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ABSTRACT: In MHD symmeciric systems the equilibrium physicel quantities are dependent

._tm twe variables ondy. In these cases i is possible o find a magnetic surface function that

: Kas the same symmetry. Under the assumption that the metric determinant is also

.'iridep:éndeﬁt of a third, ignorable coordinate, ¢ gemerol MHD equilibrivm equalion in

ctirvilinear coordinates is deduced. This equation is specially useful when non—orthogonal

0 generalized coordinates are used.
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1 =INTRODUCTION

Tdeal magnet.bhydmdjnanﬁcs (MHD) is the most basic single—fluid
model for determining the macroscopic equilibrium and stability properties of a plasma
(Wesson 1978, Freidberg 1982). There is enough evidence that this model describes how
magnetic, inertial and pressure forces interact within a perfectly conducting plasma

(Bateman 1978, Goedbloed 1979).

The ideal MHD is used in magnetic fusion to describe static equilibria
and - to infer convenient magnetic geometries for cornfinement. In symmetric plasma
systems, the field lines lie on a set of closed nested toroidal magnetic surfaces. These
surfaces can be determined by solving the MHD equilibrium equation {Greene and Johnson
1965, Grad 1985).

Equilibrium equations for different symmetric plasma systems have
appeared in the literature (Freidberg 1982). In particular, the well-known Grad—Shafranov
{Hain et al 1957, Freidberg: 1982) equation is writter in terms of orthogonal coordinates
and describes axisymmetric toroidal equilibrium.

In this article, a general MED symmetric system is described by a
magnetic surface function with the same symmetry as the considered equilibrivm. This
function is obtained from a general equilibrium equation in curvilinear coordinates. With
this equation, once the curvilinear coordinates are chosen, the equilibriumn equation in any
geometry can be derived. This is specially useful when non-orthogonal generalized
coordinates are used.

The general curvilinear coordinates used in this article are defined in
section 2. A symmetrie transversal magnetic flux ¥ and a funciion I that determines the
transversal eletric current are introduced in sections 2 and 3. In section 4, a general

equilibrium equation relating the equilibrium pressure to the surface functions ¥ and I is




derived. Finally, systems well-known in the literature are considered as examples and the
equilibrium equations in terms of conventional toroidal coordinates (Appendix A), helical
coordinates {Appendix B) and natural coordinates {Appendix C) are derived from the

zeneral equation obtained in this article.
2. CURVILINEAR COORDINATES

In symmetric plasma confinement systems, all the equilibrium functions
. l_:_aving_ a.physical meaning are dependent on two variables only. Curvilinear coordinates are
named u,, u, and vz The surfaces u; = ¢;, where ¢; is a constant, are coordinate surfaces. A
coordinate curve uy is a curve along which u; and u; (i#j#k) are constants.

The coordinates u, and u, are chosen in order to have the magnetic
axis of the system coincident with a coordinate curve uy and u, is a transversal coordinate.
ug. will be an ignorable coordinate; longitudinal directions are given by coordinate curves

ug. I plasma confinement problems we have, usually, periodicity in u, and v, The

following periodicity
ug = L{uy, u,) 1
is assumed.
An attempt i3 made to use the notations most familiar in the
literature.

The covariant basis vectors are given by

ei=§fl—i . ' (2)

where e; is tangent to the u; curve and the coatravaria.nc basis vectors are defined by
el =Vu; 7 (3)
where ! is normal to the u; surfaces. u;, uy a;nd ug are taken in order to satisfy
e, =g e xe (4)
for any cyclic permutation (i, j, k), g is the determinant of the co\.rariam metric tensor g;;.
3. TRANSVERSAL MAGNETIC FLUX
Define L ¥{u,, u,) as the magnetic flux through a coordinate surface

u, which extends from the magnetic axis to 2 coordinate curve u; and limited by

0 < ug < L. On the magnetic axis, u, = a and

B=EBle;. {5)
Then:
u, L
Ly =J du'lJ’ J& By, 6)
a 0
from which, it folows:
L
gg’_l:_i_ J'O,/gB'-’dua. : (7)




- Takdng account of the cquation

and agsuming B! = 0 on the axis we can derive from expression (6):

L
o 1
%E:_TIO@BI dug (9)

If yg B! and & B? are independent of uy, we find an expression for B

in terms of ¥:

e &
B= w— xVF+B; —. 10
8az * 3 (10)
¥ = constant represents a magnetic surface because
V¥ .B=0 : (11)

as can be seen using (10).
The magnetic flux can also be expressed in terms of the vector

poteatial A using Stokes theorem:
1 L
Y=y JO Agdug . (12a)

A; is assumed to be zero on the axis. In symmetric systems:

W (u, ty) = —Ag(u,, uy). {12b)

The only restriction to the gauge of A is in order 10 keep the same symmetry as the

physical quantities.
4. CURRENT DENSITY
The current density satisfy the equations
VxB =y and VJ=0 (13)
On the magnetic axis J' = 0. These equations are similar to the equations for B:

VxA=B and V.B=10 (14)

and also B! = 0 on the axis.
Similar considerations must yield similar results. Let us define a

funetion:

L
PRE— Jo B, du, (15a)
which is an expression-similar to {12a). In a symmetric case it would be:
ol = —By(uy, uy)- {15b)

In this case, on the axis, By is not zero.

The transversal current is given by:

r [l t
LI-I, = J ¥g J° du, dug. {(16)



Thiy expression can be compared to {6). Thus, considering the symmetry argument, the

cirrent density is expressed in terms of I as:

BB S (17)
J= X VI J—
833 x S g3

-/, afi.expression similar to (10).
PRESSURE. EQUILIBRIUM EQUATION

The MHD equilibrium theory, with scalar pressure P, considers the

equations:
VP =JxB (18)
Cand
VxB= gk (19)
ILP and ¥ satisfy the telations:
B.V¥ =0 , B.VP =0 (20)
I.vp=0 1.vi=o0, (21)

what means that I, P and ¥ are surface quantities.

Using (18) together with (15b) and (17) a relation between these
surface quantities is found:
Iy B

3
VWP=——VF+— VI 22
833 833 22)

J; can be taken from (19) and By = —g,l. Substituting them in (22) and using (10) we find

the firal expression:

Sazrg , B a Bi3
* - — 2 - — Ag
(8% ¥) W = —pty 845 TP BT 1= [?m_l( ) — 5 )]v
(23)
where
iz [ g AE av &
AL S e 1 12
arve G A e ) ¢
g _{E_ o O 2 G
Qg g33 (s 3“1+g2 Buz)} @4

1 and p are functions of ¥ only. Therefore, whenever V¥ # 0, the expression can be

simplified to a scalar equation:

Baarg . Baa. g B3
¥\ 2o e 21 _
AW = gy gy P gig L1 4+ il v ['au—l(gss) ;;1,—2(333)]

(25)

which corresponds to the Grad—Shafranov equation (Freidberg 1982). Here the prime
indicates differentiation with respect to . The quantity mg,sP + p2 I2/2 must be
continuous through a surface where VW = 0.

The components of the magnetic field are expressed in terms of ¥ as:

BB =g |
and . (26)

pt _ _ 0¥
@B‘——m.
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The equation (24) can also be written as:
Vass
A¥ U =V20 -V . 27
Bas (27a)
or
Vo

A*U=zp, V. (—). 27
215 T () (270)

The pgeneral equilibrium equation cam be specially useful when
non~orthogonal generalized coordinates are used.

In Appendix A toroidal pinches with axial symmetry are considered
and the equilibrium equation in conventional toroidal coordinates (Shafranov 1960) is
derived from equation (13). If the system presents & straight helical symmetry, the
coordinates u; = r, uy = #— az and uy = z can be introduced, where « is the pitch of the
helix. Using (23) the equilibrium equation as found in the literature (Freidberg 1982) is
deduced straightforwardly. In these systems it i3 very likely to appear discountinuity
surfaces where V¥ = 0 (See Appendix B}. The well-known equilibrium equation using flux

coordinates (Freidberg 1982) is obtained. also,very easily in Appendix C.

6. CONCLUSIONS

In this article a general MHD symmetric system has been considered
and a magnetic surface function, with the same symmetry, has been introduced to describe
it. An equilibrium equation satisfied by this function is deduced in curvilinear coordinates.
This equation is a generalization of several particular MHD equilibrium equations valid for
the equilibria considered in the literature. Thereflore. given the curvilinear coordinates, the

equilibrium equation for a magnetic surface function. in any geometry. can be derived. This

10

is specially usefu! if non—orthogenal coordinates are used. As examples, in the appendices,
equilibrium equations well-known in the literature are obtained from the mentioned .
general equation presented im this article. The procedure followed in this paper resembles
the one used to deduce an equilibrium equation for incompressibie inotational steady fluid

flow (Sparenberg 1939).
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APPENDIX A
Toroidal pinch with axial symmetry

The equilibrium equation using conventional toroidal coordinate

system (Shafranov 1960) (see Fig. Al).
g=4, Ug =W, Uz =

' .'is obtained in this appendix. The eoordinates are defined by:

Ry sinh¢ Ry sinw
I'="Cosh €= cosw i &= osk € - oosw

where t, z and  are the polar cylindrical coordinates and R, is the major radius. If E=4¢

defines the toroidal surface, then cosh €, = Ro/b , Ry =Ry |1 — bY/R2 .

The contravariant basts is:

witﬁ
Ry

he=h, = cosE5 —

and

th: hfsmh £

e§ e, and e‘p are unit vectors. The metric is given by:
= -
E=(e.exed) —hshwhg_ .

[1_____1_= 22 ., ~ h2
g = h?g g= B33 i_lg,

The equilibrium equation (25) becomes:

sinhé 9 _ 1 oY 9 1 aw, .
£ (% b, % T, m)=_y0h;.P A

If 2 function F is introduced as:

¥ = [2(cosh £ — cos w)]"1/?F

we obtain the well known Grad—Shafranov equation (Freidberg 198?): .

&#F | @'F IF | 1
——+ ———coth £ 7 + F =
T Gt 23!

2Rg? 4R}? sinh? ¢

B P4 1T
{Q(COSh f — (08 w)]-']/?{ [Z(COSh E - cos w}]2 By + iy }

(A1)
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APPENDIX B
Helical system with straight magnetic axis

{A~-2) ' The coordinates are:
wm=r ; uWw=f-0mzu ; U=z
where r, # and z are the polar coordinates. Their Contravariant basis is:

3

‘8
—E——-—aez, e =e,

el=e e =
where e, €5 and e, are unit vectors in cylindrical coordinates. The covariant basis is:

e=¢ , e=re, and e =e¢, +are,

The metric is given by:

1 0 0 1 1} 0
ghh=10 1q +€l’2 ~ M gij =0 1'2 Off2
r .
0 - 1 0 or® 1+o*r?

I this case the equilibrium equation (25) becomes (Freidberg 1982)

Lo 1 0%, 1 8%, __ 23 i 2
T {'5&;_(1+a2r23?)+ T 3112)_ (1 + e*r%)pey Pl gl I +
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R (B-1)
APPENDIX C

Lo ) Natural coordinates
“ . and the magnetic field components are derived using the following equations:

pos ou In natural system: (Hamada 1962) the coordinate u, is a magnetic
I = Bg— C!I'Bz N v = —IBr (B—2) . - ]

T : ' surface label; it is analogous to the minor radius of the torus. u, and u; are poloidal and
toroidal cyclic coordinates, ranging from 0 to2m

The physical variables are:

magnetic pressure Plu,)
uy  2r '
poloidal flux o x (1) =J .du;I J& ‘B2 du,
0 0
4y 2
poloidal current o (1= L) = [ du;J & T2 dug
L
11y 2T
toroidal flux rd = J du} J vz B3 du,
o 0
u, 2T
toroidal current 2r) = I duy [ ¥Z I3 du,
G 0

0 2x 27
volume inside a toroidal magnetic surface (27)?V{y,) = I 1du'l J dug_J vg duy
_ 0 0 0
The equilibrium equation (22) becomes:

J 5l
3 v

-~ (C1) -

where the prime indicates derivation in respect to u,. Multiplying equation (C—1} by

Vg du, duy and integrating in a magnetic surface we get
, (g dldg 4 3 & 3

‘Plvl= - XFJI _— ¢|Is (C—g)

The magnetic field and the current density are given by:




the current density can be written:

(C-3)
J=Vx{~-le* + J & — 1o

and

(C—) B comes naturally as:

9. of the contravariant components (C—4) becomes: ’3_0 = -led + Je2 — we' + W

(C-5) where ¢ is the scalar potential in the absence of the plasma. This expression equated to

(C—3) represents the equations commonly used to determine the flux coordinates {Hamada.
g_{tr_o_ducing the average value of J3 /g in a magnetic surface: 1962, Hirshman 1982).

The only assumption taken is of symmetry of the system.

2%
<PBJfg>= —%K—}’O T3 du,

B =<Pg>+3 & . .
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FIG. Al — TOROIDAL COORDINATE SYSTEM.




