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Abstract

We present a mathematically rigorous quantum-mechanical treatment
of a one-dimensional nonrelativistic motion of a particle in the potential
�eld

V (x) = g1x
�1 + g2x

�2; x 2 R+ = [0;1) :
For g2 > 0 and g1 < 0, the potential is known as the Kratzer potential
VK(x) and is usually used to describe molecular energy and structure,
interactions between di¤erent molecules, and interactions between non-
bonded atoms.

We construct all self-adjoint Schrödinger operators with the poten-
tial V (x) and represent rigorous solutions of the corresponding spectral
problems. Solving the �rst part of the problem, we use a method of spec-
ifying s.a. extensions by (asymptotic) s.a. boundary conditions. Solving
spectral problems, we follow the Krein�s method of guiding functionals.
This work is a continuation of our previous works devoted to Coulomb,
Calogero, and Aharonov-Bohm potentials.

1 Introduction

In this article, we present a mathematically rigorous quantum-mechanical (QM)
treatment of a one-dimensional nonrelativistic motion on a semiaxis of a spinless
particle of mass m in the potential �eld

V (x) = g1x
�1 + g2x

�2; x 2 R+ = [0;1) : (1)

On the physical level of rigor, the Schrödinger equation with potential (1) was
studied for a long time in connection with di¤erent physical problems, see for ex-
ample [3, 7] and books [10, 8]. In particular, this potential enters the stationary
radial Schrödinger equation�

d2

dr2
+
2m

~2

�
Enl � U (r)�

l (l + 1) ~2

2mr2

��
 nl (r) = 0 ; (2)
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Figure 1: Potential V (x) = g1x
�1 + g2x

�2, with g1 = g2 = 1 (dashed), g1 =
�g2 = 1 (solid) and g1 = �g2 = �1 (thick).

where n and l are radial and angular quantum numbers, after separating spher-
ical variables in three-dimensional spherically symmetric QM problems, see e.g.
[8]. The potential (1) is singular at the origin, it is repulsive at this point for
g2 > 0, and has a minimum at a point x0 > 0 for g2 > 0 and g1 < 0. The
potential with g1; g2 in the latter range is known as the Kratzer potential [1].
The Kratzer potential is conventionally used to describe molecular energy and
structure, interactions between di¤erent molecules [5], and interactions between
nonbonded atoms [2]. For g2 < 0 and g1 > 0, we have the inverse Kratzer
potential which is conventionally used to describe tunnel e¤ects, scattering of
charged particles [11] and decays, in particular, molecule ionization and �uores-
cence [4]. In addition, valence electrons in a hydrogen-like atom are described in
terms of such a potential [9]. When modeling some physical systems, a constant
is usually added to the angular momentum term, l (l + 1) ! � + l (l + 1), in
order to take some e¤ective potential energy into account. For example, in the
model of a molecule interaction, � can represent the dissociation energy of a
diatomic molecule [5] or, in the scattering problem, this parameter represents
attractive (� < 0) or repulsive (� > 0) interactions between charged particles
[11].
In Figure 1 we show the shape of the potential under consideration for dif-

ferent values of the parameters.
Even though a number of works was devoted to the QM problem with the

potential (1), a rigorous mathematical analysis of this problem is lacking in
the literature. The aim of such an analysis (which is, in fact, the aim of the
present article) is to construct all self-adjoint (s.a. in what follows) Schrödinger
operators (Hamiltonians) with the potential (1) and present rigorous solutions
of the corresponding spectral problems.
When solving the �rst part of the problem, we use a method for specifying

s.a. di¤erential operators by (asymptotic) s.a. boundary conditions (the so-
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called alternative method, see [12]). When solving spectral problems, we follow
the Krein�s method of guiding functionals, see [14] and books [15]. This work
is a continuation of our previous works [24, 25] devoted to Coulomb, Calogero,
and Aharonov-Bohm potentials; using the given references, the reader can be-
come acquainted with necessary basic notions and constructions, like guiding
functional and Green function.
As in the above-mentioned works, we start with a s.a. di¤erential operation

�H on R+,

�H = �d2x + g1x�1 + g2x�2; (3)

and examining solutions of the corresponding homogeneous di¤erential equation
( �H �W ) = 0, or

 00 � (g1x�1 + g2x�2 �W ) = 0; W = jW jei'; 0 � ' < 2� ; (4)

which is the Schrödinger equation (with omitted factor 2m=~2) with a complex
energy W , for ImW = 0, we write W = E in what follows.
The basic operator Ĥ+ in L2 (R+) associated with �H is de�ned on the nat-

ural domain1 D�
�H
(R+) � L2 (R+),

D�
�H
(R+) =

�
 �(x) :  �;  

0
� are a:c: in R+;  �; �H � 2 L2 (R+)

	
; (5)

it is the adjoint of the so-called initial symmetric operator Ĥ associated with �H
and de�ned on the dense domain DH = D (R+), the space of smooth functions
with a compact support,

D (R+) = f (x) :  2 C1(R+); supp � [�; �] � (0;1)g (6)

it is evident that D (R+) � D�
�H
(R+) and Ĥ � Ĥ+. The operator Ĥ+is gener-

ally not self-adjoint and even not symmetric; its quadratic asymmetry form is
denoted by �H+ . All possible Hamiltonians associated with �H are de�ned as
s.a. restrictions of Ĥ+, which simultaneously are s.a. extensions of the symmet-
ric Ĥ, the restrictions to some subspaces (domains) belonging to D�

�H
(R+) and

speci�ed by some additional (asymptotic) s.a. boundary conditions on func-
tions belonging to D�

�H
(R+) under which the asymmetry form �H+ becomes

trivial (vanishes); these domains are maximum subspaces in D�
�H
(R+) where

the operator Ĥ+ is symmetric2 (see [12]). Our �rst aim is to describe all these
Hamiltonians. The special case of g1 = 0 corresponds to the Calogero potential
and was already considered in [24], we therefore keep g1 6= 0 in what follows.
This paper is organized as follows. In sec. 2 we present and discuss some

exact solutions of equation (4) and their asymptotics. In the following �ve
sections, we construct all s.a. extensions of Ĥ, and perform the corresponding

1a.c. means absolutely continuous.
2Although the notions �s.a. extension of Ĥ+�and �s.a. restriction of Ĥ �are equivalent;

it is more customary to speak about s.a. extensions; we use one or another of the equivalent
notions where appropriate.
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spectral analysis of the Hamiltonians for di¤erent ranges of the parameter g2.
In secs. (3.1-3.4), we consider the case of g2 6= 0. The special case of g2 = 0
is considered in sec. 3.5. In sec. 4, we highlight some remarks and possible
applications of the obtained results.

2 Exact solutions and asymptotics

We �rst consider the Schrödinger equation (4). Introducing a new variable z
and new functions ��(z) instead of the respective x and  (x),

z = �x; � = 2
p
�W = 2

p
jW jei('��)=2;  (x) = x1=2��e�z=2��(z) ;

� =

� p
g2 + 1=4; g2 � �1=4

i{; { =
p
jg2j � 1=4; g2 < �1=4

; (7)

we reduce eq. (4) to the con�uent hypergeometric equations for ��(z),

zd2z��(z) + (�� � z)dz��(z)� ����(z) = 0 ;
�� = 1=2� �+ g1=�; �� = 1� 2� ; (8)

their solutions are the known con�uent hypergeometric functions �(��; ��; z) and
	(��; ��; z), see [18, 19].
Solutions  (x) of eq. (4) are restored from solutions of eqs. (8) by transfor-

mation (7). In what follows, we use u1(x;W ), u2(x;W ), and �1 (x;W ) de�ned
by

u1 (x;W ) = x1=2+�e�z=2�(�+; �+; z) = u1 (x;W )j�!�� ;

u2 (x;W ) = x1=2��e�z=2�(��; ��; z) = u2 (x;W )j�!�� = u1 (x;W )j�!�� ;

�1 (x;W ) = �2�x1=2+�e�z=2	(�+; �+; z) = �2�
�(�2�)
�(��)

u1 +
�(2�)

�(�+)
u2 : (9)

The function u2 is not de�ned for �� = �n, or � = (n + 1)=2; n 2 Z+, in
particular, for � = 1=2. For such �, we replace u2 by other solutions of eq. (4),
they are considered in the subsequent sections.
The coe¢ cients of the Taylor expansion of functions u1(x;W )=x1=2+� and

u2(x;W )=x
1=2�� with respect to x are polynomials in �. Because these functions

are even in �, the coe¢ cients are polynomials in W , whence it follows that
u1 (x;W ) and u2 (x;W ) are entire functions in W at any point x except x = 0
for u2 with � > 1=2.
If g2 � �1=4 (� � 0), then u1 (x;W ) and u2 (x;W ) are real-entire functions

of W . If g2 < �1=4 (� = i{), then u2 (x;E) = u1 (x;E).
The pairs u1; u2 with � 6= 0 and u1; �1 for ImW 6= 0 are the fundamental

systems of solutions of eq. (4) because the respective Wronskians are

Wr (u1; u2) = �2�; Wr (u1; �1) = ��(�+)=�(�+) � �!(W ) : (10)
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The well-known asymptotics of the special functions � and 	, see e.g. [18],
entering solutions (9) allows simply estimating the asymptotic behavior of the
solutions at the origin, as x! 0, and at in�nity, as x!1.
As x! 0, we have

u1(x;W ) = �
�1=2��
0 u1as(x) +O(x

3=2+�);

u2(x;W ) = �
�1=2+�
0 u2as(x) +

8<: O(x5=2��); �1=4 < g2 < 3=4; g2 6= 0;
(0 < � < 1; � 6= 1=2)
O(x3=2); g2 < �1=4 (� = i{)

;

(11)

and, if �+ 6= �n, �� 6= �m, n;m 2 Z+,

�1(x;W ) =

8>>>>><>>>>>:

�(2�)
�(�+)

x1=2��(1 +O(x)); g2 � 3=4 (� � 1)
�2� �(�2�)�(��)

�
�1=2��
0 u1as(x) +

�(2�)
�(�+)

�
�1=2+�
0 u2as(x) +O(x

3=2);

�1=4 < g2 < 3=4; g2 6= 0 (0 < � < 1; � 6= 1=2)
�2i{ �(�2i{)�(��)

�
�1=2�i{
0 u1as(x) +

�(2i{)
�(�+)

�
�1=2+i{
0 u2as(x) +O(x

3=2);

g2 < �1=4 (� = i{)

;

(12)
where

u1as(x) = (�0x)
1=2+�;

u2as(x) =

8<: (�0x)
1=2�� � g1=�0

2��1 (�0x)
3=2��; �1=4 < g2 < 3=4; g2 6= 0;

(0 < � < 1; � 6= 1=2)
(�0x)

1=2�i{; g2 < �1=4 (� = i{)
;

(13a)

and �0 is an arbitrary, but �xed, parameter of dimension of inverse length.
As x!1; ImW > 0, we have

u1(x;W ) =
�(�+)

�(�+)
��+��+xg1=�ez=2(1 +O(x�1)) = O(xaejW j1=2 sin('=2)) ;

�1(x;W ) = ����x�g1=�e�z=2(1 +O(x�1)) = O(x�ae�jW j1=2 sin('=2)) ;

a = 2�1jW j�1=2g1 sin('=2) :

The obtained asymptotics are su¢ cient to allow de�nite conclusions about
the de�ciency indices of the initial symmetric operator Ĥ as functions of the
parameters g1; g2 and thereby about a possible variety of its s.a. extensions.
It is evident that for ImW > 0 the function u1(x;W ) exponentially increasing
at in�nity and is not square-integrable. The function �1 (x;W ) exponentially
decreasing at in�nity is not square-integrable at the origin for g2 � 3=4 (� � 1),
whereas for g2 < 3=4, it is (moreover, for g2 < 3=4, any solution of eq. (4) is
square-integrable at the origin). Because for ImW > 0, the functions u1; �1
form a fundamental system of eq. (4), this equation with ImW > 0 has no
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square-integrable solutions for g2 � 3=4, whereas for g2 < 3=4, there exists one
square-integrable solution, �1 (x;W ). This means that the de�ciency indices of
the initial symmetric operator Ĥ are equal to zero, m� = 0, for g2 � 3=4 and
are equal to unity, m� = 1, for g2 < 3=4.
Correspondingly for g2 � 3=4, there is a unique s.a. extension of Ĥ, whereas

for g2 < 3=4, there exists a one-parameter family of s.a. extensions of Ĥ. A
structure of these extensions, in particular, an appearance of their specifying
asymptotic boundary conditions, depends crucially on a speci�c range of values
of the parameter g2. In what follows, we distinguish �ve such regions and
consider them separately.

3 Self-adjoint extensions and spectral analysis

3.1 The �rst range g2 � 3=4 (� � 1)
As was mentioned above, the de�ciency indices of the initial symmetric operator
Ĥ with g2 in this range are zero. This implies that for g2 � 3=4, the operator
Ĥ+ is s.a. and Ĥ1 = Ĥ+ is a unique s.a. extension of Ĥ with the domain
DHe

= D�
�H
(R+) (5).

A spectral analysis of the s.a. operator Ĥ1 = Ĥ+ begins with an evaluation
of its Green function G (x; y;W ) that is the kernel of the integral representation
of the solution  � (x) of the inhomogeneous di¤erential equation�

�H �W
�
 � (x) = �(x); �(x) 2 L2(R+) (14)

with ImW 6= 0 under the condition that  � 2 D�
�H
(R+), i.e., that  � is square-

integrable3 ,  �(x) 2 L2(R+) (see [24, 25]). The general solution of this equation
without the condition of square integrability can be represented as

 �(x) = a1u1(x;W ) + a2�1(x;W ) + I(x;W ) ;

 0�(x) = a1u
0
1(x;W ) + a2�

0
1(x;W ) + I

0(x;W ) ; (15)

where

I(x;W ) =

Z x

0

G(+) (x; y;W ) �(y)dy +

Z 1

x

G(�) (x; y;W ) �(y)dy ;

I 0(x;W ) =

Z x

0

dxG
(+) (x; y;W ) �(y)dy +

Z 1

x

dxG
(�) (x; y;W ) �(y)dy ;

G(+) (x; y;W ) = !�1(W )�1(x;W )u1(y;W ) ;

G(�) (x; y;W ) = !�1(W )u1(x;W )�1(y;W ) ;

with ! given in (10). Using the Cauchy-Bunyakovskii inequality, it is easy
to show that I(x;W ) is bounded as x ! 1. The condition  �(x) 2 L2(R+)

3We note, that D�
�H
(R+) can be considered as the space of unique square-integrable solu-

tions of eq. (14) with ImW 6= 0 and any �(x) 2 L2(R+):
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then implies that a1 = 0, because u1(x;W ) exponentially grows while �1(x;W )
exponentially decreases at in�nity. As x! 0, we have I(x) � O(x3=2), I 0(x) �
O(x1=2) (up to the logarithmic accuracy at g2 = 3=4), whereas �1(x;W ) is not
square-integrable at the origin. The condition  �(x) 2 L2(R+) then implies that
a2 = 0. In addition, we see that the asymptotic behavior of functions  �(x)
belonging to D�

�H
(R+) at the origin, as x! 0, is estimated by

 �(x) = O(x3=2);  0�(x) = O(x1=2) : (16)

Together with the fact that the functions  � vanish at in�nity (see below), this
implies that the asymmetry form �H+ is trivial, which con�rms that in the �rst
range the operator Ĥ+ is symmetric and therefore self-adjoint (in contrast to
the next ranges considered in the subsequent sections).
It follows that the Green�s function is given by

G (x; y;W ) =

�
G(+) (x; y;W ) ; x > y
G(�) (x; y;W ) ; x < y

:

The representation (9) of the function �1 in terms of the functions u1 and
u2 is inconvenient sometimes, because the individual summands do not exist
for some � although �1 does. For our purposes, another representations are
convenient. For m � 1 < 2� < m + 1, m � 2, the function �1(x;W ) can be
represented as

�1(x;W ) = Am(W )u1(x;W ) +
!(W )

2�
�(m)(x;W ) ;

Am(W ) = �2�
�(�2�)
�(��)

+ am(W )
�(2�)�(��)

�(�+)
;

�(m)(x;W ) = u2 (x;W )� am(W )�(��)u1 (x;W ) ;

am(W ) = �m
�(�+m)

m!�(��m)
; ��m =

1�m
2

+ g1=� :

It is easy to see that all the coe¢ cients am(W ) are polynomials in W which are
real for ImW = 0 (W = E). In view of the relation

�1
lim
�!�n

�(�)�(�; �;x) =
xn+1�(�+ n+ 1)

(n+ 1)!�(�)
�(�+ n+ 1; n+ 2;x)

(see [19, 18]), the functions �(m)(x;W ) and Am(W ) exist form�1 < 2� < m+1
and for any W . In fact, �(m)(x;W ) are particular solutions of eq. (4) which are
real-entire in W and have the properties (for m� 1 < 2� < m+ 1)

Wr(u1; �(m)) = �2�; �(m)(x;W ) = x1=2��(1 +O(x)); x! 0 :

As a guiding functional, we take

�(�;W ) =

Z 1

0

U(x;W )�(x)dx; � 2 D = Dr(R+) \DHe
; (17)
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where U (x;W ) = u1 (x;W ) and Dr(R+) is the space of arbitrary functions with
a support bounded from the right: ' (x) 2 Dr (R+) =) supp' � [0; �], � <1;
the domain D is dense in L2(R+). The functional �(�;W ) (17) is a simple
guiding functional, i.e., it satis�es the properties: 1) for a �xed �, the functional
�(�;W ) is an entire function of W ; 2) if �(�0;E0) = 0, ImE0 = 0, �0 2 D,
then the inhomogeneous equation ( �H � E0) = �0 has a solution  2 D; 3)
�( �H�;W ) = W�(�;W ). It is easy to verify the properties 1) and 3), and it
remains to verify that the property 2) also holds. Let

�(�0;E0) =

Z b

0

u1(x;E0)�0(x)dx = 0; �0 2 D; supp�0 2 [0; b] : (18)

We consider the function  (x) de�ned by

 (x) =
1

2�

"
u1(x;E0)

Z b

x

�(m)(y;E0)�0(y)dy + �(m)(x;E0)

Z x

0

u1(y;E0)�0(y)dy

#
(19)

that evidently satisfying the equation ( �H � E0) (x) = �0(x): Using condition
(18), we obtain that supp 2 [0; b], i.e.,  2 Dr(R+), and therefore,  2 L2(c; b)
for any c > 0. With taking the asymptotic behavior of functions u1(x;E0),
�(m)(x;E0), and �0(x) at the origin into account, a simple evaluation of the
integrals in representation (19) gives:

 (x) =

8<:
O(x1=2+�); 1 � � < 3
O(x7=2 ln �); � = 3
O(x7=2); � > 3

; x! 0 ;

i.e.,  2 DHe
, and therefore,  2 D.

The derivative of the spectral function is given by

�0(E) = ��1 Im
�
!�1(E + i0)Am(E + i0)

�
: (20)

Because !�1(W )Am(W ) is an analytic function of �, its value at � = m=2
is a limit as�! m=2. For � 6= m=2, representation (20) can be simpli�ed to

�0(E) = Im
(E + i0); 
(W ) =
�2��(�2�)�(�+)
��(��)�(�+)

:

For E = p2 � 0, p � 0, � = 2pe�i�=2, we �nd

�0(E) =

�
j�(�+)j
�(�+)

�2
(2p)2�e��g1=2p

2�
> 0 : (21)

We see that �0(E) is a nonsingular function for E � 0. It follows that the
spectrum of the s.a. Hamiltonian Ĥ1 is continuous for all such values of E.
For E = ��2 < 0, � > 0, � = 2� , the function 
(E) is real for all values

of E where 
(E) is �nite, which implies that Im
(E + i0) can di¤er from zero
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only at the discrete points En where 1= 
(En) = 0. It is easy to see that the
latter equation is reduced to the equations �+(En) = �n; n 2 Z+, which have
solutions only if g1 < 0, and the solutions En are then given by

En = �g21(1 + 2�+ 2n)�2 ; �n = jg1j (1 + 2�+ 2n)
�1

: (22)

We thus obtain that for E < 0, the function �0(E) is equal to zero if g1 > 0 ,
whereas if g1 < 0, this function is given by

�0(E) =
1X
n=0

Q2n�(E � En) ; Qn =
(2�n)

�+1

�(�+)

s
�n�(1 + 2�+ n)

jg1jn!
:

The �nal result of this section is as follows.
For g2 > 3=4 (� > 1), the spectrum of a unique s.a. operator (Hamiltonian)

Ĥ1 is simple and given by

specĤ1 =

�
R+; g1 > 0
R+ [ fEn; g; g1 < 0

:

For g1 > 0, its generalized eigenfunctions UE (x) =
p
�0(E)u1(x;E), E � 0,

form a complete orthonormalized system in L2(R+). For g1 < 0, the generalized
eigenfunctions UE (x) =

p
�0(E)u1(x;E), E � 0, of the continuous spectrum

and the eigenfunctions Un(x) = Qnu1(x;En); n 2 Z+, of the discrete spectrum
form a complete orthonormalized system in L2(R+).

3.2 The second range 3=4 > g2 > �1=4; g2 6= 0 (1 > � >
0; � 6= 1=2)

We note that in this section, we consider the range 3=4 > g2 > �1=4 excluding
the point g2 = 0 (� = 1=2), the reason is that the function u2 we use here is not
de�ned for � = 1=2. The case g2 = 0 (� = 1=2) is considered separately in the
last subsection.
The operator Ĥ+ with g2 in the second range is not s.a., and we must

construct its s.a. reductions. In accordance with the general procedure of the
alternative method, see [12] and also [24], [25] for examples, we begin with
evaluating the quadratic asymmetry form �H+ in terms of quadratic boundary
forms, which are determined by the asymptotics of functions  �(x) belonging
to the natural domain D�

�H
(R+) at the origin (the left boundary form) and at

in�nity (the right boundary form). Because the potential vanishes at in�nity,
the right boundary form is trivial (zero)4 , see [12], and the asymmetry form
�H+ is reduced to (minus) the left boundary form. To determine an asymptotic
behavior of functions  � at the origin, we consider these functions as solutions
of the inhomogeneous eq. (14) with W = 0. Because in the range under

4Moreover, we can prove that  � vanishes at in�nity together with its derivative,
 �(x);  0�(x)

x!1�! 0.
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consideration, any solution of the homogeneous eq. (4) is square-integrable at
the origin, the general solution of eq. (14) with W = 0 can be represented as

 �(x) = a1u1(x; 0) + a2u2(x; 0)

� 1

2�

Z x

0

[u1(x; 0)u2(y; 0)� u2(x; 0)u1(y; 0)] �(y)dy : (23)

The asymptotic behavior of the functions u1 and u2 in representation (23)
as x ! 0 is given by (11) and (13a), the asymptotic behavior of the integral
terms is estimated using the Cauchy-Bunyakovskii inequality, and we �nd

 �(x) = a1u1as(x) + a2u2as(x) +O(x
3=2) ;

 0�(x) = a1u
0
1as(x) + a2u

0
2as(x) +O(x

1=2) : (24)

With these asymptotics, we calculate the left boundary form [ �;  �](0) =

limx!0(� �(x) 0�(x)+ 
0
�(x) �(x)) and obtain a representation of the quadratic

asymmetry form as a quadratic form in the coe¢ cients a1 and a2 in (24):

�H+( �) = �2�k0(a1a2 � a2a1) :

The coe¢ cients a1; a2 are called the (left) asymptotic boundary (a.b.) coe¢ -
cients5 . The requirement on the a.b. coe¢ cients that �H+vanish results in the
relation6

a2 sin � = a1 cos � ; � 2 S (��=2; �=2) ; (25)

between these coe¢ cients. It follows that the quadratic asymmetry form �H+

becomes trivial on the subspaces of D�
�H
such that the a.b. coe¢ cients of func-

tions  �(x) belonging to D�
�H
satisfy relation (25) with �xed �. These subspaces

are just the domains of s.a. restrictions of Ĥ+, and relation (25), with �xed �,
de�nes the asymptotic boundary conditions specifying these s.a. operators.
We thus obtain that for each g2 in the second range, there exists a family

of s.a. Hamiltonians Ĥ2;� parametrized by the parameter � on a circle with the
domains DH2� that are the subspaces of functions belonging to D

�
�H
(R+) and

having the following asymptotic behavior at the origin, as x! 0,

 (x) = C as(x) +O(x3=2) ;  0(x) = C as0(x) +O(x1=2) ;

 as(x) = u1as(k0x) sin � + u2as(x; k0) cos � : (26)

The spectral analysis of Ĥ2;� is similar to that for Ĥ1 in the previous section,
the di¤erence is that the function �1(x;W ) is now square-integrable at the
origin and we must take asymptotic boundary conditions (26) into account. To
evaluate the Green�s function for Ĥ2;� , we take the representation (15) with

5The inertia indices of the quadratic form (1=2i��0)�+ are 1; 1, which con�rms the previos
assertion in sec. (2) that the de�ciency indices of Ĥ are m� = 1, see [12].

6Here and in what follows we use the notation S (a; b) = [a; b] ; a � b:
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a1 = 0 for  �(x) belonging to DH2� , boundary conditions (26), and asymptotics
(11), (13a) then yield

a2 = k�2�0 !�1(W )

�
�(2�)

�(�+)
sin � � �(�2�)(�=k0)

2�

�(��)
cos �

��1
� cos �

Z 1

0

�1(x;W )�(x)dx :

Representing the function �1(x;W ) in the form

�1(x;W ) = (2�)
�1k

�1=2
0 ��[~!2;�(W )u2;�(x;W ) + !2;�(W )~u2;�(x;W )] ;

u2;�(x;W ) = k
1=2+�
0 u1(x;W ) sin � + k

1=2��
0 u2(x;W ) cos � ;

~u2;�(x;W ) = �k1=2+�0 u1(x;W ) cos � + k
1=2��
0 u2(x;W ) sin � ;

!2;�(W ) = !(W )(�=k0)
�� sin � + (�=k0)

� �(��)

�(��)
cos � ;

~!2;�(W ) = !(W )(�=k0)
�� cos � � (�=k0)�

�(��)

�(��)
sin � ;

where ! is given in (10), the functions u2;�(x;W ) and ~u2;�(x;W ) are real-entire
in W solutions of eq. (4) and u2;�(x;W ) satis�es boundary condition (26), we
obtain the Green function

G(x; y;W ) = (2�k0)
�1
(W )u2;�(x;W )u2;�(y;W )

+
1

2�k0

�
~u2;�(x;W )u2;�(y;W ); x > y
u2;�(x;W )~u2;�(y;W ); x < y

; (27)

where

(W ) = !�12;�(W )~!2;�(W ) : (28)

We note that the second summand in (27) is real for real W = E.
As a guiding functional we take the functional �(�;W ) given by (17) with

U (x;W ) = u2;�(x;W ) and � 2 D = Dr(R+) \ DH2;�
. The domain D is dense

in L2(R+), D = L2(R+). Following the procedure of the previous section, we
show that �(�; z) is a simple guiding functional, i.e., satis�es the properties 1)-
3) cited in subsec. 3.1. It is easy to verify the properties 1) and 3). We prove
that the property 2) also holds. Let

�(�0;E0) =

Z b

0

u2;�(x;E0)�0(x)dx = 0; �0 2 D; supp�0 2 [0; b] : (29)

We consider the function

 (x) =
1

2��0

"
u2;�(x;E0)

Z b

x

~u2;�(y;E0)�0(y)dy + ~u2;�(x;E0)

Z x

0

u2;�(y;E0)�0(y)dy

#
;
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which is a solution of equation

( �H � E0) (x) = �0(x) :

Using condition (29), we obtain that supp 2 [0; b], i.e.,  2 Dr(R+), and
therefore  2 L2(c; b) for any c > 0.
The function  (x) allows the representation

 (x) = cu2;�(x;E0) + ~u2;�(x;E0)

Z x

0

u2;�(y;E0)�0(y)dy

� u2;�(x;E0)
Z x

0

~u2;�(y;E0)�0(y)dy; c =
1

2��0

Z b

0

~u2;�(y;E0)�0(y)dy : (30)

Using the asymptotics of functions u2;�(x;E0), ~u2;�(x;E0), and �0(x) and simple
estimates of the asymptotic behavior of the integral terms at the origin, we
obtain that the asymptotic of  (x) at the origin is given by

 (x) = cu2;�(x;E0) +O(x
5=2��); x! 0 ;

which implies that  2 DH2;�
and therefore  2 D.

The derivative of the spectral function reads

�0(E) = (2��k0)
�1
Im
(E + i0) :

It is convenient to consider the cases j�j < �=2 and � = ��=2 separately.
We �rst consider the case � = �=2 where we have

u2;�=2(x;W ) = k
1=2+�
0 u1(x;W );

�0(E) = Im
(E + i0); 
(W ) = ��(��)�(�+)(�=k0)
2�

2��k0�(�+)�(��)
:

For E = p2 � 0, p � 0, � = 2pe�i�=2, we have

�0(E) =
j�(�+)j2
�2(�+)

(2p=k0)
2�e��g1=2p

2�k0
;

such that �0(E) is �nite and specH2;�=2 = R+.
For E = ��2 < 0, � > 0, � = 2� , the function 
(E) is real for all values of E

where 
(E) is �nite, which implies that Im
(E + i0) can di¤er from zero only
at the discrete points En where 1= 
(En) = 0. The latter equation is reduced
to the equations ��(En) = �n; n 2 Z+, (�(�+) =1) or

1 + 2�+ g1=�n = �2n; n 2 Z+ : (31)

Eqs. (31) have no solutions for g1 > 0 and for g1 < 0 we have (we will denote
the points of discrete spectrum for � = ��=2 by En)

�n =
jg1j

1 + 2�+ 2n
; En = ��2n = �

g21
(1 + 2�+ 2n)2

;
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such that we obtain

�0(E) =
1X
n=0

Q2n�(E � En) ; Qn =
(2�n)

�+1k
�(1=2+�)
0

�(�+)

s
�(1 + 2�+ n)

(1 + 2�+ 2n)n!
:

It is easy to see that for the case of � = ��=2, we obtain the same results
for spectrum and eigenfunctions as it must be.
The �nal result for the Hamiltonian Ĥ2;��=2 is as follows. Its spectrum is

simple and given by

specĤ2;��=2 =

�
R+; g1 > 0 ;
R+ [ fEn; n 2 Z+g; g1 < 0

;

and the complete orthonormalized system of its eigenfunctions in L2(R+) is
given by

UE (x) =
p
�0(E)k

1=2+�
0 u1(x;E); E � 0 ;

Un(x) =
21��jEnj3=4��=2
jg1j1=2j�(��)j

p
qnu2(x; En) ;

qn =

�
��1(1 + n)�(1 + n� 2�); 0 < � < 1=2
��1(2 + n)�(2 + n� 2�); 1=2 < � < 1

; n 2 Z+ ;

for g1 > 0, and by

UE (x) =
p
�0(E)k

1=2+�
0 u1(x;E); E � 0 ;

Un(x) = Qnk
1=2+�
0 u1(x; En) ;

for g1 < 0.
Now, we turn to the case j�j < �=2. In this case we have

�0(E) =
�
2��k0 cos

2 �
��1

ImF�12;� (E + i0) ;

F2;�(W ) = f2(W ) + tan �; f2(W ) =
�(��)�(�+)(�=k0)

2�

�(�)�(��)
:

For E = p2 � 0, p � 0, � = 2pe�i�=2, we have

�0(E) =
B(E)

2�k0 cos2 �[A2(E) + �2B2(E)]
; (32)

where A(E) = ReF2;�(E) and �B(E) = � ImF2;�(E). A direct calculation
gives

A(E) =
�j�(�+)j2(2p=k0)2�
�2(�+) sin(2��)

�
e��g1=2p cos(2��) + e�g1=2p

�
+ tan � ;

B(E) =
j�(�+)j2(2p=k0)2�e��g1=2p

�2(�)
> 0 : (33)
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For E = ��2 < 0, � > 0, � = 2� , the function F2;�(E) is real, there-
fore, �0(E) can di¤er from zero only at the discrete points En(�) such that
F2;�(En(�)) = 0, or f2(En(�)) = � tan �, and we obtain that (derivatives with
respect to E are denoted by primes in eq. (34))

�0(E) =
X
n

�
�2�k0F 02;�(En(�)) cos2 �

��1
�(E � En(�)) ;

F 02;�(En(�)) = f 02(En(�)) < 0; @�En(�) = � cos�2 � [f 02(En(�))]
�1

> 0 : (34)

I. Let g1 > 0
For E = p2 > 0, p > 0, the function �0(E) (32) is a �nite positive function.

At E = 0, we have B(0) = 0 and

A(0)j�=�0 = 0; tan �0 = ��(��)(g1=k0)
2���1(�+) :

It is easy to see that

F2;�(W ) = tan � � tan �0 �
�
2�k0 cos

2 �0
��1

	�2W +O(W ); W ! 0 ;

	 =
g1(g1=k0)

��

� cos �0

s
3�(1 + 2�)

2k0(1 + 2�)�(2� 2�)
:

It follows that for � 6= �0, the function �0(E) is �nite at E = 0. But for � = �0
and for small E, we have:

�0(E) = � 1
�
	2 Im (E + i0)

�1
+O(1) = 	2�(E) +O(1) ;

which means that there is the eigenvalue E = 0 in the spectrum of the s.a.
Hamiltonian Ĥ2;�0 .
For E = ��2 < 0, � = 2� , the function f2(E),

f2(E) =
�(��)

�(�+)

�(1=2 + �+ g1=2�)(2�=k0)
2�

�(1=2� �+ g1=2�)
;

has the properties: f2(E) is smooth function for E 2 (�1; 0), f2(E) ! 1 as
E = �1, f2(0) = � tan �0. Because f 02(E�jn) < 0, see eq. (34), the straight
line f(E) = 2� tan �;E 2 (�1; 0], can intersect the plot of the function f2(E)
no more than once.
That is why the equation F2;�(E) = 0 has no solutions for � 2 (�0; �=2)

while for any �xed � 2 (��=2; �0], this equation has only one solution E(�) (�) 2
(�1; 0]; which increases monotonically from �1 to 0 as � changes from ��=2+
0 to �0.
We thus obtain that the spectrum of Ĥ2;� ; j�j < �=2, with g1 > 0 is simple

and given by

specĤ2;� =

�
R+ [ fE(�) (�)g; � 2 (��=2; �0]
R+; � 2 (�0; �=2) or � = ��=2

: (35)
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The generalized eigenfunctions

UE(x) =
p
�0(E)u2;�(x;E); E � 0 ;

and (for � 2 (��=2; �0]) the eigenfunction

Un(x) = U(x) =
h
�2�k0F 02;�(E(�) (�))) cos2 �

i�1=2
u2;�

�
x;E(�) (�)

�
of Ĥ2;� , form a complete orthonormalized systems in L2(R+).
II. Let g1 < 0. Then:
For E = p2 � 0, p � 0, � = 2pe�i�=2, formulas (32) and (33) hold true.

Because the functions A(E) and B(E) are �nite at E = 0 (B(0) 6= 0), the
function �0(E) (32) is a �nite positive function for E � 0. This means that for
E � 0, the spectra of s.a. Hamiltonians Ĥ2;� are simple, purely continuous, and
given by specĤ2;� = R+.
For E = ��2 < 0, � > 0, � = 2� , we have

f2(E) =
�(��)

�(�+)

�(1=2 + �� jg1j=2�)(2�=k0)2�
�(1=2� �� jg1j=2�)

:

It is easy to see that for �xed �, the spectrum is bounded from below and
the equation F2;�(E) = 0 has in�nite number of solutions

En (�) = �g21=4n2 +O(n�3) ; (36)

asymptotically coinciding with (22) as n!1.
We thus obtain that the spectrum of Ĥ2;� ; j�j < �=2, with g1 < 0 is sim-

ple and given by specĤ2;� = R+ [ fEn (�)g. The corresponding generalized
eigenfunctions of the continuous spectrum

UE(x) =
p
�0(E)u2;�(x;E); E � 0 ;

and eigenfunctions of the discrete spectrum

Un(x) =
�
�2�k0F 02;�(En (�)) cos2 �

��1=2
u2;�(x;En (�)); En (�) < 0 ;

of Ĥ2;� form a complete orthonormalized system in L2(R+).
It is possible to give a comparison description of the Hamiltonians Ĥ2;� ; j�j <

�=2 in more detail.
The function f2(E) has the properties: f2(E)!1 as E ! �1; f2 (En � 0) =

�1; n 2 Z+. Taking the third equality in (34) into account, we can see that:
in each energy interval (En�1; En), n 2 Z+, for a �xed � 2 (��=2; �=2), there
are one discrete level En(�) which increases monotonically from En�1 + 0 to
En � 0 when � changes from �=2� 0 to ��=2+ 0 (we set E�1 = �1). We note
that the relations

lim
�!�=2

En (�) = lim
�!��=2

En+1 (�) = En; n 2 Z+ ;
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con�rm the equivalence of s.a. extensions with parameters � = ��=2 and
� = �=2.
We note that it is possible to �nd the explicit expressions for spectrum,

spectral function, and the complete orthonormalized system of (generalized)
functions of the s.a. Hamiltonian for � = 0. In this case, results are the same
as in the �rst range (g2 � 3=4) with additional change �! ��. One can easily
verify that such calculated spectrum coincide with the spectrum fEn (0)g.
It should be also pointed out that bound states exist even for the repulsive

potential, g2,g1 > 0, see the dashed line on the Figure 1.

3.3 The third range g2 = �1=4 (� = 0)
The analysis in this section is similar to that in the previous one, a peculiarity
is that �+ = �� = � = 1=2 + g1=�, �+ = �� = 1, u1 (x;W ) = u2 (x;W ),
and representation (9) of �1 (x;W ) in terms of u1 and u2 does not hold. As the
solutions of eq. (4) with g2 = �1=4, we therefore use the functions u1(x;W ),
u3(x;W ), and �1 (x;W ) respectively de�ned by

u1 (x;W ) = x1=2e�z=2�(�; 1; z) = u1 (x;W )j�!�� ;

u3 (x;W ) = x1=2e�z=2
@

@�
[x��(1=2 + �+ g1=�; 1 + 2�; z)]�=0 + u1 (x;W ) ln k0 ;

�1 (x;W ) = x1=2e�z=2	(�; 1; z) = ��1(�)
h
!0(W )u

(0)
1 (x;W )� u3 (x;W )

i
;

!0(W ) = 2 (1)�  (�)� ln(�=k0); � = 1=2 + g1=� ;

where  (�) = �0(�)=�(�) and k0 is a constant. The functions u1 (x;W ) and
u3 (x;W ) are real entire in W .
The asymptotic behavior of these functions at the origin and at in�nity is

respectively as follows.
As x! 0, z = �x! 0, we have

u1(x;W ) = k
�1=2
0 u1as(x) +O(x

3=2); u1as(x) = (k0x)
1=2 ;

u3(x;W ) = k
�1=2
0 u3as(x) +O(x

3=2 lnx); u3as(x) = (k0x)
1=2 ln(k0x) ;

�1(x;W ) = k
�1=2
0 ��1(�) [!0(W )u1as (x)� u3as (x)] +O(x3=2 lnx) : (37)

As x!1, ImW > 0, we have

u1(x;W ) = �
�1(�)���1xg1=�ez=2

�
1 +O(x�1)

�
!1 ;

�1(x;W ) = ���x�g1=�e�z=2
�
1 +O(x�1)

�
! 0 : (38)

The functions u1 and u3 are linearly independent and form a fundamental
system of solutions of eq. (4), as well as the functions u1 and �1 for ImW 6= 0,
see sec. 2,

Wr (u1; u3) = 1; Wr (u1; �1) = ���1(�) :
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We recall that, for g2 = �1=4, the de�ciency indices of the initial symmetric
operator Ĥ are m� = 1, and therefore there exists a one-parameter family of
s.a. extensions of Ĥ with g2 = �1=4, see sec. 2.
To evaluate the asymmetry form in terms of a.b. coe¢ cients, we need to

determine the asymptotics of functions  � belonging to the natural domain
D�
�H
(R+) at the origin. To this end, we use representation (23) of the general

solution of eq. (14) with W = 0 where the natural substitutions a2u2 ! a2u3
and u2=2�! �u3 must be made. Using the Cauchy-Bunyakovskii inequality for
estimating the integral terms, we obtain that the desired asymptotic as x ! 0
is given by

 �(x) = a1u1as(x) + a2u3as(x) +O(x
3=2 lnx) ;

 0�(x) = a1u
0
1as(x) + a2u

0
3as(x) +O(x

1=2 lnx) ;

and we �nd7 �H+( �) = k0(a1a2 � a2a1), the coe¢ cients a1; a2 are just a.b.
coe¢ cients. The requirement that �H+ vanish results in the relation

a1 cos# = a2 sin#; # 2 S (��=2; �=2) :

This relation with �xed # de�nes the domain of a possible Hamiltonian as a s.a.
restriction of Ĥ+, or a s.a. extension of Ĥ.
The �nal result is that: for g2 = �1=4 , there exists a family of s.a. Hamil-

tonians Ĥ3;# with the domains

DH3;#
=
�
 :  2 D�

�H
(R+);  satis�es (39)

	
;

where (39) are the asymptotic s.a. boundary conditions at the origin

 = C 3;#as(x) +O(x
3=2 lnx);  0 = C 03;#as(x) +O(x

1=2 lnx) x! 0 ;

 3;#as(x) = u1as(x) sin#+ u3as(x) cos# : (39)

To evaluate the Green�s function G(x; y;W ) for Ĥ3;#, we take the represen-
tation (15) with a1 = 0 for  �(x) belonging to DH3;#

� D�
�H
(R+), boundary

conditions (39) and asymptotics (37) then yield

a2 = ��2(�) cos# [!0(W ) cos#+ sin#]�1
Z 1

0

�1(x;W )�(x)dx :

Using the representation

�(�)�1 = (!0 sin#� cos#)u3;# + (!0 cos#+ sin#)~u3;# ;
u3;#(x;W ) = u1(x;W ) sin#+ u3(x;W ) cos# ;

~u3;#(x;W ) = u1(x;W ) cos#� u3(x;W ) sin# ;
7This structure of �H+ con�rms the previos assertion that the de�ciency indices of Ĥ are

m� = 1.
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where u3;# and ~u3;# are solutions of eq. (4) real-entire in W , and u3;# satis�es
boundary condition (39), we �nd

G(x; y;W ) = 
(W )u3;#(x;W )u3;#(y;W )

+

�
~u3;#(x;W )u3;#(y;W ); x > y
u3;#(x;W )~u3;#(y;W ); x < y

;


(W ) = (!0(W ) cos#+ sin#)
�1(!0(W ) sin#� cos#) : (40)

We note that the second summand in G(x; y;W ) is real for real W = E.
It is easy to verify that the guiding functional given by (17) with U = u3;#

satis�es the properties 1) and 3) cited in subsec. 3.1. The proof that it satis�es
the property 2) is identical to that presented in subsec. 3.2 for the second range
1 > � > 0. It follows that the spectra of Ĥ3;# are simple.
The derivative of the spectral function is given by �0(E) = ��1 Im [
(E + i0)].
We �rst consider the case # = �=2 where we have

u3;�=2(x;W ) = u1(x;W ) ;

�0(E) = ���1 Im
(E + i0); 
(W ) =  (�) + ln(�=k0) :

For E = p2 � 0, p � 0, � = 2pe�i�=2, we �nd

�0(E) =
1

2

�
1� tanh �g1

2p

�
� 0 :

For E = ��2 < 0, � > 0, � = 2� , and g1 > 0, the function 
(E) is of the
form


(E) =  (1=2 + g1=2�) + ln(2�=k0) ;

which implies that for g1 > 0, there is no negative part of the spectrum.
For E = ��2 < 0, � > 0, � = 2� , and g1 < 0, we have


(E) =  (1=2� jg1j=2�) + ln(2�=k0); Im
(E) = Im (1=2� jg1j=2�) ;

which implies that there are discrete negative energy levels En in the spectrum,

En = �g21(1 + 2n)�2; �n = jg1j(1 + 2n)�1; n 2 Z+
�0(E) =

X
n2Z+

Q2n�(E � En); Qn = 2jg1j (1 + 2n)
�3=2

:

It is easy to see that for the case of # = ��=2, we obtain the same results
for spectrum and eigenfunctions as it must be.
We thus obtain that for g1 > 0, the spectrum of Ĥ3;��=2 is simple, continu-

ous, and given by specĤ3;��=2 = R+, and a complete orthonormalized system
in L2(R+) of its generalized eigenfunctions consists of functions

UE(x) =
p
�0(E)u1(x;E); E � 0 :
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For g1 < 0, the spectrum of Ĥ3;��=2 is simple and given by specĤ3;��=2 =
R+ [ fEn; n 2 Z+g, and a complete orthonormalized system in L2(R+) of its
(generalized) eigenfunctions consists of functions

UE(x) =
p
�0(E)u1(x;E); E � 0 ;

Un(x) = 2jg1j (1 + 2n)�3=2 u1(x; En); En < 0 :

We note that the spectrum and eigenfunctions for Ĥ3;�=2 coincide with those
for Ĥe with g2 � 3=4, if we set � = 0 in the respective formulas in subsec. 3.1.
We now turn to the case j#j < �=2. In this case, �0(E) can be represented

as

�0(E) = (� cos2 #)�1 Im [!3(E + i0)]
�1
;

!3(W ) =  (�) + ln(�=k0)� 2 (1)� tan# :

For E = p2 � 0, p � 0, � = 2pe�i�=2, and g1 < 0, we have

�0(E) =
B(E)

� cos2 #[A2(E) +B2(E)]
; (41)

where !3(E) = A(E)� iB(E). The function B(E) can be explicitly calculated:

B(E) =
�

2

�
1� tanh �g1

2
p
E

�
> 0; 8E � 0 ; (42)

whence it follows that for all E � 0, the spectrum of Ĥ3;# is purely continuous.
For E = p2 > 0, p > 0, � = 2pe�i�=2, and g1 > 0, the spectral function is

given by the same eqs. (41) and (42). But in this case, B(0) = 0 and the limit
limW!0 !3(W ) must be carefully examined.
At small W , we have

!3(W ) = (tan#0 � tan#)�
�
6g21
��1

W +O(W 2); tan#0 = ln(g1=k0)� 2 (1) :

For # 6= #0, the function �0(E) is �nite at E = 0. But for # = #0 and small E,
we have

�0(E) = � 6g21
� cos2 #0

Im (E + i0)
�1
+O(1) =

6g21
cos2 #0

�(E) +O(1) ;

which means that the spectrum of the Hamiltonian Ĥ3;#0 contains an eigenvalue
E = 0.
For E = ��2 < 0, � > 0, � = 2� , the function !3(E) is real, therefore, �0(E)

can di¤er from zero only at zero-points En = En (#) of !3(E) (!3(En) = 0),
which yields

�0(E) =
X
n

�
�k0!03(En) cos2 #

��1
�(E � En); !03(En) < 0 ;

@#En (#) =
�
cos2 #!03(En)

��1
< 0 : (43)
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For g1 > 0, we have

!3(E) =  (1=2 + g1=2�) + ln(2�=g1) + tan#0 � tan# ;
!3(E) = (1=2) ln jEj � tan#+O(1); E ! �1 ;

!3(0) = tan#0 � tan# :

For # < #0, the equation !3(E) = 0 has no solution, whereas for # � #0; it
has only one solution E(�) (#). Because eq. (43) holds for @#E(�) (#), E(�) (#)
increases from �1 to 0 when # changes from �=2� 0 to #0.
For g1 < 0, we have

!3(E) =  (1=2� jg1j=2�) + ln(2�=k0)� 2 (1)� tan# ;
!3(E) = (1=2) ln jEj � tan#+O(1); E ! �1 :

It is easy to verify that the equation !3(E) = 0 has an in�nite number of
solutions En; n 2 Z+, bounded from below and asymptotically coinciding with
(22) as n!1, En = �g21=4n2 +O(n�3).
We thus obtain that for g1 > 0, the spectrum of Ĥ3;# is simple and given by

specĤ3;# = R+[
�
E(�) (#)

	
and a complete orthonormalized system in L2(R+)

of its (generalized) eigenfunctions consists of functions

UE(x) =
p
�0(E)u3;#(x;E); E � 0 ;

U(x) =
h
�k0 cos2 #!03(E(�) (#))

i�1=2
u3;#(x;E

(�) (#)) ;

(the eigenvalue E(�) (#) exists, and therefore E(�) (#) and the corresponding
eigenfunction U(x) enter the inversion formulas only if # � #0); for g1 < 0, the
spectrum of Ĥ3;# is simple and given by specĤ3;# = R+ [fEng and a complete
orthonormalized system in L2(R+) of its (generalized) eigenfunctions consists
of functions

UE(x) =
p
�0(E)u3;#(x;E); E � 0 ;

Un(x) =
�
�k0 cos2 #!03(En)

��1=2
u3;#(x;En); En < 0 :

It is possible to describe the discrete spectrum for j#j < �=2 and g1 < 0 in
more details. To this end, we represent the equation !3(E) = 0 in the equivalent
form

f3(E) = tan#; f3(E) =  (1=2� jg1j=2�) + ln(2�=k0)� 2 (1) :

Then we have
f(�1) =1; f (En � 0) = �1; n 2 Z+:

Because eq. (43) holds, we can see that in each interval (En; En+1), n 2 f�1g [
Z+, there is one discrete eigenvalue En and En increases monotonically from
En+0 to En+1�0 when # changes from �=2�0 to ��=2+0 (we set E�1 = �1).
We note the relations

lim
#!��=2

En�1(#) = lim
#!�=2

En(#) = En :
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3.4 The fourth range g2 < �1=4 (� = i{;{ > 0)
The analysis in this section is completely similar to that in Section 3.2 (although
the results for the spectrum di¤er drastically). We therefore brie�y outline basic
points.
According to Section (2), the de�ciency indices of the initial symmetric oper-

ator Ĥ with g2 < �1=4 are m� = 1, and therefore there exists a one-parameter
family of its s.a. extensions.
To evaluate the asymmetry form �H+ , we determine the asymptotics of

functions  � belonging to D�
�H
(R+) at the origin using representation (23) with

� = i{ of the general solution of eq. (14) with W = 0 and estimating the
integral terms by means of the Cauchy-Bunyakovskii inequality, which yields

 �(x) = a1u1as(x) + a2u2as(x) +O(x
3=2); x! 0 ;

 0�(x) = a1u
0
1as(x) + a2u

0
2as(x) +O(x

1=2); x! 0 ;

u1as(x) = (k0x)
1=2+i{; u2as(x) = (k0x)

1=2�i{ = u1as(x) ; (44)

and we �nd8 �H+( �) = �2i{(a1a1�a2a2). The requirement that �H+ vanish
results in the relation a1 = e2i�a2, � 2 S (0; �) de�ning the domains of possible
s.a. Hamiltonians.
The �nal result is that: for each g2 in the range g2 < �1=4, there exists a

family of s.a. Hamiltonians Ĥ4;� with the domains

DH4;�
=
�
 :  2 D�

�H
(R+);  satis�es (45)

	
;

where (45) are the asymptotic s.a. boundary conditions at the origin

 = C 4as(x) +O(x
3=2);  0 = C 04as(x) +O(x

1=2); x! 0 ;

 4as(x) = e
i�u1as(x) + e

�i�u2as(x) =  4as(x) : (45)

To evaluate the Green�s function G(x; y;W ) for Ĥ4;�, we use representation
(15) with a1 = 0 for  �(x) belonging to DH4;�

� D�
�H
(R+), boundary conditions

(26) and asymptotics (44) then yield

�a2 =
2i{(�k0)�i�e�i�

!(W )!4;�(W )

Z 1

0

�1(x;W )�(x)dx; !4;�(W ) = a(W ) + b(W ) ;

a(W ) = ei�
�(�)(�=k0)

�i{

�(�)
; b(W ) = e�i�

�(��)(�=k0)
i{

�(��)
:

Using the representation

�1(x;W ) = �
(�=k0)

i{k
�1=2+i{
0

4{
[i~!4;�(W )u4;�(x;W ) + !4;�(W )~u4;�(x;W )] ;

8This structure of �H+ con�rms that the de�ciency indices of Ĥ are m� = 1.
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where

~!4;�(W ) = a(W )� b(W ); ~u4;�(x;W ) = i[e�i�k
1=2�i{
0 u2(x;W )� ei�k1=2+i{0 u1(x;W )] ;

u4;�(x;W ) = e
i�k

1=2+i{
0 u1(x;W ) + e

�i�k
1=2�i{
0 u2(x;W ) ;

where u4;� and ~u4;� are solutions of eq. (4) real-entire in W , and u4;� satis�es
boundary conditions (45), we �nd

G(x; y;W ) = 
(W )u4;�(x;W )u4;�(y;W )

� 1

4{k0

�
~u4;�(x;W )u4;�(y;W ); x > y
u4;�(x;W )~u4;�(y;W ); x < y

; 
(W ) = � i

4{k0
~!4;�(W )

!4;�(W )
;

the second summand in G(x; y;W ) is real for real W = E.
It is easy to verify that the guiding functional given by (17) with U = u4;�

satis�es the properties 1)- 3) cited in subsec. 3.1, whence it follows that the
spectra of Ĥ4;� are simple.
The derivative of the spectral function is given by �0(E) = ��1 Im
(E+i0):
For E = p2 � 0, p � 0, � = 2pe�i�=2, and g1 < 0, we have

�0(E) = ��1 Im
(E) =
(4�{k0)�1

�
1� jD(E)j2

�
(1 +D(E))(1 +D(E))

; (46)

D(E) =
a(E)

b(E)
=
e�2i��(�)�(��)e

2i{ ln(k0=2p)e��{

�(��)�(�)
:

Because

jD(E)j2 = 1 + e�2�{e��g1=p

1 + e2�{e��g1=p
< 1; 8p � 0 ; (47)

specĤ4;� = R+ and is simple.
For E = p2 > 0, p > 0, � = 2pe�i�=2, and g1 > 0 expressions (46) and (47)

for �0(E) hold true. But in this case, we have jD(0)j = 1 and must carefully
examine the limit limW!0 
(W ).
It is easy to see that for small W , we have the representation


(W ) = � i

4{k0
1 + e2i(�0��)

[1� e2i(�0��)] + iW=A +O(1); A =
3g1

2

{(1 + 4{2)
;

�0 = '� �['=�]; ' = { ln(g1=k0)� �� + �=2; �� =
1

2i
ln
�(�)

�(��)
;

where ['=�] is the entire part of '=�. For � 6= �0, the function �0(E) is �nite at
E = 0. But for � = �0, we �nd

�0(E + 0) = ���1 (A=2{k0) Im (E + i0)�1 +O(1) = (A=2{k0) �(E) +O(1) ;

which means that the spectrum of the Hamiltonian Ĥ4;�0 with g1 > 0 contains
the eigenvalue E = 0.
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For E = ��2 < 0, � > 0, � = 2� , the function 
 can be represented as


(E) = � tan�(E); �(E) = � + �� � ��(E) + { ln(k0=2�) ;

where

��(E) =
1

2i
[ln �(1=2 + g1=2� + i{)� ln �(1=2 + g1=2� � i{)]

=

8<:
�
��jg1j=2� + { ln(jg1j=2�) +O(1); g1 < 0
{ ln(g1=2�) +O(�); g1 > 0

; E ! 0

��(�1) = 1
2i ln

�(1=2+i{)
�(1=2�i{) +O(1=�); E ! �1

:

The asymptotic behavior of �(E) at the origin and at minus in�nity is given by

�(E) =

8<:
�
�jg1j=2� +O(1); g1 < 0
� + �� + { ln(k0=g1) +O(�); g1 > 0

; E ! 0

� + �� � ��(�1) + { ln(k0=2�) +O(1=�); E ! �1
:

Because 
(E) is a real function for E < 0, �0 (E) can di¤er from zero only
at the points En = En(�) where �(En) = �=2 + �n, n 2 Z, which yields

�0(E) =
X
n

Q2n�(E � En); Qn = [4{k0�0(En)]
�1=2

; �0(En) > 0:

We can obtain an additional information about the discrete spectrum of
Ĥ4;�. Representing the equation �(En) = �=2 + �n, n 2 Z, in the equivalent
form

f4(En) = �=2 + �(n� �=�); f4(E) = �� � ��(E) + { ln(k0=2�) ;

@�En(�) = � [f 04(En(�))]
�1
= � [�0(En(�))]�1 < 0 ;

we can see that the following assertions hold.

a) The eigenvalue En(�) with �xed n decreases monotonically from En (0)
to En (�) � 0 when � changes from 0 to � � 0. In particular, we have
En�1(�) < En(�), 8n.

b) For any g1, the spectrum is unbounded from below: En ! �1 as n !
�1.

c) For any �, the negative part of the spectrum is of the form En = �k20m2e2�jnj={(1+
O(1=n)) as n! �1, where m = m(g1; g2; �) is a scale factor, and asymp-
totically (as n ! �1) coincides with the negative part of the spectrum
in the Calogero model with coupling constant g2 under an appropriate
identi�cation of scale factors.

d) For g1 < 0, the discrete part of the spectrum has an accumulation point
E = 0. More speci�cally, the spectrum is of the form En = �g21=4n2 +
O(1=n3) as n!1 (as in all the previous ranges of the parameter g2) and
asymptotically coincides with the spectrum for g2 = 0, see below.
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e) For g1 > 0, the discrete spectrum has no �nite accumulation points. In
particular, possible values of n are restricted from above, n � nmax, where

nmax =

�
f4(0)=� � 1=2 if f4(0)=� � 1=2 is integer
[f4(0)=� + 1=2] if f4(0)=� � 1=2 > [f4(0)=� � 1=2]

;

and the level E = 0 is present in the spectrum for � = �0 only.

The �nal result is as follows: the spectrum of Ĥ4;� is simple and given by
specĤ4;� = R+ [ fEn � 0g; �1 < n < nmax, where nmax < 1 for g1 > 0
and nmax = 1 for g1 < 0, and the set of the corresponding (generalized)
eigenfunctions

UE(x) =
p
�0(E)u4;�(x;E); E � 0; Un(x) = Qnu4;�(x;En); En � 0;

form a complete orthonormalized system in L2 (R+).

3.5 The �fth range g2 = 0 (� = 1=2)

The analysis in this section is similar to that in subsec. 3.2. A peculiarity is that
the function u2 is not de�ned for � = 1=2, and we therefore use the following
solutions of eq. (4):

u1(x;W ) = xe�z=2�(�1=2; 2; z); u5(x;W ) = ~u5(x;W )� g1 ln k0u1(x;W ) ;
�1(x;W ) = xe�z=2	(�1=2; 2; z) = �

�1(�1=2)
�
!1=2(W )u1(x;W ) + u5(x;W )

�
;

where

�1=2 = 1 + g1=�;

~u5(x;W ) = e
�z=2x1=2

�
x���(��; ��; z) + g1�(��)x

��(�+; �+; z)
�
�!1=2

;

!1=2(W ) = g1C+g1
�
 (�1=2) + ln(�=k0)

�
� g1 � �=2 ;

C is the Euler constant. The asymptotics of these functions at the origin and
at in�nity are respectively as follows.
As x! 0, z = �x! 0, we have

u1(x;W ) = k�10 u1as(x) +O(x
2); u5(x;W ) = u5as(x) +O(x

2 lnx) ;

�1(x;W ) = �
�1(�1=2)

�
k�10 !1=2(W )u1as(x) + u5as(x)

�
+O(x2 lnx) ;

u1as(x) = k0x; u5as(x) = 1 + g1x ln(k0x) +Cg1x : (48)

As x!1, ImW > 0, we have

u1(x;W ) = �
�1(�1=2)�

�1+g1=�x+g1=�ez=2(1 +O(x�1))!1 ;

�1(x;W ) = ��g1=�x�g1=�e�z=2(1 +O(x�1))! 0 :
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The functions u1 (x;W ) and u5 (x;W ) are real-entire in W . These functions
form a fundamental system of solutions of eq. (4), the same holds for the
functions u1; �1 for ImW 6= 0, see subsec. 3.2,

Wr (u1; u5) = �1; Wr (u1; �1) = �1=�(�1=2) = �!(W ) :

As we know from subsec. 3.2, for g2 < �1=4, the de�ciency indices of the
initial symmetric operator Ĥ are m� = 1, and therefore there exists a one-
parameter family of its s.a. extensions.
For evaluating the asymmetry form �H+ , we determine the asymptotics of

functions  �, belonging to D�
�H
(R+), at the origin using representation (23) of

the general solution of eq. (14) with W = 0, where the natural substitutions
a2u2 ! a2u5 and u2=2�! u5 must be made, and estimating the integral terms
by means of the Cauchy-Bunyakovskii inequality, which yields

 �(x) = a1u1as(x) + a2u5as(x) +O(x
3=2) ;

 0�(x) = a1u
0
1as(x) + a2u

0
5as(x) +O(x

1=2) ; (49)

and we �nd9 �H+( �) = �k0(a1a2 � a2a1). The requirement that �H+ vanish
results in the relation a1 cos � = a2 sin �, � 2 S (��=2; �=2) :
The �nal result is that for g2 = 0, there exists a family of s.a. Hamiltonians

Ĥ5;� with the domains

DH5;�
=
�
 :  2 D�

�H
(R+);  satis�es (50)

	
;

where (50) are the asymptotic s.a. boundary conditions at the origin

 = C 5;�as(x) +O(x
3=2);  0 = C 05;�as(x) +O(x

1=2); x! 0 ;

 5;�as(x) = u1as(k0x) sin �+ u5as(x) cos � : (50)

To �nd the Green�s function G(x; y;W ) for Ĥ5;�, we use representation (15)
with a1 = 0 for  �(x) belonging to DH4;�

� D�
�H
(R+), boundary conditions (50)

and asymptotics (48) then yield

a2 = �
�2(�1=2) cos �

!1=2(W ) cos �� k0 sin �

Z 1

0

�1(x;W )�(x)dx :

Using the representation

k0�(�1=2)�1(x;W ) = (!1=2(W ) cos �� k0 sin �)~u5;�(x;W )
+ (!1=2(W ) sin �+ k0 cos �)u5;�(x;W ) ;

u5;�(x;W ) = k0u1(x;W ) sin �+ u5(x;W ) cos � ;

~u5;�(x;W ) = k0u1(x;W ) cos �� u5(x;W ) sin � ;
9This structure of �H+ con�rms that the de�ciency indices of Ĥ are m� = 1.
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where u5;�(x;W ) and ~u5;�(x;W ) are solutions of eq. (4) real-entire in W and
u5;�(x;W ) satis�es boundary conditions (50), we �nd

G(x; y;W ) =
1

k0

�

(W )u5;�(x;W )u5;�(y;W )�

�
~u5;�(x;W )u5;�(y;W ); x > y
u5;�(x;W )~u5;�(y;W ); x < y

�
;


(W ) =
�
k0 sin �� !1=2(W ) cos �

��1 �
!1=2(W ) sin �+ k0 cos �

�
;

the second summand in G(x; y;W ) is real for real W = E.
It is easy to verify that the guiding functional given by (17) with U = u5;�

satis�es the properties 1)-3) cited in subsec. 3.1, whence it follows that the
spectra of Ĥ5;� are simple.
The derivative of the spectral function is given by �

0
(E) = (�k0)

�1
Im
(E+

i0).
We �rst consider the case of � = �=2 where we have u5;�=2(x;W ) = k0u1(x;W )

and

�0(E) =
�
�k20

��1
Im ~
(E + i0) ;

~
(W ) = g1 (�1=2) + g1 ln(�=k0)� �=2 :

For E = p2 � 0, p � 0, � = 2pe�i�=2, we have

�0(E) =
jg1je��g1=2p

2k20 sinh(�jg1j=2p)
� 0 :

For E = ��2 < 0, � > 0, � = 2� , and g1 > 0, �1=2 = 1+ g1=2� , the function
~
(E) is �nite and real, whence it follows that there are no negative spectrum
points.
For E = ��2 < 0, � > 0, � = 2� , and g1 < 0, �1=2 = 1� jg1j=2� , we have

�0(E) = �
�
�k20

��1 jg1j Im  (�)jW=E+i0 =
X
n2Z+

Q2n�(E � En) ;

En = �
g21

(2 + 2n)2
; Qn =

2

k0

�
jg1j
2 + 2n

�3=2
:

It is easy to see that for the case of � = ��=2, we obtain the same results
for spectrum and eigenfunctions as it must be.
We thus obtain that for g1 > 0, the spectrum of Ĥ5;�=2 is simple, continu-

ous, and given by specĤ5;��=2 = R+ and the set of generalized eigenfunctions
UE(x) =

p
�0(E)u5;�=2(x;E), E � 0, form a complete orthonormalized system

in L2 (R+).
For g1 < 0, the spectrum of Ĥ5;��=2 is simple and given by specĤ5;��=2 =

R+ [ fEn; n 2 Z+g and the set of (generalized) eigenfunctions

UE(x) =
p
�0(E)u5;�=2(x;E); E � 0 ;

Un(x) =
2

k0

�
jg1j
2 + 2n

�3=2
u5;�=2(x; En) ;
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form a complete orthonormalized system in L2 (R+).
We now turn to the case j�j < �=2 where we have

�0(E) =
�
� cos2 �

��1
Im [!5(E + i0)]

�1
; !5(W ) = k0 tan �� !1=2(W ) :

For g1 < 0, E = p2 � 0, p � 0, � = 2pe�i�=2, we obtain that

�
0
(E) =

�
� cos2 �

��1
Im!�15 (E) =

B(E)

� cos2 �[A2(E) +B2(E)]
; (51)

where !5(E) = A(E)� iB(E). The function B(E) is explicitly given by

B(E) =
�

2

jg1je��g1=2p
sinh(�jg1j=2p)

> 0; 8p � 0 : (52)

It follows that for g1 < 0, E � 0, the spectrum of Ĥ5;� is purely continuous.
For g1 > 0, E = p2 > 0, p > 0, � = 2pe�i�=2, the derivative of the spectral

function is also given by eqs. (51) and (52). But in this case, we have B(0) = 0
and the limit limW!0 !5(W ) has to be carefully examined. For small W , we
have

!5(W ) = (tan �� tan �0)k0 �
1

3g1
W +O(W 2) ;

tan �0 = (g1=k0) [ln(g1=k0) +C� 1] :

For � 6= �0, the function �0(E) has a �nite limit as E ! 0. But for � = �0 and
small E, we have

�0(E) = � 3g1
� cos2 �0

Im (E + i0)
�1
+O (1) =

3g1
cos2 �0

�(E) +O (1) ;

which means that the spectrum of the Hamiltonian Ĥ5;�0 has an eigenvalue
E = 0.
For E = ��2 < 0, � > 0, � = 2� , the function !5(E) is real. Therefore,

�0(E) can di¤er from zero only at zero points En = En(�) of !5(E), and �0(E)
is represented as

�0(E) =
X
n

[�!05(En)]
�1
�(E � En); !5(En) = 0; !05(En) < 0 :

For g1 > 0, we have

!5(E) = �g1 (1 + g1=2�)� g1 ln(2�=g1) + � + k0(tan �� tan �0) ;
!5(E) =

p
jEj � (g1=2) ln jEj+O(1); E ! �1; !5(0) = k0(tan �� tan �0) :

For � > �0; the equation !5(E) = 0 has no solution, while for � 2 (��=2; �0]
it has a unique solution E(�) (�). It is easy to see that

@�E
(�) (�) = �k0[!05

�
E(�)�

�
cos2 �]�1 > 0 ;
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so that E(�) (�) increases monotonically from �1 to 0 when � changes from
��=2 + 0 to �0.
For g1 < 0, we have

!5(E) = jg1j (1=2� jg1j=2�) + jg1j ln(2�=k0) + � � ~� ;
~� = g1C� g1 � k0 tan � :

Representing the equation !5(En) = 0 in the equivalent form

f5(En) = ~�; f5(E) = jg1j (1=2� jg1j=2�) + jg1j ln(2�=k0) + � ;

we can see that:

a)

f5(E)
E!�1�! 1; f5 (En � 0) = �1 ;

such that in each region of energy (En; En+1), n 2 (�1)[Z+, the equation
!5(En) = 0 has one solution En(�) for any �xed �, j�j < �=2, and En(�)
increases monotonically from En+0 to En+1�0 as � changes from ��=2+0
to �=2� 0 (here, by the de�nition, E�1 = �1).

b) For any �xed �, En(�) = �g21=4n2 + O(n�3) as n ! 1, asymptotically
coinciding with (22).

c) The point E = 0 is an accumulation point of discrete spectrum for g1 < 0.

Note the relation

lim
�!�=2

En�1(�) = lim
�!��=2

En(�) = En; n 2 Z+ :

The above results can be brie�y summarized as follows.
For g1 < 0, the spectrum of Ĥ5;� is simple and given by specĤ5;� = R+ [

fEn < 0, n 2 (�1) [ Z+g. The (generalized) eigenfunctions

UE(x) =
q
�0(E)u5;�(x;E); E � 0 ;

Un(x) =
�
�!05;�(En)

��1=2
u5;�(x;En); En < 0; n 2 (�1) [ Z+ ;

form a complete orthonormalized system in L2 (R+).
For g1 > 0, the spectrum of Ĥ5;� is simple and given by specĤ5;� = R+ [

fE(�) (�) � 0g. For � 2 (��=2; �0] the (generalized) eigenfunctions

UE(x) =
q
�0(E)u5;�(x;E); E � 0; U(x) =

h
�!05(E(�))

i�1=2
u5;�

�
x;E(�)

�
form a complete orthonormalized system in L2 (R+). For � > �0, the spectrum
has no negative eigenvalues.
We note that the above results (for spectrum and eigenfunctions) can be

extracted from the results in subsec. 3.2 for the case g2 6= 0 (� 6= 1=2).
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4 Some concluding remarks

We would like to �nish our consideration with a remark about the Kratzer
potential [1] mentioned in the Introduction. This potential corresponds to a
particular case of parameters g2 > 0 and g1 < 0. It is drown by the thick line in
the graph of Figure 1. As was already said, the Kratzer potential is extensively
used to describe the molecular structure and interactions [16]. In such cases,
the Kratzer potential appears in the radial part of the Schrödinger equation (2)
and has the form:

V (x) = �2De

�
a

x
� 1
2

a2

x2

�
; (53)

where De is the dissociation energy and a is the equilibrium inter-nuclear sep-
aration. As x goes to zero, V (x) goes to in�nity, describing the internuclear
repulsion and, as x goes to in�nity, V (x) goes to zero, describing the decompo-
sitions of molecules. Putting the potential (53) in the radial equation (2) and
comparing with the Schrödinger equation (4), we have the following identi�ca-
tion:

g1 = �
4m

~2
Dea ; g2 =

2m

~2
Dea

2 + l (l + 1) :

We can now calculate the value of g2 for real diatomic molecules. Using data
from [20], even for l = 0, we have g2 = 4:53 � 104 for CO. The parameter
g2 is of the same order for molecules of NO, O2, I2, and H2. Thus, we can
see that for the realistic Kratzer potentials, the corresponding radial equations
have always g2 > 3=4. Thus, the corresponding radial problem belongs to the
�rst range described in subsec. 3.1. In this case, there exist only one s.a. radial
Hamiltonian de�ned on the natural domain (5), functions from this domain have
asymptotics (16).

Acknowledgement 1 M.C.B. thanks FAPESP; D.M.G. thanks FAPESP and
CNPq for permanent support; I.T. thanks RFBR Grand 08�01-00737; I.T. and
B.V. thank Grand LSS-1615.2008.2 for partial support.

References

[1] A. Kratzer, Die ultraroten Rotationsspektren der Halogenwassersto¤e, Z.
Phys 3, 289 (1920)

[2] E.C. Baughan, Comments on the thermochemistry of the elements of
Groups IVB and IV, Quart. Rev. 7, 103 (1953)

[3] E. Fues, Ueber die Bestimmung der mittleren Wärme der Luft, Ann. Physik
80, 376 (1926)

[4] C.J. Ballhausen and M. Gajhede, The tunnel e¤ect and scattering by a neg-
ative Kratzer potential, Chemical Physics Letters 165, Issue 5, 449 (1990)

29



[5] O. Bayrak I. Boztosun and H. Ciftci, Exact Analytical Solutions to the
Kratzer Potential by the Asymptotic Iteration Method, Int J Quantum
Chem 107, 540 (2007)

[6] G.H. Shortley, The inverse-cube force in quantum mechanics, Phys. Rev.
38, 120 (1931)

[7] S.L. Scarf, Discrete States for Singular Potential Problems, Phys.Rev. 109,
2170 (1958)

[8] L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon Press
1977).

[9] M.A. Eliashevich, Atomic and Molecular Spectroscopy (State Physical and
Mathematical Publishing, Moscow, 1962)

[10] S. Flügge, Practical Quantum Mechanics; Vol I (Springer: Berlin, 1994)

[11] H.S.W. Massey, Theory of Atomic Collisions (Clarendon Press, Oxford,
1949)

[12] B.L. Voronov, D.M. Gitman, and I.V. Tyutin, Constructing Quantum Ob-
servables and Self-Adjoint Extensions of Symmetric Operators. I, Russian
Physics Journal 50/1, 1 (2007); Constructing Quantum Observables and
Self-Adjoint Extensions of Symmetric Operators. II. Di¤erential Operators,
Russian Physics Journal 50/9, 853 (2007); Constructing quantum observ-
ables and self �adjoint extensions of symmetric operators. III. Self�adjoint
boundary conditions, Russian Physics Journ. 51/2, 115 (2008)

[13] J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der
normalen Operatoren, Math. Ann. 102, 370 (1929)

[14] M.T. Krein, One general method of decompositions of positively de�ned ker-
nals in elementar products, DAN USSR 53, 3 (1946); Hermitian operators
with guiding functionals, Zbirnik Prazc� Institutu Matematiki, AN USR
No.10, 83 (1948)

[15] M.A. Naimark, Linear Di¤erential Operators (Nauka, Moscow 1969); N.I.
Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space
(Pitman, Boston 1981)

[16] R.J. Le Roy, R.B. Bernstain, Dissociation Energy and Long-Range Poten-
tial of Diatomic Molecules from Vibrational Spacings of Higher Levels, J.
Chem. Phys. 52, 3869 (1970)

[17] J. Vigo-Aguiar, T. E. Simos, Review of multistep methods for the numerical
solution of the radial Schrödinger equation, Int J Quantum Chem 103, 278
(2005)

[18] H. Bateman and A. Erdelyi, Higher Transcedental Functions (Mc GRAW-
HILL, New York, 1953)

30



[19] Gradshtein I.S., Ryzhik N.M. Tables of Integrals, Sums, Series and Prod-
ucts. Nauka, Moscow, 1971.

[20] M. Karplus, R.N. Porter, Atoms and Molecules (WA Benjamin: Menlo
Park, CA, 1970)

[21] M. Reed and B. Simon, Methods of Modern Mathematical Physics vol 2
Harmonic Analysis. Self-adjointness (New York: Academic,1972)

[22] V.G. Bagrov and D.M. Gitman, Exact Solutions of Relativistic Wave Equa-
tions, (Kluwer, Dordrecht, Boston, London 1990)

[23] J. von Neumann, Mathematical Foundations of Quantum Mechanics
(Princeton University Press, Princeton 1955)

[24] B.L. Voronov, D.M. Gitman and I.V. Tyutin, The Dirac Hamiltonian with a
superstrong Coulomb �eld, Theor. Math. Phys. 150 34 (2007); Self-adjoint
extensions and spectral analysis in Calogero problem, J. Phys. A 43, 145205
(2010)

[25] D.M. Gitman, I.V. Tyutin, A.G. Smirnov, and B.L. Voronov, Self-adjoint
Schrödinger and Dirac operators with Aharonov-Bohm and magnetic-
solenoid �elds, arXiv:0911.0946 [quant-ph] (2009)

31


