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Abstract
We show that the Chernesiinons theory coupled fo fermions e be consistently quan-
tised in the Hamiltonian formalisin without gauge constraints. A new structure of the
anyon operator is obtained. The connection with the Lagraugian approacl is iHuminated.
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The study of 241 dimensional matter coupled Chern Sinons { C.8 ) theory has re-
cently gencrated considerable interest bothy from the theoretical and experimental points
of view!, Although the quantum mechanics of these theories seem to be reasouably well
usderstaod?®, there are several criticisms and controversies regarding the field theoretical
results® =7, The Lagrangian (path integral) formulation®, for example,. yields results which
disagrees with the canonical Hamiltonian formalism?®®. Even within this canouical for-
malisin, which will also be the subject of our analysis, coutradictory results have been
reported 2. Moreover the construction of anyon vperators displaying fractional spin and
statistics involves ambiguous manipulations which Liave been criticised®~7. A possible clue
to the conflicting results is the usage of gange fixed Hamiltonian methods*®? to discuss
the physics of gauge dependent (anyon) operators. It is not surprising, therefore, that
different results with different gauge choices Lave been found in the literature®.

Recently we'® suggested an alternative, gauge independent Hamiltonian method of
quaiitising the matter coupled C.8. theory. In this paper we use that formalisin to show
that the C.5. theory with fermionic matter coupling can be cousistently quautised. All
the space time syminetries of the theory are preserved and the complete Poincare algebra
is satisfied. Qur analysis leads to the coustruction of nmultivalued operators which ereate

" the plysical states of the theory with arbitrary spin. These arve, thercfore, the anyon

operators of the model. Coutrary to carlicr stractures™ 5 Lhe anyon operator here is
gouge invariant so that the observed elfects ure physical and not gauge artifacts. The
anyon operators obey graded commutation relations consistent with the spin-statistics
theorem valid for bosons and fermions. The counection of cur Hamiltonian analysis to the
Lagrangian (path-integral Yorinulation? is elucidated. Finally we show that the redefined
theory in terins of the anyon variables is effectively free. Formal inanipulations, which
earlier gave rise to controversies® %, have been avoided.
The Lagrangian of cur model is given by:

I N — 8
L= TP+ T b+ oz A0 W
wliere we use the form,
G = PP~ P . (2)

to préserve hermiticity. Without any loss of generality the coupling lias been set equal to
unity while the 4 matrices in 2+1 dimnensions satisfy the algebra,

() =20 L =gt i, (3)

with, ¢"* = (+1, -1, 1) and "% =1,
The Lagrangian (1) is invariant (upto a total divergence) under the gauge transfor-
mations,
. !,!5(&15} ey eio-(zld;(;l:} s -l];[.l,) - ;ﬁ(m)e—ia(r}

(4)
Apla) — Apz) + Jua(z)
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Fhe canonical momenta are giveu by,

ac oL [ :
My=—7=10 , i e = ——gg A .
T M=ot = gzeid _
oL i - T4 i (5)
Ho = == = —~(¢le , o= o = oy R
3-1/'1“ 2 (lj Tu } arl}a 2 (70 ij‘,) 3

so that Dirac’s'! classification gives the privary constraints,

i .
Py=1l, =0 . P=1; - 726,')‘/1“7 = 0
i 4 : (6)
-
o = ot 5UPw)a =0, g = ITa+ S{a0i)a m 0

anel the symbol & denotes weak equality.
The canonical Hawilkonjan is obtained frow the Lagrangion by  fornal Legondre
transformatiow,

i e o 0 '
HC‘ = Agl/lf)kgx?‘[l —_ 'Q[")’L-,‘].I"t‘f’ — _»‘10 (]U + .ﬁéuairlj) (7}
where J, is the conservesd current, -
Ju = by (8)
The primary Huiltonian is,
HP = /dzur[?{c +wo Py + wiPy A Yt + Bally) (9

where uy, ¥; are ordinary wultipliers and e,,, 7, are Grassmau multipliers.
Couserving the prisuury constraints with H yields the secondmy constraiut,

g ..
S = Jo + ﬁ-f”a,“-l,‘ o] U_ (10]

which is Gauss’ law. It may be checked that no furtlier constraints are generated by this
iterative proceedure.

We find that I is a first class constraint while /%, 1,7, and § are second class. In
usual electyodynamics the Gauss constraiut § appears as fivst cluss but here it is second
class. This is beeause the maximal set of first class constraints has not been extracted??,
It s simple to verify that the following combination of secoud class consteaints,

P =8P+ 5+ ie(atba + Faila) :
, 0 oL L . (11)
=g i + Jo + mf aiAj + w(’]a'-r")r:r + 1 aiiy)

is first class. Subsequently when we work with Dirac brackets (D.B.), the second class
constraints can be strongly sct equal to zero whence P reduces to the familinr Gauss

3

‘are listed below:

couistenint S (e 10} The maximal sct of [est chiss conshonuts is given by Py and P, while
Py 10 and 3, are second class. This completes the clussification of constraints. i
We next compute the D.B. in the usual way''. The ones which differ from their P.3.

{Yale) ) p.o. = —4{Ta(), Wa(w)} .5, = ~il70)apdle ~y)

- = 1

{#ale) Wa(e))p.n. = b, (@), aly N .. = —5lanblz —y)
‘ , A _ = 12
{4'e), Ay)) . = (f*—;—) (W, Wy = Tetbp =gy

il

i 1) _(jij .

1A @), Wyt o, = S-6(a - y)

which are consistent with setting the sccond elass constraiuts strongly zero. The total
Hamiltonian is given by,

HY = HE 4 ullp4vP (13)

where v and v are arbitrary multipliers reflecting the gauge invariances of the theory
associated with the two first class constraints.

With this material we can discuss the quantisation of the model. There wre two
options. We may-fix the gauge (by choosing two gauge constraiuts not following from the
Lagrangian} so that the freedom in w and v is completely eliminated. This is the usual
course adopted in the literature®®?, Alternatively'® we may determine » and v so that
the Heisenberg’s equations are vepraduced for the canonical varjables,

It may be easily verified that the correct equations of motion,

T — .
(o}, =

for all the canonical varinbles x, calculated by using {13) and (12}, can be obtained with
the unique choice,

w=Jydy . v {) (15)
for the arbitrary nwltipliers. The same analysis is now repeated for the momentum oper-
ator A defined from the canouical energy womentum tensor,

MC = ./ac,,-c (16)

where,
ac ar ac

‘aorg) TV piongy T dorAs)

i p ]
= ;!i[’“)',u’a_:ﬂ,b - Zgﬁ'f,m,\f& 8.,.4" - _{,IJ“_,E

Gf,, = 3,4 OuAy ~ 1.:_(]#,,

(a7)

The final expressions {or the generators of space tinie translations way be expressed in a
Lorentz covariant form,
T C )
Gy = Oy + vopllo + ve P (18a)

4

AR A e



with,

Uy, = OJIAU ) ‘U.th =0 (18’1)

o Ja) can g
[N .

Thus in the quantised version of the theory without gange constraints, the canonical energy

momenium teusor 931 is replaced hy 93" while tlie D.B.(12) are converted to the equal
time (anti) commusators following the usual prescription,

whereby,

{2,Q)p.s. —dPQ - (1)""9QP) (20)

where np = 0{1) for bosonic (fermionic} P.

We ean similaly deal with the other space tine generators (i.e.rotations and boosts)
of the theory. It is observed that the fields have their usual transformation properties
without any anoualies, Finally we find, after an exteusive algebra, that the generators of
space time synumetries defined from the complete energy momentun tensor (18) fulfill the
eutire Poincare algebra via the D.B. (12). This completes our analysis of the quantisation
of the model without gauge fixing,

To obtain the Fock space we make the following ansatz,

Bla) = of = ho(yy-i [* A oy (21)
for the one particle creation operator where {2 —y) is, as yet, an undetermined function,

Note that although the gauge potentials are non-commuling (see 12), these commmute under
the integrals i.e.,

f dyidz;[Ady), 4;(=)] = 0 (22)

The otlter terms in the exponent in eq.(21) commute so tliat the exponential need not
be path ordered. Moreover (2} is invariant under the gauge transformations (4),thereby
satisfying the essential prerequisite that it crentes states which are gauge invarviant. Finally
it is easy to verify that the wne particle states,

I94) = $()l0) (23)
indeed carfy one unit of the charge @ = [ d*2J, (eq.8) because,
[0, $(2)] = d(e) @
which follows from the non-vanishing commutator,
(Jol ) ¥(y)} = o« — ypply) {25).
calculated by the D.B.(12).
&

L order to fix &z = y) in (21), we compute the n-particle state functional obtained

from (21), -
) = (H nﬁ(:n.-)) oy .- : {20)

i=I
This may be simplified by exploiting the velation, .
efdyﬂ(J:——yJJu(U),l/J(z)e—Jft!fn(-l"!i)-f!){.'l) — e”("'“]w{z} (27)

which follows from (25) and the Baker-Campbell- Hausdorft formula. We obtain,

n j—1 1 "o .
W) = expl= 373 Qay - 2)) {exptz / dySz: — y}a(y)] Hsb(wiJIU)} (28a)
1 s =1

i=li= =1

where, .
?,l:’(-‘l‘) - C—ljm dyi "‘i(y)'d'(lIT) (28b)
Now the general structure of the state functivual of a system of n-particles with statisties

o following from the representation theory of the Draid group s given by,

r -1
Yalx(e)  x(wa)it] = expl2io Y " wlai — wj)ldalx(e1) Xz )it]  (29)
. =1 i=1

where w(x — y) is the multivalued polar angle of the vector & - y,

.’L‘2 - yz

(30)

wlx —y) = arctim n
T =y
and iy represents an n-particle functional with Bose statitistics. Since the expression in the
curly brackets of eq.(28) represents a gauge invarinnt functional with commuting cocycles
{because Jy commutes with itself), it may be nssociated witli 4y of eq.(29). A complete
equivalence between the two equations (28) aud {29) can be estublished if we identify,

YUz —y) = —2Uow{z — y) (31)
It is possibile to give an explicit form for ¢ by waling a connection of cur approach to the

Lagrangian (path integral) formalism of ref.(3). First observe that the action (1) may be
expressed as,

¢
s = Swatter + fdsm[JpA'u + 4?6“”)‘/‘1#6114‘1,\] {32)
Path integrating over A, leads to the Hopf term,
1 _ ol — 1)
S = Suaner + Y] /d“a;rl“'y.],,(ur)e‘ AUF"_TJITAJV{M (33)

¢
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whose effect, ns can be shown by wimicing the aualysis of ref. (3} *, v to induee sn arbitrary
spin s,

1
3=—a+§ y az—a (34)
ou the physical states given by (20). Combining (.31} and (34}, we obstain from (21) the
final expression for the one particle ereution operator, .
&(x)::62{3*%)fdmd£—th(w—ijwdwshW)¢(x) (35)

which is multivalued due to the occurence of w{x — y).

We now associate 1};(1) with the a 'u)yon 01)(‘1 ator of the mnodel siuce it creates physiceal
states (20} with arbitrary spin s = s(8) = 5 é This is u new coustruction for the anyou
operator. It is gauge invariant so that the olem've(l effects’ are physical. Note that earlier
papers*$#2 discussed anyonicity of gauge dependent objects using gauge fixed Hamiltonian
methods so tliat their interpretation rewains obscure. The statistics of the auyon field is
analysed by computing the pm(luct W z)ly) which yields, on using (27) and the basic

anti-commutator among the fermion fields,

Pla)ply) = —ePHO - D) =wly=0) iy iy )
XUy i ()

since w(z —y) ~w(y —2) = 7 and the sign ambiguity occurs because the function w(z —y)
is defined only mod 27. It is essential to preserve the consistency of the above relation.
Physically it represents the arbitrariness present in the excliange of two particles which may
be done cither by a clockwise or an anticlockwise rotation®. We find, therefore, that the
anyon operator obeys graded coimmutation relations. For iutegral values of the spin factor
s(#) {corresponding to busons) commutators are obtained. Similarly anticommuiators are
realised for half integral (fermionic) values of s(f). Hence the usual spin statistics theorem
valid for bosons and fermions is reproduced. We uote that the earlier construction? of the
anyon operator was incompatible with this theorem?®.

We now show that the introduction of the anyou operators (35) influcuces the dynanies
of the theory in a nou trivial way. Consider the interaction piece of the Hailtonian (eq.7),

(36)

Hy = =58 + Ak | (37)

and express it in termns of the hat variables (35),

Hr = —%f’rk‘(jl'x (38a)
where, )
2\(1) — B—Zi{s—é)f_dyu(::—y].fu(y),,‘a(m.) (38[3)

* Note that in this paper the algebra is for scalars so that the additive factor of % in ey(34),coming

{rom the spin of the fermions does nol appear theve.

hnplying that the luteraction has been eliminated. This illustrates the dual unture of the
C.5. theory, expressed eitlier in terms of single valued fields with norinal spin- statisties hav-
ing gauge interactious or in terms of multivalued (hat) fields with arbitrary spin-statistics
but without the gauge interactions™? Tn arviving at this résult we have avoided the for-
mal nzanipulations with muitivatued functious which were doue carlier® aud subsequently
criticised® 7. .

To conclude, we Liave shown that the C.S.theory coupled to fermnionic matter fields
can be consistently quantised in the Hamiltonian formalism without gauge constraints.
The ambiguities associated with gauge fixing**%® ave, thereby, avoided. All the space
time symmetries of the theory as well as tiie complete Poincare algebra are preserved. The
determination of the Fock space leads to the construction of muitivalued anyou operators
which create the physical states with arbitvary spin. These operntors also satisfy graded
cormrmtation relations compakible with the spin-statistics theorem valid for bosons and
fermions. The structure of the anyon operator given here is uew. It is gauge independent
while the conventional ones found in the literature® %% are not. This is important
since any viable auyon operator must be gange indepeudent so thut the observed effects
are physical and not mere artifacts of the gauge. The connection of cur Hamiltonian
formalism with the Lagrangian (path integral) formulation® using the Hopf term has been
ilhuninated. Finally we show that the effect of the auyon operator is to clininate the
gauge interaction, thereby reproducing the dual interpretatiou of the C.S. theory?*®1° hut
without employing ambiguous manipulations % with multivalued functions. A similar
analysis for C.8. theory coupled to complex scalars led to identical conclusions!®, The
effects of including a Maxwell term in the theory and the implications of gauge fixing will
he considered elsewliere.
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