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Using the representation (26) for the +; and multiplying by the same
combination of gamma matrices as in (27) we get precisely the propagator
(25).

Therefore for theories of relativistic particles with N extended super-
symmetries the transition amplitude should be identified with the propa-
gator for the field strenght of the theory and not for their potentials. This _
can be understood from the Dirac quantization where upon second quanti-
zation the wave function turns out to be the field strenght [5] and not the
potential and the equations of motion involve only the field strenghts. This
is quite different from the cases N = 0 and 1 where we find the propagators
for the fundamental fields.

In general a bosonic [fermionic] massless particle with spin s is de-
scribed by a potential field which is a symmetric tensor [spinor-tensor] of |
order s [s —1/2]. Its field strenght will have s [s — 1/2] derivatives so that
‘the propagator for the field strenght (F),,. ,F,, ) will have 2s — 2 powers
of the momenta. Comparing this with (24) we conclude that it describes -
- the propagator for the field strenght with spin s = j—g— after appropriate
multipliplications by gamma matrices. |

As we have shown the gauge symmetry of the field theory does not
manifest itself in this formulation. Also in the Dirac quantization the gauge
symmetry is hidden in the Bianchi identities (which are equations of motion
there). Only when the Bianchi identities are solved in terms of the potentials
is that the gauge symmetry becomes manifest. Although we have started
with a particle theory with several local symmetries (diffeomorphisms, su-
persymmetries and internal O(N) symmetry) neither of them gave origin -
to an explicity gauge symmetry for the field theory. This may well explain
why we can not find the fundamental gauge symmetry for string theories
since there too we start from a first quantized theory. Other approaches
to this problem (based on string theory) starts with the particle coordinate
z* and a set of bosonic or fermionic oscillators acting on a Fock space [12].
This approach is essentially operatorial and makes it difficult to interpret
the mechanical system that it describes (except for the case of lower spin).
Alscnt is not clear how to make the path integral quantization of this class
of models. This shows that we are still in need of a satisfactory prescription
to find. the local symmetries of a second quantized theory starting from a
particle theory. .
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_ Abstract. _

We perform : the- calculation of the transition amplitude for spinning
relativistic particles with. N-extended supersymmetries. using the BRST-
BFV technique. The resulting transition amplitude can be interpreted in a
field theory context as the Feynman propagator for the field strenght of a
field with spin. N/2:: We:also show that there is a global anomaly for odd
dimensions so.that the model is consistent.only for even dimensions. The
gauge Invariance of the respective ﬁeld theory does not become manifest in
this formula,tlon :
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The conection between the quantum: mechanics of rela,tivisti_c parti-
cles and quantum field theory has been recently revived by employing new
technics of quantization with the aim of gain some insight into the con-
struction of a field theory for strings . It seems that the best way to make

 this connection is to employ the machinary of constrained systems. and

the path integral formalism [1]. Since the theories for relativistic particles
present local symmetries ghosts must be introduced and a systematic way to

deal with them is the BRST-BFV formalism {2].. Then the connection with

quantum field theory can be made by noticing that the transition amplitude
for a relativistic particle is the Feynman propaga,tor for the Klein-Gordon
field and the transition amplitude for the spmmng particle is the Feynman
propagator for the Dirac field [3]: The same is true for the chiral and the
supersymmetric chiral particles in two dimensions [4].

A natural extension of the spinning particle which has N-extended local
supersymmetries as well as local O(N} symmetry was formulated and it was
shown through the Dirac quantization that it describes massless. particles
with 5p111 N/2 [5]. It was also shown that the theory has. a rigid conformal
invariance [6]. When N = 2 it was found that there is a global O(2) anomaly
for odd dimensions [7] but it can be removed by the addition of a Chern-
Simons like term and the resulting field theory describes antisymmetric
tensors [8]. In fact the theory without the Chern-Simons term is non trivial
only in even dimensions. {8].

The path integral formulation of this theory was used to. study the
dimension and global structure of the supermoduli space of the extended
spinning particle and as expected it was shown that they depend on the
choice of boundary conditions of the parameters. Also a formal expression
for the transition amplitude was calculated [9].

In this paper we will use the BFV version [2] of the path integral
formalism to evaluate explicitly the transition amplitude for the extended
spinning particle. We will show that as in the relativistic particle case a
convenient gauge choice for the reparametrization invariance.is the proper
time gauge. For the local supersymumietries we find the same gauge choice

as for the spinning particle while for the internal O(N "} symmetry a sort of

axial gauge is used. We then show that there is a. O(N) global anomaly
for odd dimensions. . For even dimensions we.show that for N >.2 the
transition amplitude can be identified with the Feynman propagator of the
field strenght and not with the potential fields of the theory This.is in.
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contrast with the cases N' < 2 where the transition amplitudes are identified
with the Feynman propagators of the basic fields. The raison d’etre for

this resides in the fact that in the particle theory the wave function is a
gauge invariant: quantity (regarding the gauge transformations of the field
theory) and upon second quantization they should remain so. and must be.
identified with the field strenghts. The gauge invariance of the potentla,ls.

remain hidden in this formulation.
. The extended supersymmetnc spmmng part1cle is descnbed by. the
following action: [3] -

| '-%f;-;-ww;"my] ) e ()

where z;,(¢) is the particle coordinate, g = 0,...,D—1; Pt (t) is the fermionic

coordinate; ¢ = 1,...,N ; V(#) is the (one-dimensional) einbein,.x;(t) are

the (one-dimensional) gravitinos and f;; are the connections for the internal

O(N) symmetry. A boundary term was added so that we can perform.

the variational principle on the fermionic coordinates a.ssummg only one
boundary condition [3].
The actmn is invariant by world-hne repa,rametrlza.tions

6:1:'”.—— et E L | V. = (eN)~ _
st =t b= )@
5fiJ (EfTJ) o . e

(where a dot represents differentiation with respect to the proper time t) if
the parameter e satisfies the boundary conditions €(#;) = €(t3) = 0. Then

it follows that an appropriate gauge choice is the proper time gauge V = 0.

The action (1) is also invariant by world-line local N-extended super-
symmetry transformations: :

— . .. i .
63:7“ = za,@,b,—- BV = iy

St =~y (#—igui) o Sxi =i fijoy (3)

if the parameters o; obey the boundary conditions a;i(t) = ai{ts) = 0.
Then it follows that an appropriate gauge choice is v; = 0. .
Finally the action (1) is invariant by local O{V) transformations:

5.’1:‘” =0 6V = ()
S =biy oxi =bijx; (4)
6f33' - b’.? + blk!fk’] - ]kfki

; w1th no bounda,ry conditions on the parameters b;;. Then an appropriate

gauge choice is f;; = 0.
To-each local symmetry (1-3) is associated a first class constraint, te-

spectively - . _
H=p"

¢ =pu¥t (5)
_ $i; = id’f"b;n#ﬁ
where p, is the momentum conjugated to «* and the fermionic coordinates
have the following Poisson brackets

[ vy =—idn™ ©)
The constraints {5} close the Poisson: bracl_{et,algebra.- .

{éhqu} 6”7{ | . . EE . . o
{ﬁsz b ﬁbk} 611:‘153 Jkﬁbz : i . o B (7)
{sz;n qﬁk!} 61.‘&14{)31'_ zlquk - 6Jk¢zi + 5Ji¢’?.k '

We now extend the pha,se space introducing the canomca,l momenta
for V', x; and f;;, respectively p,, m; and p;; and impose them as new
constraints. Now for each constraint we associate a pair of cannonicaly
conjugated ghosts: for H, P and n ; for p,, P and 7; for cb“ P; and ¢;; for
7, P; and &;; for-¢y;, ’PU and. Nij and for pij» Pij and ;5.

We can then build the BRST charge. Using the a.lgebra. {7) we find :

. 1
Q=nH+cid; + QT]UGS:] + Pp, + Fim; + P:JP:; + P 7]1JCJ

. 1 . "
- e — PCICZ —. P;JT]J.LT]R.Z - (8)
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which is..n'ilﬁoteiitf {Q,Q}= 0. T_he_ ge.uge_ fixing fermion ¥ which imple-
ments the a,b_ove- _mentioned ga,uge ch_oices V =xi=fij = 01s '

fPV-l-PaXz“** Pufv+ U;sz:a L ©y

‘If

where € is an; 1nﬁmte51mal parameter wluch W111 be set’ to zero-.at the end’

of calcula.tlons Theu the effectwe actmn is

: tg Py . 1 .
-Seff = f dt [p:r: +va - '"%W!Jz + Xﬂrz szfzg + —P +"ffp+
1y

+CzP +01P +< TI,JPW-{-;%; ZJ_ {Q ‘I’}} 'ﬁb:(tl)'ﬁbz(tZ) - (10)

After computmg the Pmsson bracket {Q T} we perform the followmg:
change of variables (wluch has the Ja.cobmn equals to one) in-the action.

(10) R
P rEpi
T? 3 “‘"‘ETJ:J
to
Serr = f dt (psi: +va - “"’d’ﬂ/)_'i + Xk +77’P +4P + &P + 6P+
+3 n,j’Pu + 2pz,-,f,3 +VH - xidi + f,gcsu +PP+ PP+

1=
: + PZJPZJ 27]’11)(_7 +P chlj + EPCzXz 2 z'jmcjsz'

+ Pljnlkfkj+ PUU:J) : . (12)

We now ta,lxe the following boundary condltmns wh1ch are mvanant by
the BRST transformations generated by (8)-

(11)

and take the limit of e gomg to zero.. Then the effective action ( 10) reduces -

Py = He =t LGy =
Poltt) = p(t) =0. wi(tl)_,;jrf(t?)..=o. il = pzj(to)-;-()
-:_n(tl);n(m:_o- -ﬁ(fl)ﬁ.ﬁ(t.z):a. )
c,-(tl);ci.(t?):o: o Ee(ti)%?f_(tz):o_

i (t1) = nij{t2) =0 Tip(t) =T7;(t2) =0
Then the transition amplitude is given by
Zanany) = [DueSor
where the measure is . |

Dy = D:c“Dpu‘ng“'DVDvaXzD?r,ngJDszDWDnDP
D&;DP;D¢;DP; Dan’D'P,JDn,JD’PU (15)

" and the effective action is given by (12).

Since the theory is described in terms of fermionic variables there is
the possibility that anomalies could ‘arise. ~They appear as a failure of
the classical symmetries being kept valid at the quantum level due to the
regulamzatmn of some divergences. A complete analysis of global anomalies
in one dimensional theories [10] {11] has been performed and indeed there
is a potential anomaly in our theory. The best way to find it is to go back
to the gauge invariant action (1} and perform the integration in ¥ with
periodic boundary conditions. It gives a factor of det”/ 2304615 — fi 5) In
the measure of the respective functional integral. This determinant can be
evaluated and the result (after regularization) is, upon to a sign, [11]

_ . . o
.det.”z(-ia,géij—fij)= H'sin%'“ T 0L6,<2r (16)

m=1




where 8., are the elements of the gauge fleld [ after an a,pprop'riate rotation,
which for N even is.

o o

=Onp O

Under a global zauge traﬁsfornia.ﬁions we can change one of the & s, say 0;,
to 8; 4 27 Leepmg all other §'s the same. Then using (16) the determlnant
. changes as ,

det_wz('ié‘i&j ~ fis) = (*'1)Ddet0/2(iaféii ~ fi) (18)

This shows that we do not have global anomalies only for even dimensions.
This result remains true for N odd [10]. This result can also be understood
in the following way. The determinant in (16) is a mapping ¢ from S* x §1
to O(N), the first S! being parametrized by ¢ (recall that we have periodic
boundary conditions) and the second St by v, 0 < v € 1 which is an
auxiliary variable responsible for'a gauge change. When u varies from 0
to-1 we are performing a global gauge transformation back to the original
gauge. We can think of it-as curves on the manifold of O(N} parametrized
by u-and when u varies from 0 to 1 we have a closed curve on the manifold of

O(N). Since 7 {O(N)) = Zy, ¢(t,0) = —¢(t, 1) showing that the expression
" (16) changes 5ign under a- global gauge transformatlon So from now on we
assume that D is even..

- 'We now want to evaluate the transition amplitude (14). First we per-
form the functional integrals of the momenta of the Lagrange multipliers.
The integral on p;; gives a 8(fi;] and the integral on f;; allow us to set
fij = 0 everywhere. The integral on p, gives 8[V] which gives an undeter-
mined factor det d; which can-be absorbed in the overall normalization of
Z; it also-states that only the zero mode of V/(¢) contributes to the integral.
Hence it reduces the functional integral on V'(#) to an ordinary integral on
V(0) whose integration limits are from 0 to oo as required by causality (3].

6

Analogously the integration on n; reduces the functional integration on x;
to an ordinary (Berezin) integral on x;(0).
The integration-‘over the fermion ghosts 7, P, 1, P gwes a factor' At =

to — ty. The ultegra.tmn over the bosonic ghosts &;, P, ¢; and P; gives a
factor (At)_ The integration over the fermionic ghosts 75, Pi;, 7;; ; and
P;; gives just a constant independent of At.

- With all these integrations. performed the transition amplitude (14
reduces to :

Z(ml,zz,y,)_/ av( 0)/%(0 /Dx“Dp#’Dw“(_\t) (V=1

exp [ [ dt (pa: - L+ VIO~ xi(0)9 )] (19)

‘We now perform the following change of vanables (with the jacobian equals

toone)
Ag#
PH(0) = at(0) + 52 (6= 8) +9(0) (20)
PO =0 (21)

where Azt = zf — 2f and w1th the following boundary conditions for y*
and 8¢

y0) = () =0 G :)
Bi(ty) = —0%(t) (23)

The integration over y* reduces the functional integral over p, to an ordi-
nary integral on its zero.mode p, = p,(0). The integration over 8 gives a
factor (det Bt)N/ % which is just a constant (after regularization) and can be
absorved in the overall normalization constant of Z. The integration over
xi(0) gives [[py: At = (At}_"\r Fipv: and finally the integration on V(0)
gives (At)"'/(p® + ie). The factor of ie was introduced to guarantee the
convergence of the integral .
Therefore the transition amplitude (19) ta.kes the final form

N

CZ(xy, 20, 7i) = fdpeiPA$ II pg +’Y:e (24)
. i=1 .
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with: all factors of At cancelling out. - ' _

' ‘We now wish to relate the transition amplitude {24) to some propagator
in field theory. . In order to do that we will particularize to N =2 and D =4
which: means that-we are dealing with a pa;]:tli'clé‘ of helicity 1, the pheton.
Since the-integrand in (24) is of the form £~ it can not be related to the
propagator of the potential A, but of its ﬁel«i’. strenght Fl,;,. This propagator
is known to be- ' ' : .
Bl Pruto) = e (PR Gn) 09
Since the last term of (25) is proportional to §(Az) and we are assuming
that the two-points z; and z3 are not coincident the term in n,, does
not contribute to the propagator (as far as x1 # z» ). Now taking the
representation for y; [5] _ '

| o d=mer
we find from (24)"

ey

_ ;E._(‘mfra_)al‘s {(dag Zlt1, T2, Yilg, 5, =
= [apeiras (P82 ) — (Bl Foulan))  (20)

At this'point we should remark that if we have chosen another gauge for
the O(2) symmetry the expression {24) would formally change and we could
get the propagator (25). To do that we choose the gauge f;; = ﬁhﬁ
where § is an. infinitesimal parameter which will be set to zero at the end
of the calculations and it is.used to regularize the divergent integrals which

- we will meet. This gauge choice is implemented by. the gauge fixing fermion

'.'.‘I"—"?V"i‘fi}(}i‘l‘ %fijfij + 'zle‘ﬁ_ijfij_-l' EF%T (28}
- and. we get for the transition amplitude (24) '
1 s 102
R L I[peoty [Lv®] ()
S e o i

(26).

Using the representation (26) for the 7; and multiplying by the same com-
bination of gamma matrices as in (27} we get precisely the propagator (25).

Therefore for theories of relativistic particles with N extended super-
symmetries the transition amplitude should be identified with the propa-
gator for the field strenght of the theory and not for their potentials. This
can be understood from the Dirac quantization where upon second quanti-
zation the wave function turns out to be the field strenght [5] and not the
potential and the equations of motion involve ounly the field strenghts. This
is quite different from the cases N = ( and 1 where we find the propagators
for the fundamental fields,

In general a massless particle with spin s is described by a potential
field which is a symmetric tensor of order s. Its field strenght will have s
derivatives so that the propagator for the field strenght {(F,, ..., Fu .00}
will have 25 ~ 2 powers of the momenta. Comparing this with (24) we
conclude that it describes the propagator for the field strenght with spin

5= % after appropriate multipliplications by gamma matrices.’

As we have shown the gauge symmetry of the field theory does not
manifest itself in this formulation. Also in the Dirac quantization the gauge
symmetry is hidden in the Bianchi identities (which are equations of motion
there). Only when the Bianchi identities are solved in terms of the potentials
is that the gauge symmetry becomes manifest. Although we have started
with a particle theory with several local symmetries (diffeomorphisms, su-
persymmetries and internal O(V) symmetry} neither of them gave origin
to an explicity gauge symmetry for the field theory. This may well explain
why we can not find the fundamental gauge symmetry for string theories
since there too we start from a first quantized theory. Other approaches
to this problem (based on string theory) starts with the particle coordinate
2 and a set of bosonic or fermionic oscillators acting on a Fock space [12].
This approach is essentially operatorial and makes it difficult to interpret
the mechanical system that it describes (except for the case of lowér spin).
Also it is not clear how to malke the path integral quantization of this class
of models. This shows that we are still in need of a satisfactory prescription
to find the local symmetries of a second quantized theory starting from a
particle theory. ' ' ' o
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