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ABSTRACT

The limiting total excitation energy of 2°8pb is
caleulated using the nuclear grand partition function, A
temperature dependent shell-model putential and an energy-
dependent nucleon-nucleus optical potential are employed o
generate the temperature-dependent bound single.particle energies €
and the continuum level density of{e} respectively. Levinson's
theorem is used Lo make the relevant change in pf{e) due to
the T-dependence of. eK(T) . The calculated limiting total
excitation energy is about one half of the one recently obtained

by Dean and Maosel.

*supported in part by CNPg and FAPESP,

March/1987

The temperature dependence of nuclear properties has

1'9). This stems

been extensively discussed in recent years
partly from the now available heavy-ion accelerators that can
accelerate HI beams to intermediate energies. This mzakes
possible the study of the nuclear equation of state in a region
of excitation energiesand densities clese to what is believed to
correspond to a phase transitian reginnsl - Much hﬂx&estiﬁs aisc
arisen from the potential possibility of extending temperature-dependent
Hartree-Fock (TEMDMF) calculations . to these excitatien energies
and temperatures.

An imbortant guantity which enters in any nuclear
fragmentation calculation is the limiting total
excitation energy, above which nuelear matfer is found frag-
mented into small pieces. Several conflicting estimates of
this excitation energy have appeared in the literature. 1In
particular the approach adopted by Dean and Moselg), seems to
be, at least in principle, the more general one since it relies on a
fundamental property of the scattering system, namely Levinson's
theorem. However, the limiting fragmentation energy they calculated is
rather high (~ $2 Mev), as compared to the one found in statistical
calculations of nuclear fragmentation. The letter seems to be quite
successful in pinning down the major characteristics of the

10)

phenomenon . We shall present below arguments to

show that the discrepancy lies in the use in Ref, 9), of a




temperature independent mean field empioyed in the calculatiaon
of the discrete part of the nuclear partition function.

The purpose of this letter is therefore the eluci-
dation of the temperature varying mean field in the determination
of the thermal propertiés of nuclei. This, of course, is an
obvious fact within the TEMDHF theory. However, in the context
of the calculation of Réf- 9), the temperature-dependence af
the mean field is found to be a major qualitative and quanti-
tative addition. In the following, we first present a shork
summary of the Dean-Mosel model followed by an account
of the modifications we develop. The calculations are then
performed with a temperature-dependent shell-model potential
and -an energy-dependent optical potential madel, fer the
generatized mean field at negative and positive nucleon energies.

The resulting Iimiting fragmentation temperature is found to

be almost a factor of %'lower than the one obtained by Dean and
Mosel, in-accordance with empirical findings.

The starting point of our discussion is the grand
potential which, when .counting both discrete and continuum

states;, takes the form

QN___.-—.'-%, L}_EL toerp (%= fEY] |

(1)
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where [ is the temperature, o is the chemical potential

(through which the number of nucleons in the nucleon is fixed)

B = % » €y the shell-model single particle energies,
€ the positive coentinuum nucleon energy and gnucl(E) the
nuclear continuum level density. This*last guantity is

usually expressed in terms of the nucleon elastic scattering

; 12)
phase shift, Sg,j as

1 ' A8 i
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The phase shifts 62 j are generated from a realistic energy-
r
dependent optical potential. Clearly, to be consistent, the

bound single-particle energies should be

EK,
generated from a temperature-dependent shell model
interaction. 7This latter fact was not considered by Dean and
Mosel, as they employed the T = 0 shell-madel potential usually
used in nuclear structure calculations.

The allowance of temperature-dependent bound
single-particle energiés implies qualitative changes in the -
derived thermodynamical quantities, such as the excitatiaon

energy and the entropy. The relations which fix an(T) .

ap(T} and E , are

2 _[-s2 - N >
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B‘XP where "r, (T) 1is the rms radius for the S5III interaction taken

. o _ ) from table 3 of rRef. 4). If the central nuclear density °s
a ]:—_ﬁ L2 el —l = N : . () is assumed@ to remain constant, then the potential deﬁth VO(T)
{3 should decrease with temperature in order*to conserve the

From {3)-({5) we construct the entrOpy funétion _ nuclear number

st_._an"a(Pz'h/}E'_’@QhucQ. {6)

In order to evaluate the energy and entropy we need

\/a(_r) = QA'(O) —-A(T) v (0)

to specify our shell model and optical model potentials which f&(t)) {9

~ generate e (8) and the phase shift ' (eg. (2}}.
In the shell-model calculation we have employed for
the nuclear interaction a Woods-Saxon form with temperature
dependent depth and radius, namely
] where
(1)
V(1) =V (T X [ r—Rem ]
w7 (7)) 44 + exp —Zc )
: o
ard the usual Thomas form for the spin-orbit interaction. In order to 2
A(T) = f v dr |
construct the temperature dependence of the potential we proceed T, Y — By(T) - (1o}
i""QXP — Xy ]
as follows. The nuclear radius is given by c 065 '

L,
R(T) = 1-24 A Tl [¥yco) ®




7.

The neutron and proton depths at T =0  are given by 63.01 MeV

and 47.56 MeV in accordance with the values taken by Dean and

_The eigenvalues EK(B) are then generated from

Mosels}.
these deependent potentials.

The contimnm level density g, ., {e] was constructed using Eg. (2}

}

with the energy-dependent Wilmore and Hodgson optical potaﬁial13

The & that appears in Eq. (2} is identified with the real

2,]
part of the complex nuclear phase shifts.

At this point we remark that since the shell-model
potential is temperature-dependent, the number of resulting
eigenvalues that correspond to bound orbitals will also be
T-dependent. This implies that there must be a corresponding

change in g (e} . This is so, since Levinson's theorem

nucl

implies that the total number of states (both bound and continuum)

in a potential does not change with the change in this potential.

This conservation law states

ba
Ny +J\gce)&e =0 =N_+N (1n
Puct . : _ B ¢
-] S
Thus if N, changes with T, No ~must do exactly the same,

B
with opposite sign.

In Figs. 1 and 2 we present our caleulation of the

5(1) and total energy per particle E (1)
A A

entropy per particle

as functions of the nuclear temperature.

s(r)
A .
E(TYh = - 16 MeV namely, E*(Tg/h

We see clearly that the curve for reaches a maximum at

T = 6 MeV at which point
attains the value 5.5 MeV, almost half of that obtained by DM.

This value of the limiting tdtal excitation energy is
slighly higher than the one found in statistical fragmentation calcuhﬂjcnsll
(E¥/A = 3-4 MeV), but smaller then the one found by Dean
and Mosel.(E*/A ~ 8,2 Mev).

In conclusion, we have calculated the limiting
total excitation eneréy of a finite nucleus, using single
particle levels obtained from a temperature-dependent shell-
model potential (for the bpund orbits) and an energy-dependent
nucleon-nucleus optical potential for the continuum states.
it is found that the inclusion of the temperature dependence
in the SMP, not considered in Ref. 9), results in a value for
the limiting total excitation energy which is 50% smaller than
Qur result is much closer

the one obtained by Dean and Maesel.

to the value of E*/A  found in recent fragmentation calculations.
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Enlropy -per parlicle vs nucloar Lemperature
(seeﬁtexL for delails). Dashed curve,
neulrons, dolled curve, protons and full

curve nucloons.

Total. enerngy. pce-particle . vs-nuclear temperalure

{mee U'igure 1 for explanation ol cuhycmi.




ENTROPY/NUCLEON

ENERGY/NUCLEON (MeV/A)

1 2 3 4 5 67 8 9 1
TEMPERATURE  (MeV)

1.2 3 4 5 6 7 8 3 10
TEMPERATURE  (MeV)



