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- SUMMARY

We show that the gound state energy of N

bosons of mass m moving in one dimension is greater than

48
E = - ~3L§ NZ(N&1) J Vix)dx where V{x) is the two-body
16hH oo l o 2
potential. We conjecture that E = ——>% 5 N{N2n1}i{ V(x)dx
h { w00 l

provides a lower bound.

2.

The objective of this note is to combine three
known results obtaining the following theorem: the ground state

of N bosons in one-dimension, interacting via a two-=body

. ER
potential V(xiuxj) such that Vdx = - I (I> 0}, is greater
than E = - —15 12 wlm-ny .

16h

We start by recalling the three known theorems

we shall use to prove the above result.

Theorem 1 - A system of N particles moving in

one-dimension interacting via a globally attractive potential

{1}

has always a bound state. This theorem was proved by us.

Theorem 2 - Of all potentials V(x)} with the same
+00 )
value of I = - } V{x}dx the §-function potential has- the

lowest energy. This theorem is due to L. Spruch{z}. We

repeat the argument here because the proof given by Spruch{z)
is difficult to follow due tc many misprints. Alternatively a

(3]

more general theorem was ' 'proved by J.B, Keller.

Proof of theorém 2 - Let § be the exact normalized

ground state solution of HD-FV.

So
E = <plHy+ V> = <ylHylp> + Jv(x) [ (x) |2 ax .

Let i¢(x0)E be the maximum value of [y{x)|. Then




S L3,
Bz <yingle> - iwlxg) 12T = <hiH o> + <u]vyiws
where WV (x) = -I8{x-xq), thus_conclﬁding the proof.

Remark - V' has been assumed to be purely attractive.
This assumption can be easily removed (see ref. 2). .
We need now-the.fol;owing_théorem due to Hall and

Post(4):

Theorem 3 (Hall and Post) - A lower bound for the
ground'statelof a system of N particles is given by the

ground state energy of the following two-body hamiltonian

2
H 2 N
H = - (N-1) 5o Apz + 3 (N-1). v (/2 92) ’ {1}
where = L (r.-r.)
Py = 172! -

V2

We are now ready to prove the theorem stated in the beginning
of this note. .

Hall-Post theorem is valid in any dimension and
therefore we can say that a lower bouné for the energy of N
identical bhosons moving in one dimension is given by
E = (N-1) E

L b

where Eb is the ground state sclution of

5 :
d N
~—dx2 px) + E_V(x, ¢8x) = B ¢(x)

_n?
2y . (2)

4.
But by theorem 2 we have
B, > - m2N2 1 (3)
o 161
and theréfope
E. > - —ﬂli {N-1) N2 12 (4}
160" - .

thus proving the result.

We now make the following:

Conjecturé: A lower bound for the ground state
energy of N ' identical particles interacting via a globally’

+®
attractive potential [I = - J V(x)dx] is given by the

ground state of N particles interdcting via V6 = —T 6(xi-xj).

Quasi Proof - Let % be the exact symmetric wave

function of H,+V. Then

0

B o= <PlHg+VIY> = <y[Hj[b> + 5i§:ll [ dpé (p}V{p)

. 2 C '
where $(p} = J|$I Ax,pldx , p = (x1-x2} and x stands
for all the other coordinates.

Let Py be the point where 4(p,x) is maximum.

Then



N(N-1)
E oz <plHj[¥> - =57 ¢lp,) I =
. N{N-1) (
= <U|Hy[¥> - =5—= | d{p) I8(p-py)dp =
= <ulugle> - BEET 11 s(p-pg) (9> =

= <elHg U o 19

where

1
u = -3 1 I &(x,-x.,-p.)
2 i3 i 73 70

Se we have proved that the ground-state energy of H, + U

0
+ V.

6,90

provides a lower bound for the ground-state of HO

We conjecture that a minimum occur for

N . . (5)
H0+U‘5’po=0 = HOA-US which is exactly solvable .

1)
2)
3}

4)
5}
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