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ABSTRACT

We investigate the properties of the solutions of a
nonlinear time delayed differential equation (infinite dimension)
as function of two parameters: the time delay T .and ancther
parameter A (nonlinearity). After a Hopf bifurcation pericd
doubling may occur and is characterized by Feigenbaum's &§. A
strange attractor is obtained after the period doubling cascade
and the largest Lyapunov exponent is calculated indicating that
the attractor has low dimension. The behaviour of this Liapunov
exponent as function Of.T is different from its behaviour as

function of A.

fFinancially supported by CNPg.

2.

Rich dynamical behaviour is a common feature of
nonlineax differential eguations and iterations of endamorphi.sms

(1"3). Period doubling bifuraction is a

depending on parameters
common instability found in nonlinear dynamical systems: by
varying a.parameter a stable periodic orbit becomes unstable
and gives rise to a new periodic orbit having twiqe its period.
A cascade of period doubling is observed as a function of the
parameter until a critical value of the parameter is reached
beyond which *chaos" takes place for a certain range of parameter.
The universality of the period doubling bifurcatien
sequence is not only gualitative, it also is guantitative '2—57)

Feigenbaum(d)

has found that the period doubling sequence for
unimodal maps is characterized by two universal constants,
@=2.5029078... and &=4.6692016... . The constant « is the
asymptotic value of the scaling of the transformation while §
is the asymptotic value of the ratio between the ranges'of
parameter values in which successive periodic solutions appear
and then become unstable.

First order nonlinear differential.equations with
time delay may exhibit even richer dynamical behaviour fﬁhéy
are infinite dimensional systém) as they depend on at leat two
parameters. Sometime ago, Perez, Malta and Coutinho(s) proposed

the following equation, with time delay 1,

<& = bN__IN

N~ IN, m

to describe isolated population of Drosophila Sturtevantis flies




3.

v, is the number of flies per unit volume at time t).

- The functions b{Nt) (birth rate per capital and
m{NE) (death rate per capita) have the general behaviour shown
in figure fa and the functions f(N)=b(NJN, and g) =mEIN,
shpuld_héve the behaviour in figure 1b. In terms of f(Nt) and

Q(N£] équation (1} becomes

IR L S (2)

Sufficient conditions(e) for the stability of the equilibrium
population N(£{H} =g(f)} are obtained from a linearization
ézocedure around this equilibrium point. Violation of these
sufficient conditions proﬁides necessary conditions‘e) for an
oscil;atéry behaviour of the population. It was established in
.rgferénce,e fhat as.a,the.timerdelay parameter T is varied

the éolutioh‘ N beccmes unsﬁable via a Hopf(B) bifurcation at
a value Ty aﬁd giﬁes.rise td an oscillateory solution {this

type @f behaviour was observed experimentally by Tadei and
,ﬁou§é§I7)}.
' The value Ty (6}

derivative with respect to Nt)

is given by (the prime indicates

8

T, = ’ {3a}

H

AT E) % - (gt (])) 2

with 8- given by

vy Y 2 .
o = sin”l |- /1 - [i_({if-l] . Fco<T . {3b)
£7 (W)

Eguation (2} has been numerically solved for

g(Nt) =Nt and the following two functions f(Nt):
f1(Nt) = As:LnNt ,
(4}
f_2(Nt) = Nt(A-—.O‘i Nt) .

The result of the calculations for several sets of
parémeters {a, 1} confirmed that the equilibrium solution
undergoes & Hopf bifurcation at the parameter wvalue Ty
an oscillatory solution. Continuing the variation of the

generating

parameter T beyond Ty ¢ the oscillations seems to have a
singie frequency for a certain range of T but, in general, it
starts to dévelop a second bump at certain parameter value
suggesting the presence of period doubling phenomencn.

In this work we present the results of a Fourier
analysis of the solutions of equation (2) (with g(Nt) =Nt) for
f1 and fz given in (4) in the following cases:

i) fixing parameter A and varying the time delay T;
ii) fixing tv and varying A4.

From the numerical analysis it is observed that
fixing 71 and varying A, pericd doubling always occurs after
the Hopf bifurcation but when A is fixed and T varied, there
exigts a minimum value A::Amin for period doubling to occur

after the Hopf bifurcation., For &< Amin as T 1is increased




beycend T the Fourier analysis of the sclution shows that

there is always a single dominant frequency present and the
pericd T of the oscillations is approximately equal to the
corresponding (27) value (see figures 2a and 2b). For function
f1(4) » A ®£2.70 and for f2(4) P 3.25.
Results with T varying are displayed in tables ia

.and 1b for two different values of A ({both >Amin) . The values
Tk given in the 3rd column of these tables correspond to the
values of 1 at which the kth period doubling occurs (see the
power spectrum shown in figures 3a and 3b and curves N, XN

t t-T
in figures 3¢ and 3d). The ratios,

T - T .

T _ k+1 k

S = T -wT. (5}
k+2 kK+1

{given in the 4th column of tables 1 and 2) are very close to

the universal {asymptotic) value &= 4.6692016...(4) (in fact

we should have § = £im 6;); Thé value of 1t at which "chaos"
ke

étarts is 1, and is given in tables 1a and 1b for each 2
value considered.

Results with A varying are given in table 2. After
period doubkling is always cbserved

H
and occurs at the values Ak given in the 3rd column of table

the Hopf bifurcation at &

2. The ratios,

A e T &
6]{ = W ' (6)
xe2 T Pran

are given in the éth column. Again, we expect that 6=Lim 6A.

ko k

The values A_ given in tables 2 correspond to the values
at which "chaos" starts.

It should be remarked that the critical values
(A, and t_) were determined using the asymptotic § value
(see figures 4a and 4b).

The word "chaos" has been employed up to now without
specifying its meaning precisély. We have adopted the most
widely accepted concept at the moment: a deterministic system
is chaotic if nearby points in phase space separate at an
exponential rate on average. This property of sensitivity
on initial conditions gives rise to large positive Lvapunov

(9)

exponents The largest exponent AL (also called charac-

teristic exponent) is used to characterize the chaos. Other
useful and related properties are positive metric entropy and

nonintegral dimension(10}.

In figures 5a. and 5b we show the
kehaviour of AL as function of A and T respectively in the
case of function f1 given in (4). For t(A)} in the interval
TH<T<T¢” GAH<A<AQ), )\L vanishes and for T<TH (A<1!H)

RL is negative. Figures 5 are qualitatively reproduced if f2

is used instead of f1 (or any function having the same charac-
teristics of f1 and fz).

From figurés 5a and 5b we see that the behaviour of
XL as function of T- is completely different from the behaviour
of lL as function of A and this arises the question: what is
the behaviour of AL for infinite dimensional systems depending
on a single parameter? Also, what is the difference between the

chaos for parameter A varying and the chaos for parameter =

varying? In order to clarify these points a study is beinag made




.

concerning creation of information {metric entropy} and the
dimension of chaotic attractors for the equations considered

here.

(1
(2)
(3}
(4}
(5}

(&)
(7}

(8)

(9)
(10}
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TABLE CAPTIONS

k) £=¢£ A=3.3 fixed,

-
-~

Takle 2 = 2a) £=f

—_
-
~1
n

2b) £=f., T

“Tabie 1 - la) £=£f,, A=4.0 fixed,

T

T

5.0 fixed , A

H

H

H.
30.0 fixed, AH= 3.005.

1.209.

H

0.965 .

= 2.360 .

FIGURE CAPTIONS

Figure 1 - 1a) Birth rate per head b{N} and death rate per head

Figure 2 -

Figure 3 -

Figure 4 -

Figure 5 -

th)

2a})
2h)

3a)

3b)

3c)
34)

4a)

4b)

5a)

5b)

m{N) . The point ¥ is the eguilibrium point,

The general behaviour of f£(N) and g{(N).

Power spectrum for f=f T=50.0, A=3.20.

2I
x(t) x x(t-7)} for f=f2, t=50.0, Aa=3.20.

Power spectrum for f= f2 , A=4.0, and

'r.[<'r = 2.85<12.

Power spectrum for f=f A=4.0, and

2

T,<1t = 3,16< 1

2 3-

Ntht—r for f=f2,

NoxwW_ . for £=¢

A2=4,0, and 'c’<'r = 2.85(12.

A=4.0, and T 3.16< T3

27 2

<t
Power spectrum for A=2.90> A, and T1=5.0.

Ntht-'c s A=2.90 and T=5.0.

Largest Lyapunov exponent xt for f= f1 B
A=3.3.
Largest Lyapunov exponent xA for f£=f ] .

T=_5_.0 .




TABLE 1a

TABLE 1b
T T Ty 6;

1.00 3.1

1.80 5.1

T, 2 1.8719

2.0 11.1

2.36 25.5 T, & 2.2792 8, = 3.56
2.405 51.9 T, = 2.3937 8p .= 5.02

E . o

2.419 104, 3 Ty, = 2.4165 > T = 2.42

T
T T Ty ék
1.2100 3.6
2.4000 6.4
2.5000 6.6
1Ty, = 2.5111
2.6000 13.6 :
3.0900" 15.8
T, = 3.1000 §y = 4.730
3.1060 31.8
3.2240 33.6
T4 = 3.2245 §z = 4.560
3.2280 64.6
3.2510 ' 65.0
- Ty, = 3.2518 | 6, = 4.550
3.2525 133.2
3.25783 242.6 15 = 3.25782 o ¥ 3.26




TABLE 2a

TABLE 2b
A

a T A &3
3.2500 61.8
3.5000 123.2 A, = 3.4396

: ~ 4.659
3.5500 245.8 A, = 3.5449
“ -

3.5700 491.6 A, = 3.5675 A_=3.57

A
A T k k
2.500 11.8
2.7505 11.7
A1 = 2.7501
2.8400 23.3
2.8500 46.6 Az = 2.8411 6z = 4,29
2.8670 93.1 Al 2.8623 §, = 4.08
2.8680 186.2 Ay 2.8675 s = 4.75
. ¥+
2.86885 372.5 As = 2.86855 A = 2,87




FIGURE. 1a

FIGURE 1b
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