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ABSTRACT

" This paper presents a novel'appi'oa.ch to Bose—~Einstein condensation. We show how
one can get all relevant informations on the Bose—Einstein condensation phenomena from
the field theoretical -Green's functions in momentum space computed at zero—momenta.
One gets general expressions for the density of the zero—momentum state as a function of

temperature as well as a complete prescription for determining all thermodynamical

vatiables in the condensed phase. Explicit results are obtained by computing the

generating functional of vertex functions at zero—momenta under simple approximations.

L INTRODUCTION

. The relevance.of Bose—Einstein -condensation for understanding. the properties of

* Hguid  He* was pointed out firss by -L'ondon(z) who, besides: proving Bose—Einstein
-condensation for an ideal gas, suggested that the peculiar phase transition that liquid
- helium undergoes at 2.19° be regarded: as a Bose—Einstein: condensation: phenomenon:- The
-'temperature for which a finite fraction of al helium atoms will: be-assembied in-the Jowest
-epergy state, in.the ideal gas approximation, is-very- close the: critical temperature.of the

- A—point. The hypothesis that He?; in the superfluid phase; has to-do-with' Bose<Einstein

condensation received a boost after: the: seminal: work of 'Bogoliub()v_(g] who-:-sho*;ved"that
the "phonon-part of spectrum of excitations of - He* - follow :directly from- Bose—Einstein
condensation of non perfect gases. Nowadays there is a kind of consensus that superfluidity
has to do with Bose—Einstein. condensation. _ ) '

From the above arguments it follows that the description of .the coﬁdenséd phase of
He* should correspond to the description of the superfluid. The equation of state, internal
energy and entropy in the condensed phase are the ones in helium superfluid. This is the
main motivation for reanalysing this old, fascinating and not -yet .resolved (from the
microscopic point of view) problem. This paper deais with. an’ appfoach for tackling this
problem within the context of fieid theory.: : i _

The approach here propesed-is a variantof the' Bogolivbov method: We employ the
Bogoliubov method as a way of isolating the relevant degrée of freedom of the condensation

phenomenon (the P = 0 state or ‘the condensate}. - The functional :integration-approach

* allows us to write the Gibbs potential as a function of thes condensate.” This allows:is to

reduce the problem to a variational problem since thie system wiil choose the condensate
configuration which minimizes the Gibbs potential.
The next step, in order to provide a non—perturbative scheme in fieid-theory, for

determining the Gibbs potential- and’ the whole ‘thermodynamics; will-be- to-relate’ this




thermodynamical potential to the generating functional of the vertex functions of the
theory. This equivalence will be shown by employing the so—called background field
method. - This provides, as we shall see, a definite scherne for studying the system in the

condensed phase in field theory. We will show that this framework not only provides a

- well defined scheme for establishing.the problem of Bose—Einstein condensation but. also
[{and this is more important) provides a.weil defined scheme for.getting information on the
- system when condensation occurs. - In pa.a:ticuiar,.we will show how one can get:an equation
«of state as well as expressions for. the internal energy;.entropy and. other thefmodynamical
variables in the .coﬁ,densed- phase.:: These quantities: are expressed:in terms of the: Green's.
- function, of the associated finite temperature field theory, computed at zero—momenta. -

Besides. establishing such a general framework we will get:a more refined technique

for determining the occuﬁation: of the - #-='0- state as a function of the temperature.. Some

well known results are easily obtained from our expressions. . .-

In order to.present the framework. we review some basic ideas and expressions in

field theory at finite temperature in. Chapter TI., We review, .also.in this Chapter, some

definitions and formulae. that: are useful- when one. is working in the Grand Canonical .

Ensemble. In Chapter: _I'I we: formulate the Bose~Einstein .condensation problem. Our

- formulation of the Bose-~Finstein condensation leads naturally to a variational problem.

In Chapter IIT we show that the appropriate functional in the case of Bose—Einstein

- condensation: is-the: generating i functional. of the vertex functions (T') taken at zero
cmomenta. . This. leads: to.a-definite scheme. for making predictions in field: theory at finite

.- temperature.... The equivaience: between the: Gibbs. potential: in *the: presence of the

condensate and the.functional . I'. is.established: through the background field method
which iz also:presented in Chapter-IIL. - .. ...~

The formulation of the Bose—Einstein condensation in field theory is fully presented

- and exploited in Chapter.IV. ' The prescription . for the determination of all thermo—

< dynamical variables inthe condensed-phase is also exhibited in this Chapter.

Since Bogotiubov's method was formulated, é.ud later extended by Beliaev{s), in
terms of operators we have sho.wn the equivalence of our method and the operator approach
in Chapter V. Some of our results at zero temperature (determination of py{y)) are
equivalent to his. '

As a simple exercise and in -order to illustrate our technique, we present the
description of condensation at the zero—oop level for an interacting system in Section VL1
and the well known example of free bosens in Section VI.2. In the last case the phenomena.

i3 typically a quantum one. Some general results are also deduced in Section VI.3.



1L FIELD THEORETICAL APPROACH!4 )
IL1. WIEGEL~JALICKEE REPRESENTATION AND GENERATING FUNCTIONALS

In this paper we will be concerned with a nonrelativistic system of N particles
interacting among themselves through a potentiat V(%) (we assume bina.ry."
interactions) where % and %' are the positions of the particles. By employing the second
quantization scheme, in which. ¥ and ¢+ are field operators, the Harmiltonian for such 8.

system, in the Heisenberg picture, is

Hsfdéwﬂk,t)[ B ]w(it)+fd3i j ax i) #2) V) ¢+(m) w(i- t)

@1

where the field operator ¢ and w+ satisfies the usual commutation relations at equal
time, that is, '

w20, @) = az) . (22)

The thermodynamical properties of the system described by (2.1) should be inferred

" from the grand partition function =

1

= T [-e_ﬁlﬁ_”ﬁ]]‘ : BN )

where §=(T)", N= fd% 4% and p is the chemical potential.
Within the functional approach the grand partition function can be written as a sum

over field configurations satisfying pericdic boundary conditions(4) '

S0 =By o o o (24

' The fnnct.tonal integration representation for t.he Ha.miltontan (2 1) has been derived by

Wlegel and Jahckee( ) One wrstes

= - fﬂ‘f’fw.é%p.—sm S 9

where the action S{yf] in (2.5} is writtemas

. G
v "='f“'d%-'f -a'ax['q!f*(r,x)g?(r,k}*#-f

T f Cdr f d f A% AR, YR VER) PR AR = (26)

The thermodynamic properties of the system can. be inferfed " from- tﬁe Gibbs
potential Q% defined as - '

That is, from- Q , defined in (2.7), one gets the equation of state from equations. .

P = -], Cew
V=15

T G

Q= mE . o e

(2.9)




whereas the interral energy (U), free energy’(F) and entropy (S) are obtained from

a8 _ o

P = 004Ny _, (2.11)

s= 2 _ N (2.12)
aag :

One can study the thermodynamical properties of the system described by the
Hamiltonian (2:1) in the presence of an external source -J.. . In this case one is interested

in the thermodynarical potential €(J) defined as

VNN o O S —S()—L"drfd%a* @R DHE DR
= =”f‘”’¢‘@¢e O

(2.13)

The average in the ensemble of products of fields are easily obtaired from - §3(3).

The average of the field ¥(x) (from now in x stands for (#,7}), for instance, defined by

e PERN)

<l = g’ ' (2.14)
Tr e'ﬂ(H_f-‘N)
can.be obtained from (2.13} as '
<H)> = ’m—ijL . (2.15)
a3 (x)] p*_g

From (2.13) it can be seen that §(J)} is the functional generator of the connected

. Green's functions(z). That is

. . . Lo +m . . .
G(n’m)(x--'X‘;y"'-y')ﬁ . 6“ Q{J) . o : (2.16)
, PO Sk Bk B3y 65y, »

It is possibie to introduce another thermodynamical. potential I'(¢) through a

Legendre transformation: This: Legendre transformation is-(5)

B L
Py = Q[ +f drdei (%) Wx) + J(x) 970 -
_ 0o _ S _

| (2.17)

T(4) is the generating functional of the one—particle irreducible Green's functions

~ (vertex functions) of the theory. One can then write

.. X1 “
') = 2 2 ﬁ!'ﬂfd?ﬁ“'fdxnfdyl--~fdymx
' n m .
pm) - .
I Xy e Vo) By e lxg) Ny e o W) (2.18)
In order to compute the Green's functions at finite temperatures one can use the-

perturbative approack. In this case the method is the same as the usual one except for

some changes in the Feynman rutes(7)..



11.2. BOSE~EINSTEIN CONDENSATION

In order to study Bose-Einstein condensation we separate out the uniform '{in
space) field theoretical configurations. In this way one writes, in analogy with
Bogoliubov's approa.ch@),

Vo= Yyt B (2.19)

By substituting (2.19) into (2.5) one can write the Gibbs potential as a function of

‘the Bogoliubov's condensate, that is
Q0 = nﬂ(T,v,u,%) . _ ~ew)
* Since the number of particles with zero-momentum is given by
No= Vo=Vt , (2o

the dependence of © on ¢, is equivalent to the dependence of Q on Ny. As suggested

by Glassgold, Kaufman and Watson(®)

the important contribution comes from the term
that minimizes £ that is

Ny ' (2.22)

N
0
or equivalently:
o ' )
= . . 2.23
Tp, 0 - (2.23)
A

Equations {2.22)—2.23) or, equivalently,

10

BQO

o =0 T pay
"1!50:%

are the basic equations for the condensation -pheuoinena.-“From these equation one shouid
be able to get o
NO o 'No(ﬂ,T,V-) [ R : B {2.25)

This equation coupled with the equation

= — T .‘)
_ N T L 229)
allows as to write - e S R S
Np'=m NNV T) v ™ o i on 0 (2227}

The important point that we wanted: to-Stress.in.this section is-that.condensation -
phenomena can- be.reduced to-a variational.problem. .. In the next section we wiil be more
precise on which functional one-has to-find the-extrema. More specifically; we-will show.
that QYT,V.u,9,) isrelated to the generating functional of the vertex-functions computed
at zero momentum. This provides a definite scheme for calculations in finite temperature

field theory.
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. VARTIATIONAL APPROACH

In order to study Bose—Einstein condensation we shall employ the so called
variational method. As pointed out by L. Michel(s) tie formulation of this problem starts
with the construction of a functional I' (that for ihe breakdown of group symmetry is

chosen to be group invariant) depending on a field .  and also on external parameters that

we will label by T (I'(g.T)). Let ¢; be a solution of the following variational problem

"E‘W’T) =90 . (3.1)
. =g

The study of phase transitions ca.n be pursued by analysing the behavior of the
functional T' for different field configurations %.8(10—_1-2)_ : '
L Within the canonical enseruble it is known that the functional to be extremized is

the freeenergy of the system in-the presence of a background field -I‘(tp,T)(u-’l-Z).‘-' In that
context the study of phase: transitions. is carried out by analysing the difference between
free energies associated: to- different backgrounds (one of them is taken 16 be'the vaeuum of

the theory — (pv)-that is'one studies the difference between free energies

- FlyyT) = T Ty =Dy, C3e)

In fact there is plemty of space in the literature devoted to the study of the
behaviour and the minima of the effective potential V ) (10)‘ This thermodynamical
potential is defined as

V40 = %[F(@—F(wv)] (39

where ¢ is an uniform field configuration.

12

The idea iz then, in close analogy with the phenomenological Landau's theory of
phase transition(la}, t0 look for the extrema of Vi@ The minima corresponds to the
order parameter. These minima varies with T . Assume that at some temperature T,
the absolute minimum of Vi, is at ,. Suppose now that at some temperature T,
other minimum ¢, becomes equivalent to that of y,, that is Vgl ooTy) =V _{p,T)),
and that for T < T; ¢; becomes the new absolute minimum. In this case one has a phase
transition with a discontinuous change in the order parameter.

We have shown in section II.2 that the problem of Bose—Einstein condensation cé.n
be formulated as a variational problem. In this seét.ion we will analyse a more general
problem, that is, we will analyse the behaviour of the Gibbs potential when the system is in
the presence of a non—uniform background field % (*,r). In other words, following
ref.{10), let us analyse this more general problem and then, in the next section, considér.
the problem of uniform configurations that is relevant for studying Bose-Einstein -

condensation. 2(#,) represents in these circumstances the Gibbs potential associated to

_ the system in the presence of the background field #,(%,7). Let us look at the extrema of

this functional, that is
a0 |

o (3.4)
Pl =t

|
=

Let us consider the system described by the Hamiltonian {2.1} in the presence of a
background field ,(%,7). Under these circumnstances ane can introduce, in analogy with

(2.20), the potential Q(y,) obtained from (2.5) through the substitution

Y o— Pty . {3.5)
That is,

-y -8
OE(y) = e (b)_= fzw*3¢e -(_wf-wb) S (38)
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vy} as defined in {3.6) is a functional of the background field %, and it differs
from the Gibbs potential 2° defined in {2;7) by a factor 3.

Let us analyse further the thermodynamical properties of the syste.m in the presence
of the background field ¢, and of an external source J,. Under these circumstances, the

relevant functionals are Z(3,1,) and 0.y, defined by:

L oy Sl A R () I (x) ()]
Zua) = e = fgw DY e o .
(3.7)
By means of a change of variables one can write
o e ) w0+ I )]
2P, = Sip ed
_ o egﬁdr}'d:*i[.}*(x)wb(x)+.}(x-)gb’;(x)] . s

" where Zp] = Z(3.0) and Q@) = 3.0) stands for the above functionals evaluated without

the background field. “As it is well kwnon Z(J) and §}(3) are the functional generators of
the disconnected and connected Greén's functions, respectively. é(.r,wb) and ﬂ(J,wb)
stands for the same functionais in the presesice of the hackground .

From {3.7) and (3.8) it follows that

) = 20 [ ar [ @207 w0+ 30 5 (2.9)
]

14

8T,y

6%

© Being 9=

i, , We can write

M) = mwg]—f 'drf (BT + 9 Tx)
0 .

where T[] is the background ﬁe’ld._eff'ecti:ve action.

By substituting (3.9) into (3.10) it follows that

i = =" o [ @0 R IR
1]

éoﬁseduently if one derives (3.8) with regard to J * one Gbtains .
'ﬁm—* = d+ ¢
817

From (3.12} one gets the following relationship

I one substitutes (3.13) into (3.11) one then geté the :foilbﬁiﬁg relations:

iy = 1= [ ar [ 50700 8 + 309 ¥7() = TR) = Ty -

. the expected value of the field in the presence of J and

(3.10)

(3.11)-

{3.12)

(3.13)

(3.14) .




Expression (3.14) is- well known within the context of the background field

method(14).

That is, the generating functional for the theory in the presence of the
background can be obtained from the generating functional without the background field
computed just by making the replacement ¥ — P+, .

The free energy in the presence of the backgrouﬁd field is-

i _
(A} = }i%m[:r,%} = ;i%a {f[{g_,g_ab]_+f _d_r_fc_i%_*c:(f(x) ¢(x}_+:_.](_x).1.b*(x_)) } _

- (3.15)
Finally, one notes that if P, isa p'articulaf-éoldtibn'éf the déési:q:a;l equation L
% =0 =] ' - (3.16)
that is
Y. = Yo = ¥ (3.17)

then in the limit J-0 (3.13) leads to P= 0. Under this circumstance it. follows from
(8.14) and (3.15) that - - | o
i) = Ted - S (318
Expressiq_n {37__14) Is a very relevant one in our approach since it reduces the problem
of determining the éxﬁema of ihe Gibbs potential to that of ﬁnding the extrema of T .
The method that we have used in order to show the equivalence between the Gibbs
potential in the. presence of an external field and the generating fuhc'tiona;l is not new and is:

kmown as the Background Field Method(14).

16

The replaceméﬁt Y — P+, 18 clearly analogous to Bogoliubov's a.pprqa.ch_ to the .
condensation phenomena. Our reading of Bogoliubov's method is that it allows to isolate
the relevant degrees of freedom (the § =0 state} of the problem. One then proceeds to.
the nﬁuimiza,tion of the Gibbs potential as a function of this degree .oE freedom. The

system will choose the configuration for which Q(v,) is an extrerum.
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_IV. GENERAL THEORY OF BOSE-FINSTEIN CONDENSATION

Let us comsider the thermodynamic properties of the interacting Bose gas described
by (2.1} in the presence of a uniform background field that we assume to be real and

positive. That is, one writes

Y = \/P_b . (4.1)
For such a background one can write, on general grounds

n+m

940, T) pb2 (4.2)

f‘ n,m

= T(ym) = V§ 2 Z

m=0 1n=0

where T™™ gtands for the Fourier transform of the one—particle irreducible Green's

‘funetion of the theory taken at zero momenta

Fem. g = Ty . (4.3)

pPy=Pg-.-=0

The volume term, V in (4.2), comes from § function involving momentum .

_cdnserva.t.ion whereas § comes from energy conservation.

If one defines [y as

] @ m+n

Pt = ), ¥, L5 7 1000001 (4.4)
=0 =0 m: n:

‘then, from {3.8) and (4.2}, it follows that for uniform configurations one can write

18

py) = 8 QQ(ﬁb,T). = ﬁv re{fbevT] . L _ __{_4'5)

We are now rtéady to establish the framework for studying Bose~Einstein
condensation in field theory. In this context ail one has to do is to write the thermo—
dynamical variables in terms of I‘ef{(pb,T} The equation for, deterrmmnv the uumber of

particles in the P =0 state, for exa,mple, is equsvalent to the equa.mon

dreff

(D) =0 . ' - (4.6}
dpy : .
Py

The solution of (4.6} leads to the determination of p, asa function of - goand’ T ;
that is '

(v = pc(T!-u) . T .'15 _.::__'. (4'7)

Therdepeﬁdence of the condensate on T and i requires some care in order to
determine the thermodynamical variables in the condensate phase. One needs.to Qerive Q
with regard to the proper variables first and then sub§titﬁs'e the é&ﬁdensété_éoﬂﬁéumsion

The equation of state, for msta.ace, in the presence of the cordensate should be

infered from the following equations
P o= Tylpen® T T 4y

[ ]

, (1.9)
aﬁ : }pbzpc' : s

< |2

We say that there is Bose-Einstein condensaton whenever there is a solution for the
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équations (4.6){4.9) satisfying the condition
T >0 o (4.10)

From equé.tions. {4.6) and (4.'9)‘ one should gét.' the expresgion for "t_he bccﬂp'atibnrof

the § =0 state as a function of % and T. Thatis

pe = Pc[%T] . (4.11)

The system is supposed to exihibit two phases. In the non condensed phase

st pe =0 {4.12)

—

whereas in the condensed phase:

e 2t N )

v

The critical temperature is the one that distingaishes the two phases. g, plays the

foie_of the order paré.méter._ One defines the critical temperai-;uré as the one Ebr which,
. . . IR I -
pc[V,Tc] =0 T

The whole thermodynamies can then be inferred from: equationé (2.8)—(2.12) with
all variables computed at the field theoretical configuration that makes I' an extremum.
As far.as condensation is concerned T .(pT): is the relevant potential. In terms of

Fosi(pT) we can write, in the condensed phase

S

-

It

20

Feff(pch). X

AL g g, T

Po=Ps. -

) _
Vo (8 L ogslpp,T))
3B W L ettlPb Ipb_=pc‘

V Lol TY + 1o N

Fv gj;-(reff(Pb»T)) : — NG
) Pp=hg. -

whereas in the non—condensed pha;-serone has for the same variables:

S

<im

il

T o(0.T).

'ﬂ‘et’f(o’T)

o
va ar
Fi/i] eff(o?']_?)]

V Pogg®T) + ¢ N

-#v %3 {Tere0D) — N 5.

(4.15)

(4.16)

@17)

'(4.18_).

(4.19)

(420)

(£.21) -
(4.22)
(4.23)

(4.23)

Equations (4.15)—{4.19} are. then the basic set of equations describing the

condensation phengmena.
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Although the field ‘theoretical approach have already been used to treat Bose—
Einstein condensation our proposal differs from the others. We have stressed the need for
finding the dependence of the Gibbs potential in condensate configurations and, from this,
to derive the whole thermodynamics. Furthermore cur treatment is very gemeral and

explicis results depends only on cur ability to determine T #{p,T).

22

V. OPERATOR APPROACH AND ZERO TEMPERATURE EQUATION OF
STATE)

It is possible establish the equivalence between Bogeliubov's method and the one
presented here by making use of the Operaior approach, chaﬁ is, the:separation (2.19} is
implemented in the sense of operators. In this case we separaté the operators a, and aj

from 3 and w+ thus we write

g
b= +—

S R
. Y
B o=t

‘In order to see that:the method here presentedis parallel to Bogolinbov's we shall

work within the.ngual Green's functions -approach. The definition-dnalogous to (2.5} is =

= = fvaw* Sl o , (5.2)
where . o

s() = fd*x {— 19700) & 900 + 320D ) — 4 700 w00 +
¥ f o f a4 9 (x) ¥ Vixx') *() ofx) | . (53)
The Green's functions in the operator approach are written as time ordered products

(T) of fields
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PGy Xy vy vl <T{ulx) o wlxg) 9y - v r)S>/ET T (5.4)¢
where § is the S—matrix operator for this system, that is

8= Texp {—i ffdx1 dxy ¢+(x1) Wx,) Vi) ¢+(sz ’j’{xz)} : (5.5)

- The m particle Green's functions in the condensed phase is defined as the one with

2m products of ag{ag) in (5.4) after the separation (5.1}

(k) ao(la) (1) aa(té)sb (5.6)
= .

iGb(tl---tm;t}---tm) = <T{ N ~

{1] e

In his relevant paper on the method of Green's functions in the condensed phase
Beliagv. obtained two important results-for.our: purposes: The- first result:concerns the
general structure of the Green's fimctions in.the condensed phase: - They are factorizable as

products of factors K(t;)
TGty -t 5 8- otg) = K(ty) -+ K(ty) K(8]) -~ K{ty) {3.7)

where K(t) and K*(t) satisfies the integral equations

*
K(t) = C_)-E-J.dt.' g1~ L SUKED
VTt

(5.8)

' *

K*(1) = ¢*+ f di’ g(t-e1) L SUKKD)

e Y K8 )
with C (and C*) defined by

vt o sK(t). v '

- 'Cj' m(KK*)d . Ng
The second important result is that in this operator approach = can be written as
the exponential of a funciional © of the variables K and K™ under the form

PR
z = JHK'K) (5.10)

and the functional © can be expanded in a series totally equivalent to (2.18). This series

is, following Beliaev nota.tion{3),
QK*K) = V 2 J.dsl- cedig dtge - edel WO et
W '

KMt - K¥t,) K - K(tY) (5.11)

where W(m)(tl- *+ty s b]r o -ty have been identified by Beliaev as "certain vacuum loops
with m pairs of incomplete vertices". These vacuum loops are, as shown here, the vertex
funetions of the theory.

Instead of analysing the structure of the one—particle Green's function, as was done
by Beliaev, we prefer to take an alternative route. This will provide a way of showing the
equivalence between our approach and the one that makes use of operators. The
alternative route will be to concentrate in the study of Q(K*K) . It is then clear that the

condition analogous to (3.4} is
80
= . (5.12)
&K

From (5.8) and (5.9) it follows that K is time independent and has a form
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analogous to {(4.1), thag is -

K =45 . . :  (519)

. ,
pg) = TV 2 2 00, 0) —0 (5.14)

" where 7 is the total time snterva,l (aua,logous to § in finite temperature}. ¥f one goes t0.

the Euclidian version {7 - i) one gets at zero temperature

. min
2

" | -
) = V Z Z fmnd,. 0, Tooy — & — . (5.15)

m'n'

The properties of the condensed phase-can now be studied direétly from £%p,) .
. This, as we shall see in the following, is a shorter route than the' one proposed by Beliaev in
" which the Green's functions themselves plays the relevant role. The minimization

- condition (5.12) implies

m-+n
2 . .
2 2 flmalg .. .0, T=g) ! (min) _ o (5.16)
=< min! 2 :

which allows for the determination of p, as function of p

bo = Boli) S (517)

26

" equation (2.9) implies now
e mk
= = z Z F{m“)on -0, T-U] —t 5.18)
v L [ ( ) min! (5.18)

Equatxons (5 16) and {o 18) a.Ilows us to determme po ‘as functlon of (

.4
...,,._..J

the equation of state shbuid be infered from

m+an

—Z 2 [F(m")(a-- 0, T=0) gl

2
(5;‘2(}}
m!n!

and equations (5.16) and (5L18)=--', '

We shall see later that equation (5.16) that allows us to determine p, = go{p} is
equiv;'a.ient to the one obtained by Beliaev by using the operator approach.

The televance of our equations is’that they ‘détermine the equation‘of sfare:for
hetium superfluid for temperatures very close to'zero. We shall write:down this eqhiation of
state explicity in the low density approximation ir the next section.

Equation (5.18) will permit us to study the depletion of the condensaze as aresult of

quantum effects(ls 16)
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VI SIMPLE EXAMPLES
VL.1. CLASSICAL APPROXIMATION OR ZERQ~LOOP APPROXIMATION

We shall see that .depending on the nature of the potential there can be
Bose--Einstein: condensation at the zero_—loop- level. 11_1 o;de__r to _see_this let us a_p_piy our
scheme to an arbitrary potential V{%—&') .and lobk at the condition that the potential
should satisfy in order that, at the classical level, th«__are be Bose—Einstein condengsation.

Let us denote by r® the zero-oop graphs contributing to this approximation.

One has, schematically,
r\_o 1 _ .

-0 .
1" (2.215.

where the biob, in this case, takes into account; the non—locality of the interaction.

From (2.18); one can write for 1. independent configurations:. -
rOy) = ﬂ’j‘d%ﬁ 9 (V) o] +
+ ,BJ.fdai d¥% (R} PR VE) @R () . (6.1}

The Euler Lagrange equations (3.1) are, in zero loop (or classical level) approximation

ﬁz 3 1 r r ; .
—Ew(k}~mb+2fdi'v(i—i)¢*(i)1!)(?_’()w{*) =0 .

For a constant background field one can-write,. from (6.1)
ff
) = 8 V{— ko, +E ﬂ%] =B V[Fe (ﬂb.T)] g

where £ in (6.3) is the integral over the whole space of the potential |

g = Jd"fl.V(ﬁ); E
The Gibbs potential is then. _
Q) = V[—Mb.+eﬂ%]

The condition that 0° be minimum,

leads to the condition
Zep, = u

whereas equations (4.9) and (5.5) implies

<=

by =

(6.2)

(6.3)

(6.4)

- (65)
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This means that at the zero—loop level (cla.ssical level) all particles are in the

(16)

. temperature and. at low densities /.

_ condensate. This approximation will then be useful in the description of the system at zero
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The internal energy U is, by using (4.17) and (6.3)

U= sv[%]z | . | (6.9)

whereas the pressure can be obtained from (4.13), (6.7) and (6.8). We get
2
P = 25[5] .  (6.10)
v
One notes from {6.10) that in.order that the pressure be positive one has to have

e >0 . _ (6.11)

Condition (6.11) has been emphasized by Bogoliubov who calls it the "condition of
thermodynamic stability of a gas at absolute zero". This condition imposes a restriction on
the possible types of interacting forces that aliows for Bose—Einstein condensation.

Condition (6.11} follows also from the requirement that Q° be minimum, that is

q:at

> 0 ' (6.12)
dp?

The equation of state {6.10) has been derived in ref. (14} for a hard sphere gas.
Equations {6.7) and (6.10) can be-.found in some papers as well in text books!®). We just
wanted to show how one can derive them by using our general scheme.

At the zero loop level there is oniy one phase (the condensed one). Furthermore
this occurs only for porentials satisfying (6.11). In particular, there is no condensation, at
this level, for free particles. There is condensation of free parﬁicles, however, when one

introduces quantum corrections. This will be done nexs.
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VL.2. QUANTUM CORRECTIONS — FREE FIELDS

In vrder to illustrate how the method here proposed works, let us éompute Cipy,T)

explicitly in the case of free fields.

For free fields, the integral representation” (2.5)f is reduced 10. & qua.dr'aﬁc one,

namely
B ffar: b w*ww T o
:.«_J'ge/f*.csz [ "o T, ] C (613)
By making the substitution (3.5)-with.' Wy, given:by (41} dn_-g::ge_t:s; o
o v T
oy = o Moeh _ Viay | f.‘ﬂw.@w"eﬂf W‘ z.;
{6.14)

Performing now the quadratic integration one gets

Qp, Ty = B2%p,T) = BV Peff(PﬁfT)

. wr-ny
=ﬂV—pﬂb+zl;J’ffé—:r%ln[l— #H s {6.15)

The ‘extremum condition (4.6) iniphies; froi {6:15), that

=0 . .. L __(.6.16]
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In this case we have two phases. In the condensed phase p =0, and by imposing this

condition and using (4.15)—{4.17), one gets the usual results( 117

P__::_f%fffﬁ%m[l-e"%]_ _ .. _ | (6.17)

N_, I B 1 )
v P+ {27r)3f a3k e®2/2m gy (6.18)
U _ ” f ob K2mo 610
v J @n? gtfem _ |

Other thermodynamical variables can be easily written down. They are found in
text books(17) and can easily be inferred from equations (4.18)—(4.19) by taking 4 =0 .
The condensed phase occurs for g, > 0. From (5.18} it follows that for free fields

the dependence of p, with the temperature is

g, =N__1 fd% _1 =N [m }3J. 'dsﬁ"
Vo {(2x8 eﬁﬁ?/gm _1 v %8

[m—Q—E] @y A (6.20)

<:|z

where ¢ in (6.20) stands for. the Riemann zeta functions ((x). The condition >0

implies that BE condensation occurs for T > T, where

2/3 .
T, = % {%c(sfz)] . _ (6.21)
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In the non—condensed phase {p,=0) oune gets the same thermodynamics of an ideak
Bose gas. Under these circumnstances all the thermodynamical properties are derived from

the Gibbs potential

Q9T p,=0) = Kfffﬂ In [1—e_ﬁ(%_m] . | (6.22)
yo. ﬁ (2."-)3' ) .

VI.3. LOW-DENSITY APPROXIMATION

Let ug consider the first two terms of the effecsive potential in the expansions in. .

powers of_ p,, in (4.4)

E Pyt =~y + 02 C (623)

Approximation {6.23) can be thought as a low—density approximation since it will
be a good approximation for determining the prbperties of the system for low—densities of

the § = 0. The general structure for (T) and &(T), in perturbation theory, is .

= o+ F( T M) | . _ O (620)

p(T}- M+

and
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e+ YO

= € +6(T,p) (6.25)

e(T)

The Feynman rules for computing these graphs are the ones approptiate for finite
temperature field theory(ﬁ).
' In the fow density approximation one can see that our framework is similar to that
of Giuzburg—-Land:m(ls). The parameters #T) and .e(T) are here completely determined
from the Green's functions of the theory. These can be determined in perturbative theory.

.. From {4.6) and (6.23) we have

pc("_[“#) = @ = _MLE)_- . (6.25)
&(T) e -+ G(Tu . '

Within the low density approximation it is easy to get the whole thermodynamies.

One writes, for example

E .

%z [i_g%] {%J—%ﬂe? ]2 - (6.27)

!

The zero—temperature limit of the low density approximation for a hard—sphere gas

V(E—2') = A FR-) (6.28)
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is fairly easy to predict. For V given by (6.28) ihie effective’ poténtial has thesame fotm
as the elassical one:
A

opbkDe o L R R e .

Perr o0 = — g oy + 4500 L (6.29)
where g, Ao are the renormalized’ chemical potential, and cbupling'céﬁé.t'téht."' Within
the low density approximation there is nio depletion of the - 3= 0" 'stdte. "All particles are
in the condensate:

<=

. The other thermodynamical variables (P, U, F) are the ones predicted “by the
classical results (6.7)—{6.10) witk ¢ replaced by A and p replaced by b -
Although the low density approﬁ:ﬁétion is apparently good for deseribing the phase

transition and determining the cfitical temperature from the condition ‘

one runs into difficulties in impoéing (6.30j for the déécripéion of the system at the ¢ritical
point. For T =T,, with T, given by (6.30), one gets zero pressure and, by using (6.27),
IV\I,: 6. Our conclusion is that, up to the terms that we have worked out explicitly, this
approximation do not lead to a sensible method for.describing the critical point. . A better
description of the phase ﬁransif.ion is achieved.by summing the series (4.4) (by using the

loop expansion) and then making the whole thermodynamics(l-g)-.
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VL4. FURTHER GENERAL RESULTS

Without making any explicit calculation for a realistic model (this will be done in a
fufure pubﬁcasion(lg}) we will go a little further in gezfing general results and compare
some expressions of ours with those available in the lterature.

By employing the loop expansion one can write, on general grounds,

0 ' '
CopopD) = TonT) + TlgdpyT) (6.31)
here 1‘2‘? 0T} is the zero—loop contribution to T (py,T) and is given, from (6.3), by
T = o, el B )

and I are the higher ioop contributions to Lo

Equation (4.6) for T'y;p given by (6.31) and using (6.32) is then equivalent to

a
b= Loy T  +epp. - _ (6.33)
o [BEE*% ]p “Pb, o

<

This Tesult is'equivalent to one obtained by Beliaev(®); Since in ref. {3) there was
no: equation: analogous’ t0:(4:16): Beliaev suggested that from equation (6.33) we should
determine p once py - is given. We can see that this i3 not the case since, as explained
before, we have to deal with (6.33)-and. (4:16).

For a hard sphere gas in which ultraviolet divergences appears, equation (6.33) gives

the renormalization condition for the chemical potential. The renormalization condition
5)
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g
by = [a_reff(pbru)} : (6.34)
R Py Pp=0
Another interesting relation that can be inferred from our approach is that it allows

us to write p in terms of average in the.ensemble of the interaction energy density. By

making the substitution (3.5) in (2.5) and by deriving with regard to p, we get

D (< (re)> ) (6.35)
dpy,

pva -

[t} |~
n
[ [~

So that, for the condensate configurations it follows that

pve = Laa, > o (6.36)
o 3pc - o
where ¥, in (6.33) stands for
8 . , '
Yine = f Jdgi fd3i ¥*(x) 9(x) V) 9*(y) d(y) - (6.37)..
0 _ ,

By using periodic boundary conditions one car write

27 mir

W) =e Py ' (6.38) |

So that, as a resuit of the periodic boundary conditions (6.36) 1s equivalent. to: -
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a
Vi = gp; <Hige> o (839)

where II; is the interaction enérgy. )

Result (6.39) is an exiension to finite temperatures of a well known result in the
study of condensal;ion(s). Expression (6.39) implies that u givés the rate at which the
interaction energy of the system changes when condensation occurs. No surprise then, that

# =0 in the free field case.
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VI. CONCLUSIONS

In this paper we have shown how field theory at finite temperatures provides a way
of achieving a complete and general description to the phenomena of Bose—Einstein
condensation. The relevant parameter {the density of the B=0 state) as well as all
relevant thermodynamical variables are completely determined, in field theory at finite
temperatures, from the Green's func_ti_ons,-_in MOmIentuIn Space- at: zero—momenta.: : This
would permit us to achieve a description of helium. superfluid at:very low. temperatures
from a microscopic theory.

The basis of our approach is Bogoliubov's separation: of ‘the relevant -degree of
freedom in the study of Bose—Einstein condensation. The relevant degree of freedom is the

uniform configuration, The system prefers among the uniform-configuration shatfor which

the (ibbs potentjal is an extremym. The problem is then reduced to-a variation probiem.

The most. interesting aspect of our approach is that, since-the Gibbs potential for. an
arbitrary background configuration can be related to-the generaﬁing funcsional of the vertex
functions at zero momenta, one has a very.weil established scheme for determining ali
relevant physical quantities for the condensation phenomena.

The implementation of our scheme for making realisﬁiic predictions relies on our
ability to get sensible approxima.tion.s" for [ . Oue‘pbssibiii;jr would be 1o use a2 more
tefined low den31ty apprommatlon (up to qua.drat.lc terms one gets nothmﬂ mneresmn g}
selectmg t.erms farger than the quadramc ones and t.hen use the peruurba.tne method 0
compute the coefﬁments in the expan:.uoa . o ‘ ) - _-

The most attractive and tratable a.ppromma.monseemsm be the .ldoﬁ;e;pahsfén... I_ﬁ
the case of a hard sphére gas the effective potential is known analytically up to the 6né
loop approximation(S). We have worked out this case explicitly and shown that this

approach is, in fact, richer than other methods presented so far to treat this pmblem(lg).
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The background field method is essential in order to relate the Gibbs potential (as a
function of the density of the P=0 state py—0%p)) to the effective potential
{Pe(p,)). The relationship

Q%1 = VT gyl T)

between: these thermodynamical potentials-is an essential one in order to obtain the whole

thermodynamies correctly and, as a consequence, how to infer the properties of the system

from: the effective potential.

The use of the effective potential in the study of helium 4 is not new. In fact, in the
papers of ref. (5) Toyoda studied the A - tramsition within the hard sphere gas
approximation. There are however, important differences between the approé.ches
proposed  in. this paper ‘and Toyoda's ene. We have been mainly ‘concerned with the
determination: of the density of the .condensate and in the determination of the whole
thermodynamics from the: effective potenna.l Toyoda, on the other hand was mamly

concerned with the critical temperatu.re, defined by hinras

ek {  p
T gy | e
Even for the'determlfnation of the critical temperature we will get a result different
from: Toyoda,'s(lg) since tﬁe critical temperature for us is defined by p(T,) =0. One
z_l}en- has. to solve, for determining the critical temperature, the set of equations (4.6) and
o) j .. S _ . ) .
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