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Abstract:

Two methods for selecting collective b » ane propased by Klein and Vallitres and the other one being a:

.number conserved Tamm Dancoff method, are applied in this work to boson mapping methods. Fhe first mapping
to be testedjs a Dyson boson mapping in the SI) shell andrthe-second,'one is.a mapping developed by Bonatsos,
Klein and Li and applied to: two j-sheils with fj]_-;— le = 4. ‘Whenever the boson mappings are accurate, the

selection. of collective bosons gives gopd.tesults; independently of the method considered. _
1l.Introduction

Boson: mappings- have. been used to establish a link between the interacting boson

_'mod.éij(IBM) Y’ and ‘the shell model and hence,. jﬁsti'fy-.miéro.séopically thie success of the

IBM. _Ré_centlj the accuracy of some boson mappingé has been tested 2}. Tt is well known
. that some methods have been successfui so far in describing vibrational nucléi when tested-

. in:single j-shells-though it iz still not clear whether there is any good mapping to describe .

1

rotational nuelei. More realistic mappings which take into account many non-degenerate
j-shells may be more appropriate for describing a:larger range of nuclei.

In a single j-shell there is always just one kind of s-boson, one kind of d-boson, etc,
independently of the mai)ping coa;sidgred._ When noln-degen.erate j-shells are examined,
more than one kind of s-boson, one'kind of d-boson, éfc al;e necessary. Because of this
fact, coliective bosoﬁs which are responsible for some of tixe low-tying states must be
s;ele_cted in order to get the IBM type int_eractiqrﬁ.' |

Here‘We consider in some detail two fnethodé for selecting collective bosons. The first
one was, proposed by Klein and Vallidres ¥ and the second one is a number 'clonserved
Tam,m_Dancoﬂ' method. To see how .weli these methods work to chogse the collective
bosons, we apply them to simple mapping cases. V

The first test is performed in t.he sd shell where a Dyson boson mapping de‘feIOped
by Bonatsos and Klein ¥ is used. In this mgthé_d the bosons are generated by different
irreducible rcpresentatioﬁs of SU(3) which allow us to use the Elliott’s 5U(3) model ¥ to
calculate energy levels. The collective bosons are selected. via Klein and Valliéres m-e;thod.

For the second test we consider BKL's boson mapping ® and describe two jrshells
with |5z — ja] =4 7. We use both above cited methods for choosing collective bosons.

- Next- section we show the caleulations and results for both approaches.

2.Calculations and Results

" 2.1.5tudying Dyson Mapping in the sd Shell

According to Bonatsos and Klein ¥, the boson image of a fermion quadrupolé operator
in the sd shell which obeys 5U(3) commutation relations is given by
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‘where Gci; , i'(2),,1 a.nd ai(4),‘ are: bosor.r. creatlou operators belongmg to the (4,0) irreducible
representahou (1rrep) of SU(S) with angulaa: momentum g, 2 4 tespectwely and sf and dt

are boson creat:pn_opera.tors belonging to the (0,2) lrrep-of SU(3) with angular momentum

0, _2'.respe.ctively . The boson annihilation operators belong to the corresponding irreps of

SU(3). These irreducible representations are obtained with the consideration that in the
sd ‘sheﬁeé.ch f.enniph-has_.(l{])- SU(3) quanta-and thus, (4,0) and (.0;2)‘are the symmetric

represmlta.tions for two particle states. Boson. operators w_ithm each-irrep obey standard
boso._ri éo.rrimutatio.n_--reia,tions while b.oson:oper.a.tors., belonging to different-SU(3) irreps
_cox_mmite.. .

We now consider a.simple qua.drupole.HamiRonian, which can be compared with the

~usual Elliott’s Hamiltonian. ® in- the fermion space and is given-in terms: of the Dyson -

mépped operator in: the boson space. The quadrupole Hamiltonié.ns are:
_ 12, 2 3
- Hetijorr=—Q-Q = —-Q—(A.- + .+ 3A+3p 4+ Ap) +-§L(L'+ 1) (2.1.2)
where'A and {+ are. the indices of the irreducible representation of SU(3) (A, p) and

.HDy_-,D,,.:'—BZ(SU(3))-—B_2(SU(3)).‘" - (2.1.3)
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W_e diagonalize both :H.amilfonians for n=1 béson (2 }'éﬁméns) and obta.lnthe):esults shown
in table I |

_ Notic.iug that the results giveg by @he\mﬁpped__Hami_ltmﬁa.u are exact as expected, we
turn our attention-ta the .selectic'm. (‘Jf f:ollectiuve bosons. Aécmjding to Klein-and Vallieres

(hereafter this method is deuoted as KV) i the trace _of the Ham:lltomandoes not depend on.

the basis which is used for its diagona.liza.tioﬁ and the condition determining the collective-

degrees of freedom is;
§(TrHpY=0 o (2.1.4)
where: Hp contains only the diagonal terms of the Hamilt’onia.n..
Rewriting the boson: operators a.ppea.ﬁhg in (2.1.1) in terms of just one collective

s-boson and one collective d-boson, they .read. '
of zar st sf .‘—_".fﬁfz st ._ I_ L (218)
a’r'(iz').:ﬁgbf.', 'af%bg DTI. e (2.16)
and aT(‘_l)_ rem;ai%ls the same, where o | o

dt+al=1, B+4=1, o (2.1.7)y

are .1ecessary: as normalization conditions: Substituting: (2.1.5) and (2.1.6) into-(2.1.1},

reWri_f;ir;g (2.1.3) in terms of the neu;v_‘r _bbso_n opérators (in.normal order) and calculating
the trace in (2.1.4), one obtains.
TH(HpY = —2x (140 +5al 1L T582 42,7502 +4.32 8¢+ 1.755 ~2.752 42+ 10.43). (2.1.8)
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Normeal ordering is very important when utji_izir;g__t_:hg KV method to select. collective bosons
because ongma.lly, every boson should have been wntten in terms ofa collect:ve a.nd anon-
collectwe pa.rt:. Here we drop the non-collectwe pa.rt of each boson and then, just normal

ordéred Hamiltonians:give the: correck result::Before continuing our calculation, it-is worth

pointing out- tha¢ for-the: full Hamiltonian Hpjyacn, the states with' L=0-are |a. ag >;

Is 3 >, |ap s >, |a(2) a(2) >, id.d >, |a(2) d >, |a{4) a(4} > for two-boson systems. When
using collective bosons, we are restricting ourselves to-the states [S § >, [D D > and
[¢(4) a(4) >. The same kind of restriction is imposed for two boson systems.with L=1,2,3.

Defining

Flayyn) = ;1151_*,;_(11,)) (219)

-where i=1,2,3,4 and n is the number of bosons (here it is.2). and setting..

oy = sl , . agi = cosd;"

Bi=sing’, fi=cosy . 0 (2110)

we obtain - .

" F(8; :2) = —14sin?0 — 5c-os?a —11.78sin’¢ — 2.75c0s%¢- -
—4.32sin*¢ — 1. 75cas4¢ 2. 75sm, ¢co.s é - 10. 43. (2.1.11)

: Calculatmg 35- =0 a.nd 3 = 0 we ﬁndout that e1ther sm9 =1 and cosf = 0 or sinf = {J

- and-cosf =1 and. elther squ =1 and- co.sqb = (.01 sing = 0 and cosgb = 1. W’e hase .

_confirmed that the. absolute minimum of the trace is given by (except for arbitrary signs)

ar=p =1, ag=F=0 . (2.1.12)
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which actually is the same as restricting the caleulation te the (4,0) irrep of SU(3). There-
fore the (4,0) representation is responsible for contributing with the low-lying part of the
spectrum. In table IT we write explicitly the states in the SD shell for 4 fexmiéns and for 2
boéogs. Considering spin and isospin; degrees of freedom, all representations shown in table
IT for the fermion space are a.!lov;ved butr since we consider only spin degrees of freedom,
those representations belonging to [4] and [31] are not allowed. In this case, all. states
belongmg to {8{}) and one state beIongmg to (42) irreps in the boson space are spm1oﬁs
as one can see in table II. - - .

The results obtained for the; full qdadrupc;le Ham.iltonia..u diagonalizaf:ion_a;rxd for ﬁﬂe
collective Hamiltonien djagona.hza.tmn when n—2 bosons are gwen in tabie s a.nd com-
pared with some of the results obtamed by Elhott’s formula {2.1. 2) As expected Dyson
mappings give exactr' resulis.except for those spurious states and the ;esults in the KV are

those coming from the (40) reps. only.
2.2.8tudying BKL: 7 for |j; —jal=4

Next we consider a BKL mapping for two non-degenerate j-shells with. |f; — j2| = 4
and investigate the gollective coatributions of its operators. We can justify this choice by
looking at the maj(-)r_ shell 82-126 whi_ch ca.n. be regarded. as two Eevels,l l;a.r_mzly JrL=17/2
and jp = 25/2, if we think of them 1;1 terms of occupation numbers: levels hose and frp
can-accommodate 18 fermions and are substituted by j1 = 17/2 and levels pryg, paje, f52
and iy, can accommodate 26 fermions and are substituted by j, = 25/2. .Levels 17/2 and:
25/2 can couple to J=4 but cannot coupIe_.to J=1,2 or 3. This fact facilitates. our study
because it reduces the number of considered bosons. In.the BKL we have two fermions

&

v,
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in levél 1 (or:2): forminga pair with J=0'or J=2which corresponds to an s- or d-boson,
.respectively.-__--. .

We now consider a p‘a.ifing plus quadrupole Hamiltonian
. H= .—-IHP - (1 .—. E}HQ,Q . (221)

and we di&gpﬁalize tbj's-h.a,miitonjan for the exact case tir_x the fermion space), for the BKI,
: '.mgpping.aﬁd for the collective KV case in which only collective bosons selected by Klein’s

'methc.).d‘.' é.fe.-include.d. “We vary x from 0.0 to 1.0 in order to simulate from deformed to
- spheric'a_l muclei. We can perform the diagonalization procedure only up to four-fermion
Vsy;s.-tems -dl;le to compgﬁ'atiénz;l limitation. .

We start by locking at.a pairing Hamiltonian in-the fermion space given by

Hp = (Ol + VR A}(22) - (VA1) + VI Au(2) | (229)

where the T =0.pair creation-operator is.

F P — My . . )
aay = Z( 2i+1 ol al ., (2.2.3)

" and itsexact, boson image is _ . _
Ay =d@ym L 224
~where af (1) is a 'boson'.:crea.fion_ operator with a.ngula.r' momeqﬁum 0 and

n1 + 2m1

=1 )
1

Here ny- .stands,fi)r the:number of a(l)-bosoné, ni for. the.number: of é( I 1');bosons: {which

has-angular momentum: 2)-and. {2, is the degeneracy. of level 1. For level 2 . we have the

.sa.me'equationsjust-'by- exchanging indices T and 2.

7 .

: (2.2.5)

The pairing Hamiltonian (2.2.2) in terms of boson operators reads

Hp(B) =~ )V + 6l 00 - (Virralt) + Vimsa@))  (2:20)

Now we look for collective bosons via Klein’s methed. In- _the_ following we write the original
bosons in terms of the-collective ones. For simplicity we consider only a{1) and a{2) bosons.

They are expreséed by the collective boson as
af(l) =aj st Y ai(2) }.di b e e (2:2.7) ‘
where we have the normalization condition:

cefrel=1 _ (2.2.8)

* The natural choice for'a; and ayis:

ay=sinf., ez = cosh.: (2.2.9)
Sﬁbstituting (2.2.9) into (2.2.6) and calculating the trace, we find
F(8,1y=Tr(Hp(B)) = —('9133'11_29--::- Qy005%8 + 20/Q1 Qasinfeosd). » (2.2..10)
Minimizing F(6,1) we obtain =~ = I A
o al-:‘fﬁl . ag.ze'/ﬁz. _ (2.2.11)

wﬁere Q=0 +. 1. In fact this-re'sult- dbes not depéhd';)n éhe.ﬁt.m'lber.of bosons i'nvoI.\'féd

. because from (2 2, 6), we get

F(oz;,az,n )= TT(HP(B))/na = “(011 - aa(ns - 1)+ e \/ 2 —od(n, — 1) )2

(2.2.12)



. where:n,,is.the number of s-bosons. When oy = \/%’- and, @z = v, %‘, this formula gives.

the exact: sﬁiution t_o the original fermion problem. Up to now no equations with a(11)
and a(22)-bosons are.relevant because'we are treating just-a pairing interaction, but they
will be useful later on.
Next we cqnsidf_sr a. quadrupole inﬁeract.iqn. _'1‘1.1_e fermion quadrupole interaction is
given hy
B ey e S Gomads i) DR g, (2213,

ftq,My

" where a,b = 1,2 and its image is given by

B an) =g al VAR + oA a0

-~y amedna- gha (2214)

" where -

1

) f1.=- — 3.
f 1
AT — g

© (2.2.15)

o fEpgigey 1
T e, f j i P ! .
f2 . 2 {31_ on },rn . ) : (2 2 16}

Tty 2nny
rno=r+ h—l =1- o, (2.2.1_7)
Ny = 2ny + 2ny,, ’ ’ : . (2218)
and the quadrupole:interaction is defined as
Hyq = —(B*(11) + B(22)) - (B*(11) + BX(22)) (2.2.19)

which is diagonalizable for fermions and bosons. Here we have con_sidénet_i pnl_;r up to L=2
bosons. BZ%(22) can be easily obtained from (2.2.14) by replacing shell label 1 by 2. The
quadrupole operator B2(12) does not appear here because the difference between. j1 and
jo is 4. | o

Again we seleet collective bosons a.nd. compare the results of thé collective Homiltonian
with those given by the BKL. We now calculate the collecfive bosons via Klein’é method.
As. before we write: |

aT(l)_=a;. st aT(2)=a2 sf

day=gd | de=pd | (2220

with, the normalization. conditions
dred=1, Bef=1 S ey

By minimizing Fag, ag, 51, 52,1) = Tr{Hg.q) for n=1 boson in terms of o and o

under the constraints (2.2:21), we obtain
o). = Bl =1 S (2.2.22)

wy=fy = ' (2.2.23)

and this result turns out to be correct alsc; for n.=2 b.os;)ns. The quadrupole Hamiltonian
{(x = 0) can now be written in terms of collective bosons only and then diagénaiizeci.
It is important to notice that expressio;zs- {2.2.6) and (2.2.19) are expressed in terms of
collective bosons and in this case collective bosons are a(1) and e(11). Again normal
or_dering is important when rewriting the collective Hamiltonian and all square r;)ot type
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fact(.ifé'wh.icﬁ.dépend on’ boson numbers must be placed in the middle of cach term of the

" Hamiltoriian; i/e., hetwesn creation and annihilation operators.

The exact pairing pIus-'quadrupbie and the respective collective 'KVVHami.ltonians“

are dlagonahzed for x=1. 0 (pu.te pa.u'mg), x=0.7 and x=0.3"; x=0.1, and x=0.0 (pure

q_u'adrupole) for n—l boson: (vxde table: I"V) a.nd for n=2 bosons (v1de table V). Followmg

- the procedure wehave: used to select: collective bosons for the pairing and for the qua.drupole

s E'ﬁterae‘t.ion‘,_one‘cm see:that the values qf a's apd,'ﬁ ’s-depend on the interact.ion involved
:';n;ﬂl:_t:a:'t:.alc.:ulat_ion. and. théy‘a.re different fér_diﬁ'érent-va.lues-of X, as can be seen in table V1.
Theresults are extremely good especially for thé. grounci_states. In: the BKL, when n=1
o _bqson;'- thé results for L=0 states are exact, but. they are twice smaller when compared to
' Vex_gct ;)nes for L=2: As:we discﬁssed._ in ref.i 2, ¢his is due-to neglecting L==4 bosons in the

_ BKL methdd;'
' VI'Aith.ough'the-‘ reﬁultst are. goo:d' for ﬁ#i. and. n=é boson systt%ms, KV m;:th:od. Eas a
: d:a.ﬁ-bad{- that calculating traces becomes very difﬁ‘cuit. as .th.e number. of bosoni;' increases,
ééﬁéciaﬂy the number of .d.-bos.ons. This cost.s. _alrgost the same labour as diagonalizing the
original BKL hamiltonian.. Another method whicb_'we now consider is a number conserved

Tamnr -Dancoff method- (NTD). In this method we determine the collective S pair by

satisfying:
§< SYH|S" >=0 L (z224)
_ wheré;-- :
St=ard(l) + esaf(®y S (2.295)
11

with normalization condition: a? + o2 = 1. Using the same $ pair; we determine the D

pair by requiring

6 < S"ID|HIS* ' D >=0 {2.2.26)

where

pt=p 'af(11).+ B al(22)" - . (2227)

“with.82 4 B3 = 1 This method has an advautage that these two formulae (eqs.(2.2.24) and

(2.2.26).) are easy to, evaluate even for a general n-boson system. A disadvantage of _tZﬁs
method is that it is assumed-to be valid only in spherical ard vibrational regions. Since

the non-collective L=0 boson can be written as

thmayaty ety (2.2.28)

we get - :
at() = ST 4 ot (2.2.29).
at(2) =aysT — a7t - (2.2.30)

After- obtaining o's and §'s, we rewrite the: origitial hamiltonian in terms of collective

bosons and.non-collective ones. Keeping the terms of collective bosons ., we get a collective

hamiltonian in the same way as the KV procedure. The results are shown in Tables [V and
V-under-the column NTD . In table VI o’s and fB's deter:mned respectwely by equations

' (2 2.24) and (2.2.26) are Iisted.

12



3.Conclusion

Twa simple: ma.ppmg apphcatlons have been performed in. thls Work Flrstly we have
L apphed the- tra.ce mvanant method for selectmg collectwe bosons to a Dyson mappmg i

the sd sheIl The results cbta.med a.ft' -the d1agonaliz" i

_w-rxtten in terms of collectlve bosons have exactly'_ g :

- full Dyson Hamlltoman

. Secon_dly we.have-appli;-:t.:i':tﬂe trace invariant-method and the number: Eonsef‘.rét.i‘: Tamm y

. Dancoff method. to:the BKIL mapping for two j-shells with: |]1 — 32! =4. A pam.ng plus

qua.drupole Hamiltonian has been dizgonalized. For the pairing case (n=1 boson and n=2

bosons), the‘ BKL has exactly: reproduced the fermion results as it should. be expected.
Both collective Ha.miltouia.n results are approximately the same.

It isworth: mentmmng that the selectwn of collective bosons depends on the interaction
considered, as can be seen by equations (2.2.11) and (2 223) (2.2.24) where collective
bosons are written respectlvely for the pa.arzng and the quadrupcle interaction.

: Compa.nng the results obtained by the collectwe Hamiltonians with the BKL results
either for n-..l or n=2 boscns, we can see: that-the sefection of collective bosons gives us
reasonable results-independently of the method used,

This work was. partlally supported by CNPq (DPM) and partlally by Nishina Memorial

Foundation (NY)
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Table I E | " Table IT

L Hiiete Hpyson, B e ' . : : ~ Table Il:a : SU(3) rep. of four-fermion states in the sd shell
0 -14.0 o 140 o _ o _ u(6) (Mg, _ :
- 80 50 ' : ' ' ' [l - (80), (42}, (04) ,(20) -
2178 LT - | | B (61),.(42),(28)., (31); (12) ;.(20)
oem T [22] (42),(31) , (04) , (20)-
465 . 65 K ' [221]. (50), (23) , (31}, (12).,(01). . ..
. . L : : : [1111] (12) '

©* Table I Quadr'ii.pole hamiltonian diagoﬁali’zation- for n=1 boson (2 fermions) SR
I . Table II-b : SU(3) rep. of two-boson states in the sd shell. Degeneracies are indicated
after SU(3) representdtions. : N S S

(X, ) : _

(80).,(42) 2, (04) 2, (31),(20) 2




Table III. Table IV

L Hewiow  Hpyson. . = KV _ L x L Exact BKL KV NTD
0 -44.00%* -44.00 -44.00. . : . . 1.0 0 -22.00 -22.00 -22.00 -22.06
-0 -23.0 -23.0 ' 0.0 0.0 ' .
-14.0- -14.0 ' -14.0 . S : : : 0.7 0 -15.45 -15.45 -15.45 -15.45
. -500 T -5.00 . . - 2 -0.06 -0.03: -0.03 - 0.03
2 -41.75% 4175 -4L75 : - _ 03 0 673 -6.73 -6.73 T -6.73
-20.75 -20.75 ' -20.75 _ : 2 -0.15 -0.07 -0.07 -0.07
~11.75 -11.75 -11.78 ) : o 0.1 0 -2.36 -2.36 -2.36 -2.36
-10.25 . - -10.25. . _ : 2 -0.19 -0.09 -0.09 -0.09
-2.75 -2.95 ol . ) . 0.0 0 -0:22 -0.22 -0.22 -0.22
1 A1L95 0 -11.75 ) — P ~-0.15 -0.15
3 -18.50: 1850 . -18.50 - - . . : 2 041 -0.10 - -0.10 -0.10
© . -8.00- -8.00 ' -0.15 -0.07
" Table 11T Quadrupole interaction diagonalization for n=2 bosons {4 particles). Some Teble IV - Pairing plus quadrupole Hamiltonian diagonalization for n=1 boson (2
states with asterisks (*) correspond to spurious states because they do not appear in the - particles) and different values of x

fermion space if we.do not consider the isospin space.

e,
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Table V. ' : _ ' Table VI

x L Exact BKL - KV NTD _ n. x  a(KV) B(KV) «(NTD)  H(NTD)
1.0 0 -42.0 242,00 -42.00 42,00 S 1 1.0 0.64 0.64° T
: -20.0- | -20.00 0.00 0.00 : 0.7 0.64 0.81 064 -~ 1.00
' 0:00¢ 0.000 _ : 0.3 0.64 0.81 064 1.00
2 -20.0, -20.00- -20.0 -19.97 0.1 0.65 0.84 0.65 1.00
200 220,00 0.00 _ , : 0.0 1.00 1.00 100 1.00 3
S 000 0.00 j ' _ : - '
0T - 0 .. -29.50 o 2950 19950 229.50 : ' .2 1.0 064 0.64 "
Lo <1410 -1410-0 - <010 -0.07 . o 0.7 064 1.00 0.64 0.39
_ -0.19 _ 015 ' _ ' 0.3 0.64 1.00 0.64 0.72
2 -14.12: S14:10 -14.10 -14.08 - 0.1. 0.64 1.00 0.65-. 078
-14.10° -14.07 - -0.06 -0.04 : . 00 100 1.00 100 - 1.00
T -0.18 01 :
0.3 0 -12.84 11284 S12.84 12,84

Table VI - Minimization parameters {a's and f’s) for different values of x. In KV

:gi: : '_gg: . '9'23 L ~0.19 they were calculated for L=( and il'l NTD a’s were 'ca[gqlated for L=0 and #’s for L=2_?
3 629 P 6.93 cig and F; are calculated by norm:?l:zat_mn condztlong. .
' -6.23 -6.17- -0:12 0.1 o
. o C - 042 -0.28
010 4820 -4.52 -4.51 - 4.51
' -231 - 2.31 -0.29 0.25
L o =055 -0.45
2 - 238 - 2.30: -2.30 -2.30
-2.29 - 2.23- -3.15 -0.14
: . - 0.54 -0.36 :
0.0 0 - 0.65 -0.54 -0.34 -0.54
S -0.53 - 0.50° : 0T -0.17
--0.48 : -0.39
2 -0.64 - -0.43 -0.43 -0.43
- 0.35 -0.39 - -0.12 -0.12
- 0.52 -0.32

Table V - Pairing plus qua,druéole Hamiltonian diagonalization for n=2 bosons (4
" particles) -and different values of x



