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Abstract

A new learning algorithm for the one-layer perceptron is presented. It aims to
maximize the generalization gain per example. Analytical results are obtained for
the case of single presentation of each example. The weight attached to a hebbian
term is a functi«.;m of the expected stability of the example in the teacher perceptron.
This scheme can be iterated and the resulf.s of numerical simulations show that it
converges, within errors, to the theoretical optimal generalization ability of the Bayes
algorithm.

Analytical and numerical results for an a.lgm.'ithm with maximized generalization
in the learning situation with selection of examples are obtained and it is proved
that, as expected, orthogonal selection is optimal.

PACS : 87.10.¢ +10, 75.10.Hk, 64.60.Cn, 89.70.+¢

In. the statistical mechanics aﬁproach to learning from examples and generaliza-
tion by neural nets [1-4], the single layer perceptron has been the prefered labora-
tory [5—~1 1]. This is certainly due to its simplicity which affords relevant results from
simple calculations and simulations. Despite its simplicity it has reveale;i a variety
of interesting properties, and despite all the efforts not all of them have been totally
understood.

The perceptron generalization problem mostly studied is that of learning a linearly

separable boolean function
B(§) = ap = sign(B - §) (1)

where § is an input vector with N Ising components aﬁd B isavectorin RN
. The boolean function is equivalent to the output of a “teacher perceptron” with
synaptic coupling vector equal to B, which can be taken to be normalized to one.
The task of the “student pereeptron” J is to approximate this function by using
only the information contained in a “learning set” £ of P = aN examples. An
example is a pair of input vector gﬂ and correct output ep.

Two lea.miﬁg situations, as defined by Valiant [12], will be studied. In the first one,
examples are randomly drawn with a fixed probability distribution, here uniform in
RY . In the second, which has been called learning from an “oracle”, or with selection
of examples [9], the teacher gives the correct answer to questions § appropiiately
chosen by the student during the learning process.

The quantity of interest is the generalization ability G(a), defined as the probabil-
ity that a new random input 5‘;,, statistically independent of the learning set, be well
classified by the student perceptron. It depends only on ¢, in the thermodynamic
limit N — oo [4,7]

Gla) = 1 = Zacos(p(ar) @




-

where p is the average overlap of the teacher and the student, p= R/J, R=5.J
and J=+v/J-J. The error of generalization is e, =1 —G(e). It is also useful to
define the learning error ¢;, which is the probability to misclassify a vector belonging

to the learning set..

The overlap p is assumed to have self averaging properties, and thus is inde-

pendent of the particular learning set in the thermodynamic limit. Starting from a

tabula rasa Jj = 0, the strategy of learning is a generalized Hebbian prescription [3]

1
J“.H = ‘IF+EWL‘U§ Sp B (3)

The hebbian term is weighted by the function W,, up to now unspecified, which
may depend on the previcus states of the synaptic couplings. It may be called the

“attention” paid to that particular example p. It follows that

1
By = K.+ N W,o5b, (4)
_ 1 (W, op by wi '
JH+1 - ‘IM {1 + N ( J“ + 213 (5)

where only terms up to order 1/N have been kept, and where

j;‘s;#
Ju

b,_,:.g'g“ and hp=

In the case of single presentation of the examples, b, and k, are gaussian corre-

lated variables with joint probability distribution

P(bm hu) = P(hn) Plbh) =

= —\/% exp (- %’2‘) ' T\/%;ﬁ exp (— %) (6)

and p = p,. The overlap evolution is given by

W2
_p“ n] (7)

1
Put = Put N_J# [(bu = pub) o Wy 27,

At this point we notice that if the normalization of J, had been chosen to be
spherical, eq. {3) would have extra terms to account for the contraint, but eq. (7)
would be unchanged. After averaging over the possible cheices of §,. , and taking

the thermodynamic limit a differential equation is obtained for the evolution of p

dp 1 e o,
def - 7f_m dhydby P(by, hy) | (b — phu}op W, — ==+ ®

where o = (u/P)o, refers to the fraction of examples already presented. This
equation describes the “rule extraction speed” of the learning algorithm, and is a
funtional of W. Since maximizing dp/da’ maximizes the gain in generalization
ability per example, the problem of determining W turns into a simple variational

problem, Its solution is

Wi = J(ra —Ay) (9)

where

Ku = obbufp  and A, = obh, (10)
are Gardner-like parameters and the local stability of example g respectively. The
parameters &, are the desired stabilities of the examples (divided by p). They have
a gaussian distribution truncated at zero. It can be seen that forcing large stabilities,
as in the random mapping case, will lead to overfitting of the examples, and it is thus

not & good learning strategy if generalization ability is to be stressed.
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Ti'xe solution W ca.ﬁ only be used by the linear perceptron or any other with an
invertible activation function, since it requires knowledge of b,. For the perceptron
with activation function given by eq. (1), this is not possible and the best thing that
can be done is to use the expected value of |b,| given the local field h, and the

teacher output o

i Jd[b| P(b, b) W
Wi, Ju, Ay) = ———"——4 |
We have previously studied a related algorithm [11] where the expected value of b,
was used. A smaller generalization is achieved since not all the available information

was used. Using eq. (5) the weight function

1 A2 1
W(Pm Jm AH) - \/2—1r Jﬂ’\# exp (_ ZA?‘) H(—A#//\p) (12)

is obtained, where

=2 girey) (13)

and

H(z) = f:o %e'wz = % erfc(%) - (14)

This weight function still depends on p. By introducing it into the differential

equation (eq. (7)) governing its evolution it follows that

dp  1—p* foo exp{—h?/A%)
i = 2mp oDt T HGRIN (1)

where Dh is the gaussian measure (27)~1/2 ¢~%*/2 dh, Numerical integration leads

to the value of p(a’) which is used in equation {12) to define the actual algorithm

used to perform the simulations. Although it still depends on J this presents no
problem, since from equation (5) & differential equation for the evolution of J{a)
can be obtained and it leads to J{a) = p(a) . 7

In fig. 1 the resulting weight function is shown, together with the corre:sponding
weight functions for the perceptron, Adaline and the relaxation algorithms. For each
of these methods, the better its weight function approximates the weight function
W the better its performance will be. It is reasonable to call this learning proce-
dure the “expected stability” algorithm. In fig. 2 the theoretical prediction for the
generalization ability is compared to a numerical simulation.

Up to this point only the “single presentation of examples” strategy has been
discussed. It is possible however to extract further information from the same learning
set by presenting again the examples already shown. We are not able to say whether
the generalization gain per example will be maximized by using the weight function
eq. (12) as before. We have only proved this optimal result for the first step of
this sequential dynamics. Nevertheless, it seems quite natural to iterate the same
algorithm. But now notice that the p and J dependence on o« and on the
iteration stage ;. are not known. The questions that are raised are what va.lu
for them are most appropriate for this problem. We have used the following recipe.
First of all, the dependence of the performance on the step size, within some bounds,
seems to be small. 1t only influences the convergence rate mildly. We have set the
J parameter equal to one. It is clear that during a numerical simulation we have
access to the vilue of p. We have tested the numerical behavicur of the method in a
simulation with the measured value of the overlap p(o) substituting the p parameter
in the weight function. This is not very realistic and we are just judging the potential .

of the algorithm if p were known. After numerical convergence p was found to
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be very close to the value of the Bayes algorithm of Opper and Haussler [g], which
cannot be implemented on & one layer net, but gives a theoretical upper bound. Its

performance is obtained from [g]

2 oo 42,2
N s o 09
which follows from & self consistent replica symmetric calculation. This suggests an
approximation which actually consists in using the known Bayes value pp{a) for
p(a,ﬂﬁ"j in the weight function. The result of a numerical simulation is shown
in fig. 3. The actual performance of the pereeptron is seen to converge to that of
the Bayes algorithm. We do not claim to have other than quite strong numerical
evidence for this algebraically fast convergence in the number of the iterations. The
difference between pp and p is smaller than 102, with the simulated result being
the larger due to finite size effects. It is interesting to note that the generalization
error ¢, and the learning errer ; converge at approximately the same rate. Thus the
measurement of e; can be used in practice to decide when to stop the learning phase.
The learning error has been found to be zero up to a value o, =~ .8 and is smaller
than 2 x 1072 for any o.
Now the second learning situation is considered. Learning with selection of exam-
ples has been previously studied in [9,10]. If the examples are chosen in any special

way, then the distribution P(k) is modified. The evolution is then governed by

dp 1 p* g 2112 1 1
2= ?p_[—mth(h) (K /N | g + (17)

and the gain per example can be seen to be maximized if P(k) is chosen to be a
delta function centered at h = 0, P(k) = &(h). That means that only examples

orthogonal to f“, the accumulated knowledge, will be used during this learning

7

process. This justifies the heuristics of the selection criterion of Kinzel and Rujdn,
whom studied the case of selection of examples with a Hebbian weight rule W = 1.

The weight function is obtained from equation (12)

- 2 .
Wpu, I Ay} = \/'; Juhu (18)

In our case eq, (17) can be easily solved to yield

p = \1—e i (19)

thus the weight function is W = ‘/(2/_1r) exp (—2). Equation (19) shows that
the selection of examples leads to expontential decrease of the generalization error,
e = * exp(—a/x), whereas without selection of examples the error only decays
algebraically as ¢, ~ 0.44/or. Figure 4 shows results of 2 numerical simulation
compared to the analytical prediction as well as the case where W =1 [9]. Finite
size effects account for the differences.

We now argue that the weight function W can be thought of as a measure of the
“value of infom"m.tion” of a given example, for this particular problem. Althought this
concept has not been quantitatively defined in general, it has been discussed in the
literature [13] as related to the “degree of non-redundancy " or “independence” of
each example’s information content. The value of information is supposed to depend
on the particular task to be implemented and on the state of the receptor, while
the Shannon information content is an absolute quantity independent of task and
receptor’s previous experience. For instance consider an example with high overlap
h, which is well classified by the student-perceptron. It will certainly be of very little
value to modify any possible difference between B and J. On the other hand if a

high overlap example is misclassified, the weight will be very large and also its value

'8




of informa.tio#. Note that a high overlap h means a high & priori confiderice (stability
under addition of noise) in classifying the example and the misclassification of this
putative easy example means that a high value of information should be attributed
to it. The selection of examples works by choosing examples with a reasonable high
value of information.

In conclusion a new learning procedure has been presented which aims to maxi-
mize the generalization ability. The first step of the learning dynamical process has
been studied analytically and numerical results of its asymptotical behaviour have
been presented. These seem to saturate the theoretical bound of the.Ba.yes algorithm,
Whether this is true or not remains to be seen and it certainly deserves further study.
The dynamical properties of this iterative scheme will be the subject of future work.

After this work was completed, we received a preprint by Meir and Fontanari [14]
where a relaxation algorithm with an o dependent & parameter was studied. It
seems, at least numerically, to also saturate the Bayes bound. Their choice of an
optimal #(a) in the relaxation algorithm leads to a weight function which approx-
imates W(p,J,A) of eq. (12), at least in the region where h, is close to zero.
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Figure Captions

[Fig.1] Examples of weight functions of the “expected stability” (solid), pereeptron
(squares-dotted), adaline (dashed) and the relaxation (circles-dashed) algorithms
for fixed a.

[Fig.2] G(e) : the solid line is obtained from a numerical integration of equation (15)
. The squares are the result of a simulation with N = 199 averaged over 200
runs. The lower curve is the pure Hebb [6].

[Fig.3] p(a) of the iterated expected stability algorithm ( circles ) average over 20 runs
N =149 after 50 iterations and the Bayes algorithm pp(a) (solid line)

[Fig.4] Convergence of the Iterated Expected Stability algorithm: Ae, = e {npr} —
ey (iter — 1) (circles) and Ae; {squares) converge to 0 at approximately the same
rate for fixed & ( dot : @« = 0.6, dash: @« =2.5 and solid : &« = 10} )

[Fig.5] Selection of examples. Expected stability, circles N = 149 |, squares N = 249
both averaged over 30 runs, theoretical value from eq. [18] is the solid line, and

dashed line for Hebbian (W =1) as in ref. [9]
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