UNIVERSIDADE DE SÃO PAULO

PUBLICAÇÕES

INSTITUTO DE FÍSICA CAIXA POSTAL 20516 01498 SÃO PAULO - SP BRASIL

IFUSP/P-977

INFRARED STRUCTURE OF 2+1 DIMENSIONAL QUANTUM ELECTRODYNAMICS

H.O. Girotti and M. Gomes Instituto de Física, Universidade de São Paulo

A.J. da Silva

Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 02139

Infrared Structure of 2 + 1 Dimensional Quantum Electrodynamics *

H. O. Girotti, M. Gomes Instituto de Física, Universidade de São Paulo Caixa Postal 20516, 01498 São Paulo, SP, Brazil

A. J. da Silva ‡

Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 02139

Abstract

The Bloch-Nordsieck approximation is used to study the infrared structure of Quantum Electrodynamics in 2+1 dimensions.

Motivated by the recent interest in 2 + 1 dimensional gauge theories, we investigate in this paper the infrared structure of QED₃. Our basic tool for this purpose will be the Bloch-Nordsieck (BN) approximation [1, 2, 3]. The situation is more involved than in QED₄ because, on shell, ultraviolet regularized Feynman amplitudes posses infrared singularities whose degree of divergence grows with the order of perturbation.

In this work, QED₃ will be approached as the zero mass limit of massive QED₃,

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\theta^2 A^{\mu}A_{\mu} - \frac{1}{2\lambda}(\partial_{\mu}A^{\mu})(\partial_{\nu}A^{\nu}) + \frac{i}{2}\bar{\psi}\gamma^{\mu}\dot{\partial}_{\mu}\psi - \frac{i}{2}(\partial_{\mu}\bar{\psi})\gamma^{\mu}\psi + e\bar{\psi}\gamma^{\mu}A_{\mu}\psi - m\bar{\psi}\psi,$$
 (1)

namely, the theory describing the coupling of fermions of mass m and electric charge e, to the vector meson A^{μ} of mass θ . As usual, $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Throughout this paper we use natural units $(c = \hbar = 1)$. Our metric is $g_{00} = -g_{11} = -g_{22} = 1$, while for the γ - matrices we adopt the representation $\gamma^0 = \sigma_3, \gamma^1 = i\sigma^1, \gamma^2 = i\sigma^2; \ \sigma^i, i = 1, 2, 3$ are the Pauli spin matrices. Neither parity nor time-reversal are, separately, symmetries of the model.

The BN approximation, consists in replacing the γ^{μ} -matrices in (1) by the vector u^{μ} , with $u^2 = 1$. As consequence, the usual free fermion propagator is replaced by the retarded function

$$G_F(x-y) \equiv \frac{1}{(2\pi)^3} \int d^3p \, \frac{e^{-ip \cdot (x-y)}}{u \cdot p - m + i\epsilon}$$

$$= -iu^0 H(x^0 - y^0) e^{-i\frac{m}{u^0}(x^0 - y^0)} \delta^{(2)} [\vec{u}(x^0 - y^0) - u^0(\vec{x} - \vec{y})], \quad (2)$$

where $H(x^0)$ is the Heaviside step function. Then, the interaction does not correct the vector meson propagator. Presently, this does not represent a serious drawback since vacuum polarization insertions do not alter the leading infrared behavior of a graph.

The Green functions of the theory will be computed by functionally differentiating the generating functional $U_0[J_\mu, \eta, \bar{\eta}]$ with respect to the external sources. In this paper, J_μ and η , $\bar{\eta}$ denote the vector meson and fermion external sources, respectively. After integration on the fermionic degrees of freedom one finds

^{*}Supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, and by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Brazil.

[†]On leave of absence from Instituto de Física Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91500 Porto Alegre, RS, Brazil.

[‡]On leave of absence from Instituto de Física Universidade de São Paulo, Caixa Postal 20516, 01498 São Paulo, SP, Brazil.

$$\begin{array}{lcl} U_{0}[J_{\mu},\eta,\bar{\eta}] & = & \mathcal{N} \int [\mathcal{D}A_{\mu}] \mathrm{e}^{D} \exp\{iS[A] - \frac{i}{2\lambda} \int d^{3}x (\partial_{\mu}A^{\mu})^{2} \\ & + & i \int d^{3}x J_{\mu}(x) A^{\mu}(x) - i \int d^{3}x \int d^{3}y \bar{\eta}(x) G[A|x,y] \eta(y) \}, \end{array}$$

where e^D is the fermionic determinant, $S[A] = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ and G[A|x,y] is the fermion two point Green function in an external A_{μ} field.

The solubility of the model in the BN approximation is partly due to the fact that the A_{μ} propagator is not corrected by the interaction and partly due to the factorization of G[A|x, y]. In fact, one can convince oneself that the differential equation

$$\left[iu^{\mu}\left(\partial_{x\mu}-ieA_{\mu}(x)\right)-m\right]G[A|x,y]=\delta^{(3)}(x-y),\tag{4}$$

is solved by

$$G[A|x, y] = h[A|x]G_F(x - y)h^{-1}[A|y],$$
 (5)

where

$$h[A|x] = \exp\{ie \int d^3z \xi^{\mu}(x-z) A_{\mu}(z)\}$$
 (6)

and

$$\xi^{\mu}(x) = \frac{i}{(2\pi)^3} \int d^3k \frac{u^{\mu}}{(u \cdot k)} e^{-ik \cdot x}.$$
 (7)

One can check that expression (5) can be casted in a form analogous to that quoted in ref. [2] for the case of QED.

Formally, the computation of D yields $D = \int_0^c de' \int d^3x G[A|x,x] u^{\mu}A_{\mu}(x)$, which in view of (5) reduces to

$$D = e \int d^3x G_F(x,x) u^{\mu} A_{\mu}(x), \qquad (8)$$

showing that D can, at most, depend linearly on A_{μ} . However, as seen from (2), $G_F(x,x)$ is ambiguous. In the real model $(\gamma^{\mu}$ instead of $u^{\mu})$, Lorentz invariance demands the vanishing of the tadpole contribution to the fermionic determinant and we shall therefore take, from now on, D=0.

The complete two point fermion Green function can now be readily found

$$G(x,y;m,\theta) \equiv \frac{1}{U_0[0]} \frac{1}{i^2} \frac{\delta^2 U_0[J_\mu = 0, \eta, \bar{\eta}]}{\delta \bar{\eta}(x) \delta \eta(y)} \Big|_{\eta = \bar{\eta} = 0} = iG_F(x - y)$$

$$\times \exp\{-\frac{i}{2}e^2 \int d^3z \int d^3z' S_\mu(x,y;z) \Delta^{\mu\nu}(z,z') S_\nu(x,y;z')\}, \tag{9}$$

where

$$S^{\mu}(x,y;z) \equiv \xi^{\mu}(x-z) - \xi^{\mu}(y-z) \tag{10}$$

and $i\Delta^{\mu\nu}$ is the vector meson propagator. From (3) follows that, in momentum space,

$$i\tilde{\Delta}^{\mu\nu}(k,\theta) = -\frac{i}{k^2 - \theta^2} \left(g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2} \right) - i\lambda \frac{k^{\mu}k^{\nu}}{(k^2)(k^2 - \lambda\theta^2)}. \tag{11}$$

From now on we shall always be working in Landau gauge $\lambda = 0$. For the Fourier transform $G(p; m, \theta) \equiv \int d^3x \exp(ipx) G(x; m, \theta)$ one gets, after some algebra,

$$G(p; m, \theta) = \int_0^\infty d\nu \exp[i\nu(u \cdot p - m + i\epsilon) + f(\nu, \theta)], \tag{12}$$

where

$$f(\nu,\theta) = -\frac{ie^2}{(2\pi)^3} \int d^3k [1 - \cos\nu(u \cdot k)] U(k,\theta)$$
 (13)

and

$$U(k,\theta) \equiv \frac{u^{\mu} \tilde{\Delta}_{\mu\nu}(k,\theta) u^{\nu}}{(u \cdot k)^2}.$$
 (14)

By power counting one concludes that $f(\nu, \theta)$ is a regular function of θ at $\theta = 0$. This, of course, does not imply that $G(p, m, \theta)$ is finite at $\theta = 0$ for all values of p. On the other hand, the behavior of the integrand in equation (13) at the limit $k \to \infty$, but such that $u \cdot k$ remains constant, tell us that $f(\nu)$ develops a logarithmic ultraviolet divergence. This divergence can be absorbed into a mass renormalization. The two point Green function G in terms of the renormalized mass m_R turns out, then, to be given by

$$G(p; m_R, \theta) = \frac{1}{\theta} \int_0^\infty dv \exp\left\{iv\left[i\epsilon + \frac{Q}{\theta} - \frac{e^2}{4\pi\theta}\left(\ln\frac{M}{\theta}\right)\right] + \frac{e^{-iv} - 1}{iv} + 2\frac{e^{-iv} - 1 + iv}{(iv)^2} + Ei(-iv)\right]\right\},$$
(15)

where $Q \equiv u \cdot p - m_R$, Ei(z) is the exponential integral function,

$$m_R = m + \frac{e^2}{4\pi a^2} \ln\left(\frac{\Lambda}{M}\right),\tag{16}$$

A is an ultraviolet cutoff and M plays the role of a subtraction point. In particular, if only terms up to the order e^2 are retained in (16) one finds that

$$G^{(2)}(p; m_R, \theta) = \frac{i}{Q} + i \frac{e^2}{4\pi} \frac{1}{Q^2} \left[-2 \frac{Q}{\theta} - 2 \left(\frac{Q}{\theta} \right)^2 \ln \left(\frac{Q - \theta}{Q} \right) - \ln \left(\frac{\theta - Q}{M} \right) \right].$$
 (17)

Therefore, $G^{(2)}$ develops branch cuts starting at Q=0 and at $Q=\theta$ and only becomes unbounded at the branch point $Q=\theta$.

We now turn into studying the limit $\theta \to 0$ of (15) and (17). As $\theta \to 0$ (17) reduces to

$$G^{(2)}(p; m_R) = \frac{i}{Q} - i \frac{e^2}{4\pi} \frac{1}{Q^2} \ln\left(-\frac{Q}{M}\right). \tag{18}$$

Hence, an on mass shell logarithmic divergence has emerged as a result of performing the limit $\theta \to 0$ in (17). Power counting alone tell us that the infrared divergences become of higher degree as the order of perturbation increases.

It remains to be investigated whether these divergences sum up to a finite limit when one considers the complete two point fermion Green function. By letting $\theta \to 0$ in (15) and after performing a Wick like rotation one arrives at

$$G(p; m_R) = \frac{i}{Q} \int_0^\infty dv \exp\left\{-v + \frac{e^2}{4\pi Q} v \left[C + \ln\left(-\frac{M}{Q}v\right)\right]\right\}, \qquad (19)$$

for negative Q. On the other hand, if Q is positive one similarly finds that

$$G(p; m_R) = -\frac{i}{Q} \int_0^\infty dv \exp\left\{v - \frac{e^2}{4\pi Q} v \left[C + \ln\left(\frac{M}{Q}v\right)\right]\right\}, \qquad (20)$$

although in this last case the Wick like rotation is only allowed if $e^2 \neq 0$. We remark that the expressions (19) and (20) are well defined for generic values of Q but contain an essential singularity at Q = 0. This result should be compared with the corresponding one in QED₄, where the two point fermion Green function exhibits a power law behavior in the variable Q [2].

The results presented in this note may be relevant in computing the radiative corrections for the recently derived [4] effective fermion-fermion potential in the Maxwell-Chern-Simons theory.

References

- [1] F. Bloch and A. Nordsieck, Phys. Rev. <u>52</u>, 54 (1937).
- [2] N. N. Bogoliubov and D. V. Shirkov, "Introduction to the Theory of Quantized Fields" (John Wiley, N. Y., 1980).
- [3] A. V. Svidzinskiy, JETP 31 (1956) 324.
- [4] H. O. Girotti, M. Gomes and A. J. da Silva, Phys. Lett. B <u>274</u> (1992) 357.