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ABSTRACT

The semiclassical canonical gquantization of the non
relativistic Logarithmic Theory is done in any number of spatial
dimension d. Instead of the usual expansion of the Hamiltdnian
about the classical fields, we propose an alternative route to.
semiclassical quantization by making an expansion around the
charge operator. When we take the value d=0 in the energy
expression the exact zero-dimensional spectrum is obtained. The
mechanism of confinement characteristic of these Logarithmic

Theories is also discussed.
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I. INTRODUCTION

Recently a lot of effort has been concentrated into the
study of semiclassical methods of quantization in Field Theory(l_g).
By using these non-perturbative instruments the spectra of a
large number of 1+1 dimensional models were obtained. Here we
succeed in performing the semiclassical quantization of a Theory
in any number ofvspatial dimensions.

The model which we quantize is just the non relativistic

Logarithmic Theory proposed by Birula and Mycielski(lo).

(10-13) has bean

The relativistic Logarithmic Theory
intensively studied by us. In ref. (11) the stability of its
soliton-like solutions was discussed, whereas the set of these
solﬁtions was considerably enlarged in ref. (12). In ref. (13)
we pointed out the remarkable fact that the Logarithmic Theories
exhibits confinement. Unfortunatelly, up to now we have not
succeeded in quantizing the relativistic version of the model -
the main difficulty coming from the question of renormalizability
of theories with logarithmic nonlinearities.

The non relativistic Logarithmic Theory shares the most
interesting features of the relativistic one (solitons and
confinement), and - at least up to WKB quantization - it does
not display any trouble concerning to renormalization. This is
the reason for studying it in this paper.

The model is presented in section II. There the stability
equation is obtained and solved, leading to a discrete set of
stability angles. The mechanism of confinemeﬁt is discussed in
the cohtext of this non relativistic theory.

In section III we compute the static spectrum of the

(1,2,7)

model by using the DHN quantization formula . The computation

is done in any number of spatial dimensions. We show that,




extending our energy formula to dimension zero, the exact zero-
dimensional spectrum is obtained.

The canonical quantization of the theory is performed
in section IV. There, besides the static spectrum, the kinetic
part of the energy is also obtained. Since we use collecfive
variables, our method is similar to those of references (4), (5)
and (6). But, an important difference deserves to be pointed out:

instead of expanding - as usually - the Hamiltonian about the

classical field (soliton), the expansion is done around a leading
operator. In the present case the suitable leading operator is
just the charge. So, our approach is expected to hold only in the
computation of the energies of large charge states. The canonical
commutation relations are satisfied in a semiclassical sense.
Conclusions are left to section V, whereas three

Appendixes complement some calculations of the text.
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II. THE MODEL: SOLITONS, STABILITY and CONFINEMENT

The model that we investigate here is defined by the

following Lagrangian density(lo):

Lo =19 sp- Ty, L

where ¢/ represents a complex scalar field and C/K?Z???) is

Ulp)- 1245, sﬂ—-—-—-—gﬂeﬂ[wgﬂ;ﬂ )= 1] .

In expression (2.2), &, 1/m and a are dimensional parameters
while d stands for the number of spatial dimensions.

The Euler-Lagrange equation resulting from (2.1) is

Fo P+ 1 +
2Vt 5, 4”

%(ﬁ{ﬂd ) @ = - (2.3)

The energy associated to a certain field (JK, ¢) is

given by

fa'a;? U(¢/*§p) ) (2.4)

whereas the other conserved quantity (the charge) will be

Q= [d% plEopEs . 2.5

We are interested in the following family of classical

solutions (solitons)

DX t)= Aw) (=4 wl -

y (2.6)
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Plugging the field (2.6) into the equation of motion (2.3) we

obtain the allowed values of A(w):

—~d
Atw) = ﬂ/z M/S/j — 27 fzw) o (2.7)

The solution (2.6) describes an spherically symmetric extended
object on its proper rest frame. The energy and the charge

associated to this classical particle are given respectively by

2)2/)([}(({. -2 ) ezw) , (2.8)

2mé

£ = (T (o
and

o ) (J_TE ) Q”‘F(O{" 2%)@00) : (2.9)

A - Stability
e . v (7,11)
In order to study the infinitesimal stability of
our particle we add to the classical solutions (2.6) a small
fluctuation

—twt

Pl t) = L(x¢t)+ & 7(/F/t) . (2.10)

Using this representation for'996$;tj into the équation of
motion (2.3), and retaining terms up to first order in 37Qf;t9

we obtain the linearized stability equation:

g {52 _ X2 (1+d) ] *
laJ + - 2; -
[ t  zm X 2mp?t 2m£2 7 2;77{2 7 * (2.11)




Now we may verify, by inspection, that the solutions of

eqg. (2.11) are of the form

- ' d
7716,“. ¢d(’\/,‘t) - Afk: 7@4 ;}:-I: “ﬂ"‘/ialgx‘/e) ’
. o\ n(eE (k.
.[(\/Er_ﬁz_p)é K(z.‘n;—( a K—‘4)€t Kl 2.1r.>:] )
(2.12)
th

whereA.k ceok is a real number, hk is the normalized k

i d

eingensolution of the unidimensional harmonic oscilator, the

integer K is the sum

' d
. k= 2 ke

(2.13
a=1 )

and the stability angles(l’z) ?: are given by

27C
?"k =1 lmezw\’KzK"U (2.14)

(14)

We observe that there are

ok +d=1)]
D(K/d) - /(./(0/—-4)/ (2.15)

configurations of the set {1@;} that satisfies (2.13). Then,
each 32 has a degeneracy of order D(K,d).

Since in the present case all stability angles are real

. numbers, we ¢onélude that if a given fluctuation is infinitesimal
at t=0, it will remain infinitesimal for any other time. So we

say that the solutions of the type (2.6) are stables ones.

The stability angles (2.14) are the basical ingredients




)
to implement a WKB quantization of the Model(1’2’7). This
quantization will be presented in the next section.

From (2.14) we see that /=7 = O. 7, -having a degene-
racy of degree d (see (2.15)) - is associated to the transla -
tional invariance of the Theory; whereas 2;’ ~ that has no

degeneracy - is the zero frequency mode correspondent to gauge

invariance.

B - Confinement

Here the mechanism of confinement will be discussed in

the context of the nonrelativistic logarithmic theory. The same
phenomenum occurs in the relativistic theory, as shown in
reference (13). For these logarithmic theories confinement
happens to be a consequence of the nonexistence of the weak field
limit.
Let us define the theory in a cubic box of volume Ld
with periodic boundary conditions L is such that L >> ¢, a,
1/m, and latter we will take the limit L + « ,

Consider a plane wave solution of equation (2.3)

- - (’(E;\:\'—‘:“’t)
94‘ (”(/t) = /4(@/“)) & (2.16)
From direct substitution of (2.14) into (2.3) we obtain the
relation

o= 1 [ L tlAr)]

2
2 L

(2.17)

The energy associated to this solution will be




E (%,4) = ,é_f:?!f L R - z’z[%///’/zﬁioy’d

(2.18)

whereas the charge is
2 ,d
DA = AT ) (2.19)

From (2.15), (2.16) and (2.17) we get the following pair of

relations involving w, X, E and Q

wlé) = 2 [F - e [on(@(e]) - 1]

(2.20.a)
and
)= @ (B~ L [(afef) ]
E(Q,CP):—-CP z - e L (2.20.b)
Now, since k2 is allways positive (otherw1se:§€2 will not be

a solution of (2 3)), in the limit L + « we get
Wk @) = @ and E(ﬁ, 47) = QO , (2.21)

This means that in the infinite volume limit we have no plane
wave solutions for the classical version of the theory. We have
no excitations around the vacuum (P=0). This is Confinement. It
follows from the fact that the Lagrangian (2.1) is non analitical
in I{ﬂlz when ]§0l2=0. It does not occurs in any polinomial
Lagrangian.

On the other hand we have seen that there exist excita-
tions around the soliton (2.6). Obeying equation (2.11) these

excitations are just linear superpositions of the solutions (2.12).

The achievément is obvious: in the logarithmic theories, guantum




fluctuations can manifest themselves only in the presence of a
soliton that works as a bag for containing them. |

We emphasize that the fluctuations (2.12) goes to zero
rapidly when any ]xil grows. This means that they are really
confined within the soliton.

An interesting consequence of confinement is the fact
that the set of stability angles is a discret one. In theories
where a continuum of stability angles exists, the sum over this
continuum describes states of a soliton plus a certain ammount of
free elementary mesons coexisting(z). In the present case the
continuum does not exists since we have no free mesons.

In the relativistic version of the model the same

(13)

mechanism occurs . There the equation for the fluctuations is
also of the harmonic type. There is a large number of semi -
phenomenological papers in the literature where it is tried to
confine quarks by means of the harmonic oscilator potential - the
trouble is that in those papers the potential is introduced by

hand. It is remarkable that in the logarithmic theories we get the

same picture starting from a local Lagrangian.




ITI. QUANTIZATION IN THE MANNER OF DHN

Here, in order to obtain the semiclassical energy spectrum
we will use the DHN(l) formula as stated by Coleman(7). We leave
to the next section the deduction of this spectrum by meam of a
canonical quantization procedure.

According the DHN method the classical periods are

"quantized" in the following way

[ Tar [I% z,.,/;,f)gj&;f) -

(3.1)
’ + 2 (7 (7’4 ﬂ-)_—_ 2TN
7 >0

where wé( t) is the classical solution of period 7—(&0-— ﬁ//-r)
7“k}¥t; is its conjugated momentum,{??} is the set of all stability

angles and.l)(%k)ls the degree of degeneracy of each stability

angle. Any quantum state is characterized by an integer N and by

the set{}ﬁj n;, = 0, 1, 2 ..:}. Solving Eq. (3.1) for the

various states we obtain a discrete set of values for the period:

T(N, Ny, Ny, ool).

The allowed values of the energy are obtained from the

(7,

expression

E (Aﬁ,7y, 7%2,»") = i:cazl:7Y7V/ ﬁb»‘”z)] +

+ Z_(m+ D )d?f‘

y ’6\70 dT T=T(N)'n1;ln7.\"')

" (3.2)

(T)
cla

Here E is the classical energy of the soliton whose period
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is T. It is given by expression (2.4).

P o
In our case, since ﬂfk)==4 920 (see Lagrangian (2.1)),

the integral in (3.1) must be written as
a4 975
foifdki%% (3.3)

- From the fact that the stability angles of this model
have a linear dependence on T (see (2.14)) we conclude that the
sum %g: in Eq. (3.1) is zero. So, our periods are guantized by

%

the following expression
) 'é/ X 1%% = 27N , (3.4)

Evaluating explicity the integral of expression (3.4) we

( @f%?(d_ zmﬂzw) = N

a.

get

| VA

‘ (3.5)

This condition is equivalent to a quantization of the classical
chafge that is given in (2.9). The equivalence between semi-
classical quantization and charge quantization was already pointed
out in references (15) and (16).

Using (3.5), the quantized values of w are obtained:
d -
A%V ::__Z_jz[}j-— “eﬂ ( A /) — ékvf{j
2mg T 4 . (3.6)

From (2.8) and (3.6) we conclude that the classical Energy as

function of N is given by

d
Eng) )} zgﬁ" [d+4 ] %(ﬁ)

]

(3.7)




. In expression (2.15) we have the degree of degeneracy of

each stability angle, whereas the stability angles themselves are

-
i Z— that

shown in (2.14). Using them, one can writte the sum =

y

appears in (3.2) in the following manner

_ 22 :E:; (K—+d-—4)) J??TEj;4)l +
7

Lid-1)]
'4 X ~
_ N ,{K(K-—O
P Tm R 2j~— ) ’ (3.8)
k=0

The first sum in the above expression - that is clearly
a divergent one - is the vacuum energy (note that it is inde -
pendence of the particular state we are looking to ), and so it
) will be dropped from the energy formula. Then, using (3.2), (3.7)

and the finite part of (3.8) we get the spectrum

E(N; 774)772,.,,)—"—'
_ N ¥
= [d+1 —aﬂ({g{)_%N]Jr

X )
> M [k (k=1)
K =0

(3.9)

This is the WKB spectrum of the nonrelativistic
logarithmic model in any number of space dimensions. Since in
particular it holds for d=3, this is the first time that - as

far as we know - a WKB quantization of a three dimensional model

is done.
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A - Zero Dimensional Case

In zero dimension, K is always zero, since the set
{kl, k2 RPN kd.} is an empty one. So, in this case the sum in
(3.9) does not exist and the spectrum can be written as
EwN) = N __(1- nN)
d=o 2me - (3.10)

- Now are will solve the zero-dimensional version of the
logarithmic model in order to compare the exact spectrum with
(3.10) . Our conclusion will be that (3.10) is the exact spectrum.

When d=0 the Lagrangian is given by
: . . o *
[(da)=7(a*¥d + 15 adfaltna’a—1)
2mi (3.11)

From it one concludes that the canonical momentum associated to

*
a is ia , whereas the Hamiltonian is

H@%a)= L a*a (1— tna'a)

2md (3.12)

It is well known that after imposing the cannonical

commutation relations
. . * -
[a ia¥] =4 &1 [a, a*] = 1
(3.13)

the spectrum of a*a is given by

S,zs(a*a,) = 0,12,... N...
(3.15)

So the spectrum of the Hamiltonian (3.12) will be just (3.10).
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IV. CANONICAL QUANTIZATION

In this section we perform the canonical quantization
of the model. Our procedure has much to do with those of
references (4), (5) and (6), even though some important
differences must be stressed. In order to point out these
differences we shall start this section discussing the main
ideas upon which our method is based.

The fields (/0()'(", £) and its momentum /[ (¥, t)= 1Y 7‘(.')(',:‘.
can - in a large variety of ways - be represented in terms of
an infinite set of basical canonically conjugate pairs of
operatots {(ao, by) s (al, bi)i (a,, b,y); ...} . Let us consider
the class of states {]aon R T aon being the nth eigenvalue
of ag ~ where the eigenvalues of a, are very large when compared
with the mean values of the other basical operators (with the

exception of bo, the momentum of ao), i.e:

g s oeeee > (4.1a)
(4.1b)
for all 1 # 0.

When dealing with the mentioned class of states, it is

natural to consider a, as a leading operator andto treat the

other basical operators as fluctuations about it. So an
approximate - and eventually soluble - Hamiltonian can be obtained
by an expansion around a, retaining only terms up to second order
in the non leading operators. The following observations can serve
as a brief outline of what we are going to do:

(i) In the present model the leading operator about which

the Hamiltonian is expanded is the charge operator. So our approach
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4

is expected to hold only in the description of large charge states.
(ii) The representation that we choose for the fields is

designed to satisfy the semiclassical canonical commutation

relations

[Vx¢), TT(F )] =785+ O (/@)

Then, locality 1is guaranteed at least in a semiclassical sense.
(iii) Up to quadratic terms in the non leading operators

the Hamiltonian decouples into an infinite set of partial

Hamiltonians, each of them depending only on a given pair of

basical canonically conjugate operators, i.e:

H = Hyao) + Hylar 1) + Halaz 05)+- 4

N

(4.3)

+ [%erms of order greater than 2 in aj. bl; Ay b2; etc{]

The partial Hamiltonian H0 is independent of bo (the momentum
of ao). Within the spirit of the approximation explained
previouly the terms of order greater than two in the fluctuations
shall be dropped from the total Hamiltonian. Then the task of
getting the spectrum becomes a very easy one because it suffices
to sum up the energies of an infinite set of decoupled partial
Hamiltonians.

We stress that our approach is different from the usual
semiclassical quantization methods, since instead of treating
fluctuations around a classical field we do an expansion about a

leading operator.

The Hamiltonian and the charge of the non-relativistic

Logarithmic Theory are - as we recall - given respectively by

H- §d el g0 o e~ o Folbged)- I




and

L7
Q= ,J[J/K' @ QQ ﬂ (4.5)

Before exhibiting the basical operators and the field
representation convenient for our case we must introduce a
complete set of functions of the coordinates. Being‘{ki, kz,...kd}
a set of d non negative integers, we define

S T / D Ix

\'Id" -~
where hk is the kth normalized real wave-function of the

»

unidimensional harmonic oscilator. To some of these functions we

give an abbreviated notation :

(a) The first one, where kj = 0 for all j, we name

Fo (i), i.e.

¥y o= [y (4.7.a)
Figo.no}c() Fo (X) | )
and we regall that, since FO (i) is normalized, it will be
- d/ ' w32
1 2= X

F;‘G?) = (fgi}%g” < ; (4.7.b)

(b) The functions (4.6) where kg, = 1 and kj =0 for all

j # 8 we name Fs (ﬁ), i.e.

- _ - N |  (4.8)
[+ %

’lo...k3=4“.o}

A - The basical operators

We will build fields with the following basical hermitian

operators:
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(a) the pairs (A(t), 6(t)) obeying the commutation

relation

(4, 6] = % ', .

(4.9)

(b) for each spatial direction s we define a pair of
canonically conjugate operators (?s(t) p fb\s(t)) , whose

commutation relations are

[%5: $5,] = A Sss'

(4.10a)
(2., 2.] - [A, R] -0
S s'] = [ s s'] -
! ! (4.10b)
As A th
From now on (?.) will stand for a vector whose s .
. " A . . La
component is Zy (]’s) . Latter on we will interpret & as the

position of the center of mass of the particle described by a
given state (collective coordinate(4_6)), whereas the eigenvalues

of ? will be related to the momentum of that particle.

(c) for each set {[g‘}, such that k= g k‘:>1 we also define
= 4

a pair of canonically conjugate operators (q{hift) b(.t)). Their
LR LN

commutation relations are

[a{k;}l b{h";}]z i s{k;}{k’,;} (4.1l1a)
= { Skgk: Sk;ht" Shdh'd

[%kiki a{h'&}] - [b’s\‘&h bm‘»}] =0 : (4.11b)

The remainder commutation relations among the basical operators

are the following ' .

[’41 25]‘ [AI f’\s] =[Ala4m'}] = [Al b{k&}] =0 (4.12a)

[63 é\".s]-‘-‘[_e, 1;5] -‘5[9, a(hﬁ‘] =[9, b{m&] =0 (4.12b)
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and
[26)90e 1= 25, by ] =[P gear) = [P bmch =

(4.12c)

B - The field representation

We are now in a position to present the field represen -
tation that will allow us to perform a WKB quantization of the
model. In terms of the basical operators defined in the last

subsection the fieldQO[t t) will be written as (17)

Dize)= € [5/—‘(x £)+1E Z_é (%-2) B +
Vz s=1 A

+ = A ) Fo(x- 2)
{‘p\,Kw}a\h& ) 129 :} .

where the operator B is given by

e? A2 ”&
_ _ A
£ = [A 2 (a U’kr /Z>‘J . (4.14)

A lﬁ& k) ]
} F
Since the basical operators are hermitian ones, the field ¢9(X L)
must be
<P1;—;,t) 3[5 Fo(?-i) - l Q L_l_ FS(-)—(-—_ z)_\_
Nz so1 _
' v -4 6
+ CEZ:_~ (fzxk*} @ (W4§> ‘<hAy( 25):}
Ly \<>4}

(4.15)
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At this point it is appropriate to stablish some connection
between the operator approach developed here and others semi -
classical methods of quantization.

As we shall see shortly, the operator A is just the
charge. It is the }lrading operator about which the Hamiltonian will
be expanded. We will consider'only those states where the |
eigenvalue of A is very large (A more specific definition of
what we mean by very large will be given latter on). This fact
allows us to see the scheme outlined before in a different way:

Suppose that we remove the non leading operators from
the field representation (4.13), so defining what we call the
1eading part of the field QQ(Ean):

d/z /— SRR
A = X - 2,
Rxt)= e JZ—(«EVTC) p/x?’[ i—;%—;«m_ (4.16) :

An expansion of any function of the fields about A is equivalent
to an expansion around the leading field.Q%ﬁE f) . But QZﬂ;;i)——
—even though being an operator - has a remarkable ressemblance
with the classical soliton (2.6) (a soliton whose center of mass
position isé? ). In this sense we may say that the approximation

which shall be done here is equivalent to an expansion of quantum

fluctuation around the soliton itself.

C ~ Charge Quantization

Since {_El‘ F; ; 5%;9} constitute an orthonormal

basis, the charge operator Q defined in (4.5) will be

82+ W:?Z .I—éu_ + Z {q{jzw"' b;‘.:px-:,*":[%ﬂ;})blpgﬂ}

=~ A i ; k> (4.17)
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Now using the commutation relations (4.9a) and the expression
(4.14) for the operator B we conclude that

Q=2A (4.18)
as mentioned above. So the charge operator is the momentum

conjugate to e

[”CQ/ é;_j = 1. | oL CQD = 41]969

(4.19)

Then the eigenfunctions of Q must be of the form

~ . —1 96
L6 ) = & 7% &(c;) .
where q is the charge eigenvalue and c; are others basical fields
variables different from 6 and Q.

Well, but 6 is a cyclic variable, i.e: if we change 8
into 6 + 2nm (n being an integer), the field operators Qaﬁ;i
and§07};i) does not change (see (4.13) and (4.15)). So, in
order that the wave-functional (4.20) be single valued in the
space of field variables, it is necessary that the eigenvalues

g be quantized in the following way

ay =N (4.21)

where N is an integer. And since the charge operator Q is defined
in (4.4) as the sum of non negative operators, N must be non

negative.

D - The WKB Approximation

Plugging the fields ¢//X %/ and @f()?,-t) into the

Hamiltonian (4.4) and performing the spatial integration we obtain

! A
this Hamiltonian as a function of the operators Q(or A),;;, 63%%}

i

and




A
Note that, since H does not depends on 9 nor Z , it commutes

A
with Q and ;D
Now we will explain what the WKB approximation is : Look
first over the operators
2 2 4
= Q, , + é o=
’e{k;} e . 7z (4.22)
From the commutations relations (4.9a) we deduce that the
eigenvalues of l? .» are non negative integers: /¢ /,,L
| ¢l f
Let us consider the class of states 'N) P !‘L“ 37
(where ]D is an elgenvalue ofF‘) whose charge is very large
when compared with —Z P and 2____ ‘ n—)zm} i.e: states
i k>

where
2 42
N>42 P
and

N >> 45.—_; } i (4.23.b)
Lk

Condition (4.23.b) also implies that

(4.23.a)

o 2 \
>><(a’ b, .
/\/ < {/&j, ) ‘JQLL (4.24)
Then, in dealing with states that obey (4.23) (or linear
combinations among them), we take Q to be the leading operators.
A
The operators P\, a—(k; § and é{/z; } are considered as small

fluctuation about it. In this way we expand our Hamiltonian

A
around Q retaining only terms up to second ordei inF ’ Q\"k'{"-

. This is the WKB approximation.
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E - The expanded Hamiltonian

Due to the fact that Q commutes with ;; ,C%“Z:¢ and ZQV“’
the above mentioned expansion is unambiguous and easy to do. It

is performed in Appendix A, and the resulting Hamiltonian is

H (Q) + ’L/7( ) 2_‘ ;}(4{@6, éz)’i%‘}) ) (4.25)

okl
where
Ho@) = 5 - L é,) & |
i the kinetic Hamiltonian /—/4(;\75‘/\@' ) is given by
A
. H K > Zzn _62;\— (4.27)
and each one of the partial Hamiltonian H{k i is

2 2
Hldg} = _1;%2_ [K bud} + (k-1) O)\pﬂ&‘_l (4.28)

d
We recall that K = :E:..*ai
A=A
The quantization of HO(Q) is trivial. Since we have seen
above that the eigenvalues of the charge operator are =N, the

eigenvalues of HO(Q) must be

EN::E/;{;@ [0/+4— /%r(a

VT £

j o]

(4.29)

The diagonalization of each one of the partial

- Hamiltonians f*ﬂ&} is very simple. Due to the fact the coefficients

of CZ .and é%&} , in (4.28), are positive numbers, we
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. : o

recognize 'fé?% as the Hamiltonian of an harmonic oscilator."“;‘

Then it has a discrete set of eigenvalues: ) ,

E = k-1 I KED

i) m L ﬂm} Ty e 430y "

where 'n{h} is an integer.
A i .
Being P an eigenvalue of 7? , it is obv1uus that the - +°

eigenvalues of the kinetic Hamiltonian f{,(ji@"/ are

._32 ot 4

E (? Z'mN P (4.31)

Then the spectrum of the total Hamiltonian (4.25) is

given by

B0, P M) = 5% 5 [dﬂ-&«(m) Jm/y

T EEN T L <'<:’*"?

Yl ; k1) me I )<>1} me "

1 52
2m N P .

- s

(4.32)

{

The second sum in the above spectrum, the one independent
from the state we are looking over, is the vacuum energy and can
be dropped from the formula. ‘

In order to compare the spéctrum (4.32) with that
obtained in section III by u51ng the DHN formula, it is convenientk

to define, for a given K 2 k.«.  the number
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s ; ém:k} (4.33)

A

So, in texms of nI<and after subtracting the vacuum energy, the

spectrum (4.32) becomes

ey d K’bl.(
E(N,) P2, Miy) = A ["’*‘7“4”(#7 =

2m €2
— A4} | -2
k»1 Mm%E 2mN
(4.34)
=2
When we take the value P = O in the above spectrum it

agrees with that given by Eq. (3.9).

F - The momentum operator

Now we will show more clearly the connection between the
-y

A
operator }% and the sth component of the momentum operator .E;

that is defined by

A d . -
Do~ - (d¥ gwe)id Ok, t)

dXs

(4.35)
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In the Appendix II it is shown that

.
| S ‘s’] =i S 4 OC%ZD:) (4.36)
and
A2
;E:s = fif + (terms of 3th and gth order in

~
a— *
Too ey wed b))

From (4.36) we conclude that the semiclassical
canonical commutation relations invo%xing the c.m position
operatorlgg and the total momentum P are preserved in this
scheme of quantization.

h and 4th order in the non

In (4.37) the terms of 3%
leading operator can be neglected, since this procedure is in
agreement with the approximation done for the Hamiltonian (see

subsections D and E). Then the kinetic Hamiltonian H

1 can be
written as
a2
H = 2 P
2m Q) (4.38)
whereas its spectrum is
2 4 =
E (P)= i
N( ) 2m N : (4.39)

.\ A
where:E is an eigenvalue of the total momentum operator Ii.

G - Semiclassical Locality

In order to complete our quantization scheme we should

say that the commutation relation among ¢9¢?ft) and its canonical
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momen tum .WCC;)t) is given by

¢ 2), E(},t)]' = £ S2-3) + O(hg)

(4.40)

This equation is deduced in Appendix III.

Then, when dealing with the class of states satisfying
conditions (4.23.a) and (4.23.b), the term C:Ei!;ﬁ?) can be
dropped form Eg. (4.40) and we get a local theory. We recall
that the mentioned class of states is just the one for which the

spectrum has been obtained.
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V. CONCLUSION

We succeeded in quantizing semiclassically the nonrelati-
vistic logarithmic model in any number of spatial dimension. Two
methods of quantization were used: (a) applying the DHN quanti -
.zation formula we were able to get the static spectrum of the
model; (b) In section IV it was done a canonical quantization.
There the charge was treated as a leading operator and we
expanded the Hamiltonian about it retaining only terms up to
second order in the non leading operators. Doing so, besides the
static spectrum we also obtained the kinetic part of the energy.

From this kinetic energy (see (4.34) or (4.39)) we
conclude that a state of charge N is the nonrelativistic

description of a particle, whose mass is

MN =mN , (5.1)

that can be interpreted as a bound state of N solitons of mass m.
The binding energy of this N solitons system is given by

the static spectrum (see (3.9) or (4.34)):

EN, Tyy) = 3205 [d+1 - 'ﬂm(--“-j tn V] +

. ;—-—- m Ny (5.2)

Z
k1 mE
Now let us briefly discuss how could the present theory

be turned more realistic. Consider the theory defined by
Lagrangian (2.1) when d = 3 and

. A
~£ o ¢ m

(5.3)

In this case, the states for which
< A
NSt o
a.
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&

have a bindiﬁg energy whose modulus is much smaller than the mass
MN‘ Theh we are describing a sort of nonrelativistic "nuclear
physics" of non rotating particles(ls).

Unfortunatelly - since the model has no fundamental
state - when N is sufficiently large the binding energy may be
equal to (or greater than) the mass My, and the above picture
fails. This difficulty can eventually be remediated if we couple

our field [X,t) to the eletromagnetic field
+ coto w2
% [‘P P Ao=nr ¢ X { ]

Doing so, the model should gain a fundamental state and maybe

(5.15)

. one can recover the description of a non relativistic "nuclear
physics" even for very large values of the charge.
As a final remark we want to say that this method of
considering the charge as the leading operator may - in principle -
be applied to the semiclassical quantization of any theory

invariante under gauge transformations of first kind and

exhibiting solitons.
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Even though this field representation may seem somewhat

artificial, it was designed to satisfy the semiclassical 1'f
canonical commutation relations among the fields (see Eq.

(4.40)) and also to lead to a simple expression for the

charge operator (see Eq. (4.18)).

It is very easy to verify that rotating solitons may be
obtained in Logarithmic Theories with a more complex internal
symmetry. For instance, if we start - in three dimensions -
with a four component field in Lagrangian (2.1) we shall get

solitons having angular momentum.
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APPENDIX A

In this Appendix we do a Taylor series expansion of the
Hamiltonian (4.4) about the charge operator Q up to second order
in the nonleading operators. First of all this expansion is done
about the operator B defined in Eq. (4.4). After this the operator
B itself is expanded around Q.

Before proceeding a remark must be stated: It is knewn
that due to the non commutativity of the pairs of basical
operators (in powers of which the Hamiltonian is developed) the
mentioned expansion is not well defined. We have the freedom of
ordering the operators that constitute a given term in various
different ways. However - at least when we are concerned with
approximations up to second order in the nonleading operators -
each one of these various ways of ordering ammonnts only on a
particular definition of what the vacuum energy is. Here for
practical reasons our expansion will be guided by the following
rule: The development of the Hamiltonian in Taylor series about
the charge is done treating each one of the nonleading operators
as c-numbers. Once the expansion is concluded they turn to be
operators and the piece correspondent to the vacuum energy can
be identified and subtracted.

In order to carry on the above mentioned expansion it is
convenient to introduce an auxiliary field W(§,t) that depends
only upon the nonleading variables.

WIXt) = H’—’ Fw-3)_ &
) i_ \IT +

Z:.(q{k;} + {pq) F (x -
{hijkz1}

. (Aol)
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Note that W(§,t) is of first order in the non leading operators and

A
that it is ortogonal to 6(?" f‘-‘-“)

The fields ¢()‘(: t) and@-’(f, ¢) are given by

Die) = €'C[B 7 (2. 5) + Wi

(A.2.a)
and '
# . + g
‘ v s — Y . -f ~»-~ } oy -
Plie = [B LG+ Wik e
(A.2b)
*-‘ N R .
Let us look over the product gﬂ (X i) o, = that is

a basical ingredient to construct the Hamiltonian.

- - 2 2 . A 7. . o
\’f‘f/)r,twﬂ(x,:'j = B F (k-2)+ W ) WK +
— . A ” Foa e M

f[B BG-2) WiRke) + WiEe B (-3

(A.3)

We are interested in the following function of the fields
(A.4)
I 1

TG = 070 [en(ppa) - 1]

Then we expand T(§,t) about the dominant operator RIS \7» :;_? J
going up to second order in W(§,t) (that is equivalent to second
order in the nonleading operators). We recall that at this step

of the calculations the nonleading operators are treated as c-
numbers. So T(§,t) can be written as

T(x,t) = tg * ty t ty

+ f_‘terms of order greater than

2 on W(x,t) | (A.5) .




