x] = 8sF; (T's, 9k} (8),6), t = 1,2, we have the
following correspondence between the Poisson brackets of opposite Grassmann grading:

5F1 5F2 5r-F1 5tF2 (I‘ OaTk).
(F1(8), Fo(0))5 %™ = [(zAm) L4 Ty — (L:Akfl)cﬁkfz] ®), (38)

where the Euler-Lagrange superfield derivative, e.g., with respect to @% (), for a fixed @, has the form
L*4%(9) = 0/0%%, (8) — (=1)=4++18p - 8/0 (99 ®%, (6)).
By construction, the functional Z; is nilpotent:

122} = [ 48(Sux(®), Sux(©))o =0, &k = min, (39)

and, due to the absence of the additional time coordinate, is formally related to the BRST charge of a
dynamical system with first-class constraints [2]. Indeed, after identifying the fields (T'x, 85T )(0) with
the phase-space coordinates of the minimal sector, canonical with respect to the (¢p, £)-even brackets in
the framework of the BFV method [2] for first-class consirained systems of (L + 1)-stage reducibility,

(',p5) = (A, B0A3)(©), (C*,Pa) = ((B5C,€), (C2, . 0uCE,) ) (0),

As = {1, @), 8=0,..,L, (C¥+ Py, .) = (95C°%,C5,) (0), (40)
the functional Z takes the form
L+1
ZilTh] = Tay (0, )0 + 3 Pa,_, 237 (94 + O(C?). (41)
s=1

With allowance for the gauge algebra structure functions of the original L-stage-reducible restricted LSM
in the enhanced eqs. (10), the constraints Ta,(q.p) and the set of (L + 1)-stage-reducible eigenvectors
Zﬁ‘j‘l(q) are defined by the relations (the symbol T below stands for transposition)

Tao(a,p) = (Sosi (@), —piRob, (@)} s ZAS '(g) = diag (ng 2, 2em 1) ()

AL T oL —1
s=1, L, (242,) @ = (2524,0)" (@), (42)
Zhv gt S LA B (g ) s =1, L1, ZA =T, A2 =0,
L = disg (L3579, L3, £8;7 = £33 =0, £L579(@p) = (DRl (@) (43)

Formulae (38)—(43) generalize, to the case of arbitrary reducible theories, the results of Ref. [15] con-
cerning a dual description (for g; = 24, = L = 0) of the quantum action and classical master equation in
terms of a nilpotent BRST charge.

Note that the variables (C},, , B%.,, , Bor )(6) are identical, by the rule (40), to the respective ghost mo-
menta Py 4,, Lagrangian multipliers Ay 4., and their conjugate momenta ﬁ'ft“ in [2]. Then a comparison
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of the superfields C3*(0), s’ = 0, ..., 5, selected from the non-minimal configuration space of an L-stage-
reducible LSM, with the coordinates G’ﬁ" selected from the non-minhmal phase space of the corresponding
(L + 1)-stage-reducible dynamical system [2] shows the only possible embedding of IIT(IIT* Meys) into
the phase space of the BFV method. Indeed, for the coordinates C{f bt gh(C’(;‘ b1y = —L — 2, there
exists no pre-image among (€2, 3sCor* {0), because the ghost number spectrum for the latter variables
is bounded from below:
mingh(Co*, 8eC5*) = gh(CH*) = —L — 1.

As a consequence, the nilpotent functional Zi[I's] = —8pSux (), k = ext, is embedded into the total
BRST charge constructed by the prescription of Ref. [2].

It should be noted that the systems constructed with respect to the Hamiltonians S§ (I'(8), &) and
Sux(d), k& = min, ext, are equivalently described by dual fermion functionals Z[['x] and Z¥[[] =
—89 55 (E(8), K), in terms of even Poisson brackets, for instance,

BEPP(Q) = (I‘P(g)’ SI\-IIJ(F(H):- h))g = {Pp(g), ZW[F]} . (44)

Thereby, BRST transformations in the Lagrangian formalism with Abelian hypergauges can be encoded
by a formal BRST charge, Z¥[I'], related to Zx [Tk}, k = ext, by means of a phase canonical transformation
with the (¢p,)-even phase FY[®]=8,T((8)),

Z¥T) = e Z,ry), ad F¥ = {F¥,.}. (45)

On the assumption that an additional gauge invariance does not appear in deriving the restricted LSM
model from the initial general gauge theory, ie., M, < My, and, therefore, L. < L,, cf. footnote 6,
the problem of including the restricted LSM gauge algebra into the initial gauge algebra, defined by
(1), (8), (7), is solved with the help of a nilpotent functional defined on IT{(TIT* My)={(T5*, 3T }(8),

T2 () = (FggL,CAS,Cj;S) (6), 5 =0,1,..., Ly, k = MIN}, namely,

2] = Z[A] + Z ( f By 1d0sCH, | (Bamr) 207 (Bsmr; )04 (85) (= 1) Aem1 ™+
+O(CA)) = f 0511 (T, BT) (0), 6} (46)

Given the superfields C*¢ introduced as simple ghosts C®, alhough used for a description of a general
gauge algebra, the representation of a solution to the generating equation {Zk, Z k} = 0 as an expansion

in powers of C4s can be controlled by an additional generalized ghost number, ghg, ghy, (Zy) = 0, coinciding
with the standard ghost number only in the sector of (@4mv % )(0), for gh(A!,C4e) = (0,1 + s},
and having the spectrum

ghg(AIs CAS} = (0’ 1+ 5): ghg(q)fiMm) =-1- ghg(q)AMIN)r ghg(G, 56‘) = (0}0)

Conditions (27}, applied to Si(6) for (ep).a, = (ep)r =0, s =0, ..., L,, extract from Zj, the functional
Zy in {41), so that the (gp, £)-even -density Si.x(6) lifts the function Sy.x(6) € C(IIT* Mmpin} to the
superalgebra C°°(IIT(TIT* My} X 8). In general, S1,..(6) does not obey the generalized master equation
(34) with antibracket (38) acting on C*°(IIT(I1T* Mymn) % 6),

(St (8), Seae ()5 #%%) = F (T4, 30T%)(8),8), F(B) € ker{p}, k = MIN. (47)

4.3 Local Quantization

In this subsection, we shall define, in terms of the above actions, a generating functional of Green's
functions, Z(#), and an effective action, ['(§), using an invariant description of super(anti)fields on a
general antisymplectic manifold. An essential feature in introducing Z(#) and [(#) is the choice of
Darboux coordinates (i, ©*)(9) compatible with the properties of the quantum action.

Leaving aside the realization of a reducible LSM on HT™ M.y, we now suppose that the model is
described by a quantum action, W(#, %) = W(#), defined on an arbitrary antisymplectic manifold A
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without connection, dim A = dimIT* My = (@ + (n_,ny) + Ef=0{27" + 3)( T -+ (M, myey.)), with
local coordinates I'P() and a density function p(I'(#)). A local antibracket, an invariant volume element,
dp(T'(8)), and a nilpotent second-order operator, AV (#), are defined in terms of an (¢p,)-odd Poisson
bivector, w(I'(6)) = (I?(8), T4(8))5, namely,

Au(T(8) = HTONTE), AV (6) = (10T g 0) (17(0), 0 T0@), ), - (49)

The definition of a generating functional of Green’s functions Z {(da¢*, ¢*, s, T)(#)) = Z(f) as a
path integral, for a fixed 8, is possible, within perturbation theory, by introducing on A the Darboux
coordinates, I?(8) = (2, ©%)(8), in a vicinity of solutions of the equations W (8}/0I7(8) = 0, so that
p =1 and wP?(#} = antidiag(—&f, 47). The function

20) = [ au (£(0)) da@)exp {(i/m) [ (FO), 1) + X (2.8 =" A4 0, Do
— ((B903) 2" + Pu0p9" — LA (0)]} (49)
depends on an extended set of sources,

(6.9‘19:;, 5905173:&)(9) = (_Jaa)\a: Toe + Ilag))

(€, 8h)Bpg = (€, 8h) Lo + ((1,0, 1), 1) = (&, —gh)?,
to the superfields (%, ¢k, A%)(6), where A%(8) = (A + A}8) are Lagrangian multipliers to independent
non-Abelian hypergauges, see i11],

L
Ga(l(0))a=1,..., k=n+» (2r+3)m,, k=ky +k-,

r=0

rank [|0Ge(6)/007 (Ol gw jor—ceo = b I =1y +1- =k

The functions G, (I'(#)), (€,gh)G,. = (& gh)Z,, determine a boundary condition for the gauge-fixing
action, X (8) = X ((T', A, A*)(8), K},

8, X (8)/9A%()

A*=h=0 — Gﬂ- (9)’

defined on the direct sum Nyoy = N @I K of the manifolds A and IIT*K = {(A®%, AY)(#)}. Hypergauges
in involution, (G.(8), Go(8))Y = G.(8)US,(I'(8)), obey different types of unimodularity relations [£1],
depending on a set of equations for which X (#) may be a solution, independently from W{#}, in terms of
the antibracket (-, - )o = (-, -}3" + (-, -)§ and the operator A(§) = (AN + AK)Y(8), trivially lifted from
N to MDt:

1) (B(©), 5@)s = 0. AOEE) = s 2) 20) exp |1 50)] =0, 7 e (w,x). (50)

The functions G,(8), assumed to be solvable with respect to @}(#), determine a Lagrangian surface,
Ag = {(¢*, A)(6)} C Niot, on which the restriction X{(#)], is non-degenerate. Given this, integration
over {#*, A)(f) in eq. (49) determines a function, for dg® = I, = 0, whose restriction to the Lagrangian
surface A = {p(#)} C N is also non-degenerate.

In [6, 7}, a peculiarity of the generating functional of Green’s functions Z[®*] and of the vacuum
functional Z is the dependence of the gauge fermion ¥[®] and quantum action S[®, &*] on the components
M of superfields ®4(0) in the multiplet ($4,®%)(8) = (¢ + A19,¢% — 6J4), where the variables
(¢4, ¢%, A4, Ja) constitute the complete set of variables of the BV method [1}. Another feature of [6, 7]
is that the structure of superantifields ©% () and the explicit form of Z[®*] allow one to introduce in a
non-contradictory manner, although violating the superfield content of the variables,” an effective action

"By violation of the superfield content, we understand the fact that the derivative of Z[®*], which defines the ef-
fective action in a Legendre transformation, is calculated with respect to only one superfield component, namely, the
B-component of &% (8), so that the resulting effective action depends only on ¢4 and ¢%, which can be formally expressed

as Po (0) {24, 2%) (0) = (%, 64).
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T, by using a Legendre transformation of In Z[®*] with respect to P (6)8%(8),%

Ao §lnZ[@*]

U[Po(®, ®*)] = ?111 Z[2"] + 85 {[P1(6)®%(0)) 22(6)} , 24(9) = TS (B 0)85(0)’

(51)

with the standard Ward identity (I',I") = 0 in terms of a superantibracket[6].

In view of the properties of (W, X)(6), one can introduce an effective action M{(8) = (i, ¢*, 85, T)(9)
defined, in the usual manner, by means of a Legendre transformation of In Z(6) with respect to 8 (8),
_ E i InZ(6)

i MOppy(8))
The analysis of the properties of (Z,M}(#) is based on the following #-nonintegrable Hamiltonian-like
system, which contains an arbitrary (ep, €)-even C°° (N )-function, R(f) = R ((f‘,A, A*Y(8), fi), with a
vanishing ghost number:

r(6) = 2 In2(6) + (Gop)e® (6), ¢*(0) = (52)

o5T2(6) = ~in 171 B) (I7(0), TOR®) |
F5A2(6) = —2ih T (6) (A%(8), T(HIR(9)),
G (va, A3) (6) =0,

where the function 7' ((', A, A*)(6), ) = T(6) has the form T(8) = exp(i/h) (W ~ X)(8)]. Let us
enumerate the properties of (Z, [}(#).

1. The integrand in (49) is invariant, for 8p¢* = 8¢ = T = 0, with respect to the superfield BRST
transformations . '

(53)

A*=0

Pron(®) = (€,8,4)(0) = (Fios +6,F0t) (6), 8u1cn(®) = (85Fr )|

tot

s {54)

having the form of a #-shift by a constant parameter y along an arbitrary solution I’y () of the system
(53), or, equivalently, along a vector field determined by the r.h.s. of (53), for R(f) = 1. Here, the
arguments of (W, X)(#) are the same as in definition (49). The above statement can be verified with the
help of the identities

O X(8)/OF(B)| pog = O (X (8)pu o) /OF(H), F € {I'P, A%}

Notice that the system (53}, for R(f) = const, admits the integral (W + X)(8) in case W and X obey
the first system in (50}.

2. The vacuum function Zx(8) = Z{0, ¢*,0,0)(f) is gauge-independent, namely, it does not change
when X{@) is replaced by an (X + AX)(#) which obeys the same system in (50) that holds for X () and
conforms to nondegeneracy on the surface A;. Indeed, this hypothesis implies that the variation AX(8)
obeys a system of linearized equations with a nilpotent operator Q;(X), j = 1,2,

Q;(X)AX(0) =0, ;1 A()AX (8) = 0; Q;(X) = ad X(0) — 652(iRA(D)), (55)

where j is identical to the number that labels that system in eqs. (50} for which X(#) is a solution.
Using the fact that solutions X (#} of every system in (50) are proper, one can prove, by analogy with
the theorems of Ref. {22], that the cohomologies of the operator @,;{X) on the functions f(Ty(8)) €
C°(MNior) vanishing for Tyo¢(8) = 0 are trivial. Hence, the general solution of eq. (55) has the form

a
with a certain AY (6). Now, making in Zx A x (¢) a change of variables induced by a #-shift by a constant
#, corresponding to the system (53), and choosing

2R(0)p = AY(9),
8Here, P1(6) and the operator 8/6 (P1 ()25 (9)) in {51) are, respectively, the projector from the system {Pa(#) =

Oao(l ~ 889) 4 641085, a = 0,1} on the supermanifold with coordinates (&4, &% )(8) and the superfield variational derivative
with respect to Py (8)®* (6).
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we find that Zxiax(9) = Zx{f) and conclude that the S-matrix is gauge-independent in view of the
equivalence theorem [23)°,

The above proof shows that the system (53) encodes, due to (54), the BRST transformations for
R(0) = counst, and, at the same time, the continuous anticanonical transformations in an infinitesimal
form, with the scalar fermionic generating function R(9)u, where R(#) is arbitrary and g is constant.

Equivalently, following the ideas of Subsection 4.2, the above characteristics of the generating func-
tional of Green's functions can be derived from a Hamiltonian-like system presented in terms of a super-
field even Poisson bracket in general coordinates (see footnote 9),

a5 (9) = — {fp(e), ZWIE — (2% + ihZR}[f‘tot]HN:O ,
a5A%(0) = -2 {A°(8), 2V [[) - (2X +inz®)Cualf| _ (57)
% (pa, A3) (8) =

with a linear combination of fermionic functionals, corresponding to the above actions, and a bosonic
function by the rule
ZE[FtOt] == —39E(I‘t0t(f9),h), E S {W .X, R} (58)

If the actions (W, X)(#) obey the first system in (50), then the functionals Z¥, ZX, formally playing the
role of the usual and gauge-firing BRST charges, are nilpotent with respect to the even Poisson bracket
{-, y=1{, - YT~ 4+ {. . }UTX, Here, for instance, the first bracket in the sum is defined on arbitrary
functlonals over IITA x {9} via a @-local extension of the odd bracket (-, - )FT in (38), as follows:

(B Py = [ o s (0(6)) s = 00 0. B0,
(RO FO)F™ = (L) CO)ELF)O), BI] = 86F(X,561)(6),0), (59)

where L% (6) is the left-hand Fuler-Lagrange superfield derivative with respect to I'9(8).1¢
Therefore, as in the case of the HS in (44), we arrive at the interpretation of BRST transformations,
for a gauge theory with non-Abelian hypergauges in Lagrangian formalism, in terms of the formal “BRST
charges” ZW, ZX | as well ag in terms of the functional Z® and the even Poisson bracket'!. The system
(567) encodes the BRST transformations, for Z* = 0, and, at the same time, the BRST and continuous
cancnical transformations with the bosonic generating functlonat Z%y, for an arbitrary Z® and a constant .
3. The functions (Z,T)(#) obey the Ward identities

{20~ (55w (o Paem) | i@

2 o . a . O ﬁat
T 4a YT 3 - A* =
5O ga X (P ma(@;w) o ar )Aazo] 20 =0 0
) a0 ol héo
7,6 X 11—1y\be : T _ T P AL A *)
O ey X (s — gy~ G o -

(B Ny e & O 8T \] are) 0
K%“(@) (w TR pee o) 8(65@))]89@0(9)+ (rO.TO)g" =0, (1)

with the notation ', (8) = W = g0,,(9)1'(6) I (@) (r"—1)e®(8) = 6,°. Namely, in the symmetric form
of the above identities we have extended the standard set of sources dgpioj; (¢) used in the definition of the
generating functional of Green’s functions in Abelian hypergauges.

The technique used in deriving the above identities is analogous to the corresponding procedures
of Refs. [24, 25], applied, in the BV [1] and Batalin—Lavrov—Tyutin [22] methods, respectively, to the
problem of gauge dependence in theories with composite fields. Thus, identities (60) and (61) follow from

9Properties 1, 2 of Zx (8} 5+ —o are valid for arbitrary p{(8), I'P(¢) on the manifold N
107The antibracket (-, )HT"\'r coinciding, for N” = IIT My, with (-, )(r" DeTx) | = ext, in (38) lifts the operator AY

in (48) to the nilpotent operator ATV acting on ¢°° (IITA x {#}), defined exactly as AN (6), although in terms of the
antibracket (59).

11The construction of the latter bracket is different from that of [5], where an odd superfield Poisson bracket was derived
from a (%, #)-local even bracket; however, it is similar to the construction of Ref. [15]: see egs. {27).
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the corresponding system in (50) for (W, X)(#). For instance, making the functional averaging of the
second system in {(50), for X (8),

[ a0 (F0) exp | (W = @uet)i® ~ g0 + 7u%) O
{a@ e |1x (@5 e @]} o ©2

and integrating by parts in (62), with allowance for (8/8¢* + 8/9¢*)X () = 0, we obtain identity (60).
Identities (60) and (61) take the standard form with 8p¢® = Z,(#) = 6 = 0, which becomes more involved
by the quantities (GsW(#)/03*(8)), although in the case of non-Abelian hypergauges.

In the special case of Abelian hypergauges, G4 ((8,8*)(6)) = &% (6) — L ((6))/0D4(F) = 0, related
to the change of variables (35), for (¢, ¢*, W) == (&, ®*, S.en), 9a®* = T4 = 0 (locally, N = 117" M),
the object Z{2s®*, &*)(f) takes the form

H%@ﬁﬂ@=/@@ﬂ#%ﬁﬂﬂﬂ@~@@”@“ﬂ}. (63)

A f-local BRST transformation for Z (83", ®*)(#) is given for an HS defined on IIT* My, with the
Hamiltonian S¥ (8, i) and a solution I'(8), by the change of variables

W@qﬂm@=aﬁw@wmwms (@) = — — adS¥ (8, k). (64)

Transformation (64) with a constant p is anticanonical, with Ber||m%(f~)49;i|\ = Ber “%%21” =1, if
S¥(8, h} is subject to the first system in (50).
The obvious permutation rule of the functional integral, £(d®(8)) = 0,

o [ 400)7 (@,97)0),0) = [ dv(e) | 55+ @V)O)] 7), 20V (6) = 0950) s

yields, for ihdj In Z(8) = (8,8%8594)(8) — 85 (8), the following relations:

B9 Z(0)Ipg) = (BsV)(OYZ(E) = 0, OpT (8)|1(gy = (T(T(6)), T(T(6))}5 =0 (65)

When deriving eqs. (65), we have taken into account the fact that the functional averaging of the HS
with respect to Z(#) and I'(#) has the form

@51z = (527 5arkss ~OBa(0) ) G5I7) = (@) IO, =5, (66)

without the sign of average in (65) for T'(8) and I'?(9). Expressions (65) relate the explicit form of the
Ward identities in a theory with Abelian hypergauges to the invariance of the generating functional of
Green’s functions with respect to the superfield BRST transformations.

5 Connection between Lagrangian Quantizations

5.1 Component Formulation and its Relation to Batalin—Vilkovisky, and
Batalin—Tyutin Methods

In this section, on the basis of a component form of the local superfield quantization, we shall establish
its connection with the BV method and the first-level formalism [11].

The relation of the objects and quantities of #-local quantization in the Lagrangian and Hamiltonian
formulations of an LSM with the conventional description of a gauge field theory is established through
_ a component representation of the variables Ty TP* A% T, T¥F(9) = Ter + 96, k = tot, under
the restriction # = 0, for instance, (M, Ny, A%, Z,) — (H, Nilgmo = {T8 },)\ Toa}. The extraction
of a standard field model from & classical formulation of a general gauge theory is realized, in addition
to & = 0, by various kinds of eliminating the functions 9p.A%(9), A%(0) and those of the superfields
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AT(8) which contain functions with an incorrect spin-statistics relation, ep(A7) # 0. One possibile
way of such elimination is provided by the conditions gh(A’} = -1 — gh{A}) = 0, (ep); = 0, and
- {gh, 8/86) Spm)(#) = (0,0), mentioned in Subsection 4.1.

Another possibility is related to the superfield BRST transformations for theories of Yang-Mills
type [10, 26, 27], for which a Lagrangian classical action Spym (8} = St (A, Do A, A, ’Dgfl) (8) is defined
in terms of generalized Yang-Mills superfields, A5%(z), AB% = (A#* C¥), v = 1,..,r, and matter
superfields, A(z) = (W8, T, ol 79)(2), with spinor €8, ¥°, 8, ¢ = 1,...,k1 , and spinless ¢f, 19,
f, g =1,..,ka. The superfields A5%(z) and A(z) are defined on the superspace M = R x P =
{zF = (w”,ﬁ)} and take values, respectively, in the adjoint and vector representation spaces of an r-
parametric Lie group. The action Spym(@) can be written as

1 — — -
Stym (@) = /d4ﬂ? [ZQBGRQCBM(—DEB L LAV 4 L VBZ‘P—I—QVB’}%C’J‘ + M(A)] (2), (67)

with an A(2)-local gauge-invariant polynomial M(A), containing no derivatives over zZ. In expres-
sion (67), we have introduced the superfield strength Gpc¥=i[Dg, De| =dpAE — (—1)°35¢dc AL +
fev AL A% 8p = (O, 0¢) and the following covariant derivatives, expressed through the matrix ele-

ments of the Hermitian generators [ = dia 7o T 7% 7%) of the corresponding Lie algebra:
g p g g

(DY, Vs, Vs, Vi) =85 (6°,62,8%,85) + (/" —(T™)§, —i(r*)5, —i(T*)]) A,  (68)

where the coupling constant is absorbed into the completely antisymmetric structure coeflicients f**.
We have also used a generalization of Dirac’s matrices, v% = (v#,4%), 4% = (¥)* = &I, with a
Grassmann scalar £, (£,gh)¢ = {(1,0,1),—1). The &grading and ghost number are nonvanishing for
the superfields (¥, ¥,C*), namely, £(¥,¥) = (0,1,1), £(C*) = (1,0,1), gh(C*) = 1. The functionsl
Z[A, A] = 8sSLym(f) is invariant under the infinitesimal general gauge transformations

S, AT(0) = 8,(AP B)(e) = — [ 0 (PP (@) T AR (1)) 8la = 20)€ (), (69)

with arbitrary bosonic (g4, = 0) functions £{zp) on M, and with functionally-independent genera-
tors Rf‘tu (6,60) = 'R,j;a (A(6),0,6p). The condensed indices I, Ay of the theory in question, (I;.40) =
((B,u,d,€, f, h, ); (v,20)), conform to the relations, N > 7, M = 7, (M, M) = (To, M), provided that

N = (dr + 2ka,r +8k1), M = (r,0}, "R=N — (0,7),

which hold for a reduced theory with the action Sym(6) = —Srym (.A, 0,4, 0) (8) on My = { A%, A}(2)'2,

in view of special horizontality conditions for the strength Gpo™ and certain subsidiary conditions for the
matter superfields A(z) in {10, 26],

G0 (2) = Gu™(2), (ValWP Veg T, Vole®, Valp?) (2) = (0,0,0,0). (70)

To extract a standard component model defined on M.i{,_, from a Hamiltonian LSM, it is sufficient
to eliminate, for ¢ = 0, the antifields A}(F} of a Yang-Mills type theory, by analogy with the prescription
(70), i.e., by taking into account the relation between Aj(#) and 8.4 (6), see Section 3.

For the restricted LSM used in the Feynman rules of Section 4, the reduction to the model in the
framework of the multilevel formalism of Ref. [11] is provided by the conditions

8 =0, Opp;, = Opp” = oy =Tg =0 (71)

In this case, the first-level functional integral Z() and its symmetry transformations [11], with the
notation Mg instead of =% for Lagrangian multipliers in [11],

(1 — /d)\ndFOM(FO) exp {% (W{Po) + GG(FO})\S)} )

6Pg = (F(I;? -W -+ GGAS)JU‘:
MG = (—Ugb)\g)\g(—l)fﬂ + 2RVENS + 2(m)2(;ﬂ) L,

12For § = 0, the functional Syp{0) = Spym coincides with the corresponding classical action of [29].
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under the identification {p, wP?)(Tp) = (M, EP9)(I'), implying the coincidence of (., *)6lpp and A(0)
with their counterparts of [11], coincide with Zyx (O)l.,o;,:o and with the BRST transformations &, oot

(having the opposite signs) generated by the system (53) for R(f) = 1. This coincidence is guaranteed
by the choice of X (#) in the form

X(0) = {Ga(O)A" — &2 [FUSMMA(-1)% N - @760 } @ o), ()

where (V& G9)(9), together with (U, G,)(0), define the unimodularity relations [11]. The relation of
the 8-local quantization to the generating functional of Green’s function Z[J, ¢*] of the BV method [1] is
evident after identifying Z (9@, ®*) (0) = Z[J, ¢*] in (63), where the action S} (To, /) of (35) obeys eq.
(36).

The following aspect of the restriction ¢ = 0 consists in the representation of an arbitrary function
F(&) = F{T,8T)(9),0) € C° (IITN x {#}) by a functional F[['] of the superfield methods [6, 7] {in
case T'? = (94, %), see the Introduction)

FII] = f d0F (8) = F (T(0), 8T, 0) = F(To,T1) . (73)

In the first place, formula (73) implies the independence of F[I] from 95I7(8) = 1Y, in case F(#) =
F(T (9) 6). Secondly, formula (73) is fundamental in establishing a relation between the #-local antibracket
(-, )5 and operator A (8), acting on C® (N x {6}), with a generalization to arbitrary (T, w9, p) (9) of
the flat functional operations (-, - ), A of Refs. 6, 7], identical to their counterparts of the BV method
in case ['? = (§4, &%), wpq(I’(H)) = antidiag (=64, %), p(8) = 1, and'in case of a different odd Poisson
bivector, @P?(T(8),0") = (1 + #'89)wP!(6). The correspondence follows from

O A L

() G = 2y | geden (90,005 | (e, (74)

DN OVF(0)], = AN (0)F(To) = AVFIL],

Y = S0 0000 |07 M@, 0) (7). (o), )| (75)
2

where (p[I'], Gpe (8',8)} = (p(To), #'0wpy (6)) and
f "G, 6")iag (6", 0) = 057,

When establishing the correspondence with the operations (-, -), A of [6, 7] in (74), (75), we have used
a relation between the superfield and component derivatives:

§/8TP(0) = (—1)°T™) (88, /6T8 — 6,/6TF), TP = (A%, —(=1)%4 T 4).

In general coordinates, the action of the sum and difference of the operators g (V £UYV (0), N = IIT* Meri 5o
reduced to

Ba(V + U)(0) = 8927 (8)0/02%(0) & 8,9 (6)8,/02*(0),
is identical to the action of the generalized sum and difference of the functional counterparts V, U in [6]:
(V= (=L)UY (O)F(8) |5y = (S*(6), F(9)) ¢ |,
=V~ (-1 U)VFII| = ($*[T] F[ri) t=12,
SH(8) = (GpIP)ut g (L(E)T9(8), S*[T] = 9y {TP(8)8:Dp [0 [y (6,67 T9(0)] } = S*(0), (76)

Wlllere the functions w}, (8),&;, (6, ¢'), coinciding for t = 1 with wye(#) and @ye(6, #'), are defined by the
relations

Tg (6,6') == 60wy (8') = —(=D) UG (0,6), wyy(8) = (1)l (6).
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The E-bosonic quantities S*(d) and S*{I'], with a vanishing ghost number, play the role of the sym-
metric Sp(2)-tensor Sqp (@, b = 1,2) and anti-Hamiltonian Sy of Rel. [28], which determine (through
extended antibrackets) the first-order operators of the modified triplectic algebra. In this case, the addi-
tional functions wgq (9), @gq(Q, #") may be considered as quantities that define another non-antisymplectic
(non-Riemannian) nondegenerate structure on A, The 6-local functional operators {AVN, VN UN}(6)

anticommuse for a fixed 8,
[EN(8), B ()1« = 0, 2,0 = 1,2,3, (B, Bz, B3) = (A, V,U), (77)
provided that §%(8), or §*[I], is subject to
AN (0)85(B) =0, (S9(9), S ()Y =0, t,u,v=1,2. (78)

Relations {78), which hold, due to egs. (74)—(77), also for functional objects (those without f-dependence),
follow from the well-known properties of the antibracket (bilinearity, graded antisymmetry, Leibniz rule,
Jacobi identity}, and from the rule of antibracket generation by the operator AV (). The system (78)
determines the geometry of A" by restricting the choice of both quantities w}, (8), &5, (8,8"). Notice that
a solution of eqs. (78) always exists, for instance, w5, (f) = autidiag (55, (~1)*6%).

6 Conclusion

" Let us summmarize the main results of the present work:

1. We have proposed a 0-local description of an arbitrary reducible superfield theory as a natural
extension of a standard gauge theory, defined on a configuration space M.y |,_, of classical fields A to
a superfield model defined on extended cotangent, TT*Mcy, x {#}, and tangent, T Mgy, x {0}, odd
bundles, in the respective Hamiltonian and Lagrangian formulations. It is shown that the conservation,
under the #-evolution defined by the Hamiltonian or Lagrangian system providing a superfield extension
of the usual extremals, of the Hamiltonian action Sy ((A, A*}(6), #), or, equivalently, of an odd analogue
of the energy, Sg ({4, 9p.A)(f),8), is equivalent, due to Noether’s first theorem, to the validity of a
Hamiltonian or Lagrangian master equation, respectively.

2. Using non-Abelian hypergauges, we have constructed a #-local superfield formulation of Lagrangian
quantization of a reducible gauge model, selected from a general superfield model by conditions of the
explicit f-independence of the classical action and the vanishing of ghost number and auxiliary Grassmann
parity (related to ) for the action and .4*(8). In particular, we have proposed a new superfield algorithm
for constructing a first approximation to the quantum action in powers of ghosts of the minimal sector, on
the basis of interpreting the reducibility relations as special gauge transformations of ghosts, transformed
in an HS with the Hamiltonian chosen as the quantum action. To investigate the properties of BRST
invariance and gauge-independence in a superfield form for the introduced generating functionals of
Green’s functions (including the effective action), we have used two equivalent Hamiltonian-like systems.
The first system is defined by a #-local antibracket, in terms of a quantum action, a gauge-fixing action,
and an arbitrary @-local boson function, while the second (dual) system is defined by an even Poisson
bracket, in terms of fermion functionals corresponding to the above functions. The two systems permit one
to describe the BRST transformations and the continuous {anti)canonical transformations in a manner
analogous to the relation between these transformations in the superfield Hamiltonian formalism [5]. We
emphasize that, as a basis for the local quantization, we have intensely used the first-level formalism of
[11], whose central ingredient is the vacuum functional (however, without recourse to the gauge-fixing
action in an explicit form).

3. We have considered the problem of a dual description of an L-stage-reducible gauge theory, in terms
of a BRST charge for a formal dynamical systemn with first-class constraints of (L + 1)-stage-reducibility.
It is shown that this problem is a particular case of describing an embedding of a reducible special gauge
theory into a general gauge theory of the same stage of reducibility.

4. We have established the coincidence of the first-level functional integral Z{1} in {11] with the local
vacuum function of the proposed quantization scheme, in case § = 0 and ¢*(8) = 0, Zx(0)| -

5. From the obtained results there follow the generating functional of Green’s functions and the
effective action of the first-level formalism [11].
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