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1. INTRODUCTION

The description of nueclear structure properties
in . terms of nucleon degreés of fréedam interacting through
realistic twojbody potentials develops around an accurate
lowest order description given in the form of an effective

1

 mean-field theory. The relevant mean-field itself is,
haﬁeyef, necessarily a rather compliéated theoretical construct,
'dde to spepifipfprbperties of the realistic nucleon-nucleon
pbtential. Essential short range correlations are dealt with
in terms of Brueckner's G-matrix. The use of the G-matrix
as-an effective interaction for the definition of & self-
Consiétent mean-field requires moregver a careful consideration
of its density and enérgy dependence, implying need for further
renormalization for the construction of the effective mean-

field. This can be rather accurately expressed, eventually, as

the Hartree-Fock (MF) mean-field of an effective, density
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dependent, two-body interaction,'wﬁich is taken aézindependent
of energy[z].

The complicated nature of the effective mean-field
also reflects itself on the description af the sihplest
excitations of finite nuclei. In fact, for the description
of single-particle {hole) states in gdd-A nuclei and of
collective particlie-hole vibrations of even-A nuclei, careful
consideration of single-particle mass coperators and their
byproducts (such as the sc called induced interaction) is
required. This carries the description béyond the pure single-
particle or particle-hole levels in a context complicated: by
the circumstance that the underiying effective mean-field
already embodies certain correlatidn effects, albeit in
approximate, energy-averaged form[B]. -

In what_follows these matters will be approached
frem the point of view that became fashigcnable after kinetic
phencmena on the nuclear scale were brought into_eQidence by
the study of deep-inelastic collisions between heavy—ions{a].
By carrying the general descriptien of one-body observdbles
beyond the mean-field approximation one identifies those
correlation terms responsible for kinetic phenomena and, at
the same time, those involved in the renormalization aof thé
G-matrix mean-field in finite nuelei. The procedure described
in refs. [5-7] is reviewed, leading to a kinetic equation for
the one-body density. This will in general contain an effective

mean-field including a dispersive camponent, in addition to a

collision term which gives rise to equilibration and transport




phenomena. By sorting out collision effects and identifying
the effective interaction which is responsible for them,
estimafes-for transport coefficients and for the damping aof
zerg sound- are obtained in terms of available Fermi liguid
resuits. These estimates point once maore te the inadeguacy
of hydrodynamical (local equilibrium) descriptions of collec-
tive nuclear modes and indicate that collisional damping in
large nuclei may account for one or a few tenths of the

observed widths.

2. KINEEIC EQUATION.FOR: THE ONE-BOODY DENSITY

A complete dérivation is beyond the limits of this
presentation, and has been_given~else§here[5’6]. The exact
effective dynamical law for the.one-body density is best
written in Licuville space, where the time displacement
operator is a one-bedy livouvillian (super-)operater ﬁ(t)}

The time-evolution equation is then obtained in the form
A A A
Lr(é) = Qlfiffﬁ) v m(t) (1)

The liouvillian §(t) is in fact a nonlinear
functicnal of the one-body density . It splits as Eo(t)+ﬁ‘(t)

with

_ 'QA\-btﬂﬁm = [@L[ﬁj, )

where h is the HF hamiltonian associated with A(t) . A many
body hamiltonian consisting of a kinetic energy term plus a
two-body potential is being assumed. The two-body potential
will be discussed shortly. The remaining part of _E(t),

ﬁ‘(t) » 1s a complicated object containing the effects of

timg evolution of correlations in the system, It plays the
role of a geperalized, non-markovian collision term, so that
eg. (1) looks in fact as a kinetic equation. The simplest

approximation to this term will suffice for the present

discussion. It appears as
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Here an explicit'single-particle representation has been
intreduced. The basic aone-body state vectors have been chasen
for convenience as the orthonormal time-dependent patural

orbitals (eigenvectors) of H(t), i.e.
A . |
["“ - Zh,.lmt‘(’)“’()‘lt , (5)

pl(t) being the associated (time-dependent) occupation
probabilities, and ql(t) = 1 -ph(t) . The nonlinearity in
p is-thus_explicit in eg. (3).

The remaining term of (1), £{(t) , vanishes if one




starts with a determinantal state at t=0[6].

in general it~
is also a nonlipear functional of § which contains effects
of initial (l.e., at t=0} correlaticns. When studying e.g.
the response of the system to an external perturbation, this
term is required to ensure the staticnarity of § in the
absence of the perturbation but in presence of the correlation
term Elb, which wouldrgive rise to nontrivial evelution of
[el

an uncorrelated initial state In this context, and to

the same approximation used in eqg. (3}, it =zppears as
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Here the e&'s are HF energies such that the time evolution
—ieAt
under A[H] 1is [A>y = e PEF

Gne of the conveniences of the natural orbital
representation .appears in full light when one analyses eqs.
(3) and (5) as contributions to the time-derivative of eq. (4):
off diagonal (A#u) terms correct the time-evolution of the
natural orbitals themselves, while diagoral {l=y) terms
relate to the time rate of change of the eigenvalues ph(t),

a nan-unitary effect. Since 'Zé =0, moreover, this particular

A
nonunitarity is probability consérving[SJ.

3. THE STATIC EFFECTIVE MEAN_FIELD

Consider now stationary solutions of eg. (1).

Using single-particle energy phase factors for the time

.dependence of the 1A>t , and setting. t’'=0 in pl(t') to

perform the time integral in (3) one obtains (X4u only)
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which corresponds precisely te what is obtained by varying an
energy functional involving the G-matrix[zl with obvious
changes related te the particular structure of the G-matrix

in that case. Pictorially, the right-hand side of eq. (7)

o -

An additional term \{ZD also appears, together with

appears as

the first graph above, when renormalized ocecupation proba-
bilities from eq. (5) are used in A[A] .
At this point it is nacessary to discuss the

nature of the t{wo-body force - ¥ more explicitly. It has

been thus far assumed toc be smooth, in the sense of producing

A



a reasonable enough HF field. In order to accomodate strong
short range repulsion, the preceding argument can still be
carried through after replacing ¥ by an effective object,
satisfying in gemeral a Bethe-5alpeter equation, which reduces
to ladder sums in the static limit., It can be obtained£9}
by expansion and suitable ressumation of eq. (3.17a) of ref.
[51.

Through eq. (7} the generalized collision term of
eg, (1) becomes thus related to density dependence of nuclear
mean-fields. Density fluctuations give rise to mean-field
fluctuations through an interaction ):::( between guasi-
particles (in the sense of Landau) which can be explicitly
obtained by taking functional derivatives of the effective

[2] -

mean-field

The complete stationarity condition for ﬁo can

now be written as

A
EA T

d= 0 = [Egaplebery,

o

(8)

where the effective mean-field hamiltonian R includes the
correlatian corrections discuésed so far. The last, nonunitary
term still contains the bare interaction 7. Since the

comutator term has. .vanishing diagonal elements, this diagonal

term must aiso be made to vanish, This is what is accmmﬂishgd,
in particular, by the initial correlations term. t as written
in eq. (5}). In terms of the ground state energy, the effect
of this term in the case of a two-body potential ¥ " is to

add the second order correlstion energy te the HF énergy.

4, NDNfSTATIDNARY STATES: DISPERSION AND COLLISIONS

As a result of the non-Markov nature of the
correlation term, the chief modification affecting the above
picture when one deals with non-stationary states is that the
correlafion contributions acquire a dispersive character. In
particular, the linearized dynamics of small dispurbances
from eduilibrium, p = 60-rﬁﬁ , where &p is assumed-tp.have

a harmonie time dependence, is described by the equation

N
. A ~ AT A
55 (L sp (31575 )¢ SUBHY 52
"%F ‘[ﬁorgl’]*[gx\ﬁ?a[’a + == lns(’- (9)
e 2P |
When evaluatinmg the memory integral appearing in the last term
{(cf. eq. (3)), the time dependence of &5 will modify the
energy phase factors. In the case of a harmonic time-dependence.

of freguency w, one essentially collects an additional factor

exp-iw(t-t') thus causing a shift of %w e.g. in energy

denominators (cf. eq. (7)) and energy conservation §- functions.

In order to illustrate this, and in preparation



of the application in sect. 5 below, consider the case of a
wegkly inhomogeneous perturbation of an extended, homogeneous
system. In this case it is useful to represent eq. (9} in’

-momentum space, where § is disgonsl and &% is strongly

0
peaked around its diagonal. Following usual practice, it is
convenient do express &8 in terms of a quantity ¢ such

that
P-—P“F (10)

The linearized last term of eq. (9} contains several contri-

butions of similar structure. The K, & Matrix element of

a typical-contribution at time t appears as

- =

jcwth BTk o3k k1% o MF“"F““ )
) LUl )
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Co(11)

Assuming harmonic time dependence for {(t') and extracting
an overall exp-iwt phase one gets an additional term w(t-t')
on the exponent of the energy phase factor. The time integral

_can now be performed with the result

L (lembp )y
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which, for large t reduces to a principal value cperator
plus a 6-functiaon part. While the former is the dispersive
counterpart of the correlationtmfrections to the mean-field,
the latter emerges with the characteristic structure of the
(llnearlzed) dlSSlpatlve Uehling-Uhlembeck collision term
with the energy conservatloﬁ §-function as modlfled erlgumlly

by Landau[1o].

5. FERMI LIQUID ESTIMATES OF COLLISION EFFECTS

The discussion of the preceding section indicates
that one may try and estimate collision effects in nuclei
extending the treatment of ref. [11] by adding the collision
term to the limearized dynamical equation. - A crucial point
for this lies in the regalization that different Landau
parameters are involved in the description of mean-field
fluctuations and of tramsition probabilities in the collision
term. In fact, in the case of the former one must account
for the shielding effects of medium correlations, while for
the latter a G-matrix residual interaction should be used.

Contact with the standard treatment found in the

[12]

literature is made as usual by taking the wigner transform

of eq. {9} in the long wavelength limit. Assuming an equilibrium

Fermi distribution § with temperature 7T, and using the

0
Landau parameters FO‘ Fb, GO and Gb of the G-matrix residual

interactions of, ref. [13] one obtains for the shear viscosity




L1,

coefficient n the results shown in Table 1. Note that

w—+0 1in the guasi-static sifuation involved in this case.

Table 1
Interacticn Fy Fe G, Gp (302 Mev tn2) | n1? (Mevistm™?)
{Ref. [13])
_20
HM3A -1.12  0.28 0.17 0.73 1.1 x 10
_20
HEA(NR) | - 1.17  0.32  0.20 0.63 1.2 x 10
-0
HEA(R) -0.72  0.42  0.12 0.63 2.0 x 10

The damping of zero sound, on the other hand, can
be described in terms of a width [ defined as the imaginary
part of the frequency variabile. This‘has been obtained using
fo ~ 0.2 as the only Landau parameter associated with mean-

field fluctuations, and by converting the temperature de-

pendence to a frequency dependence simply by multiplication

by the correction factOr[1OI
3 Fa
be (o) = (G55)
2n T /o 2n '

Results for the indipated residual interactions, obtained in
the approximation of a single relaxation_time[IZJ, are shown

in Table 2.

2.

Table 2
2 =1
Interaction {(Ref. [131} r/(hw)® (Mev™ ")
) =3
HM3A 4.6 x 10
) -3
HEA(NR) : 4.5 %18
=3
HEA(R) . 2.6 x 10

6. DISCUSSION

Differenees in the results obtéinéa for each of
the residual interécﬁiqns ilLustratesdsenSitivity'to thé
Landau parameters. The values shown for the shear viscosity”
are about.three orders of magnitude (T~1 Mev) large; than

the fitted value n = 1 x 10722 Mevs fn™? from phenomenological

[1&}_ This

hydrodynamic treatments of nuclear collectivity
is eonsistent with the weakly collisional ‘character of the
nuclear fluid, which invalidates local equilibrium assumptions
for the treatment of nuclear collective motion.

The Qalues obtained for thé widths I', on the
other hand, though smaller than typical observed widths of
2¢ro séﬁnd statés, indicates that coilisional effects are not
negligibly small. WNote that the opposite conclusion would.
have been feached had one used anything like F

0—-0.2 in the

collisional transiticn probability. This would in fact: have
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reduced the value of I by roughly two arders of magnitude.
As for possible additianal sources of damping, oné would
have clearly to consider the dispersive nature of the
dynamical medium effects. On the other hand, the semiclas-
sical approximation inherent to the Landau limit eliminates
non-collisional dispersive effects which appear in the quantum

treatment of zero sound[15}.
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