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Abstract

The Bloch~Nordsieck approximation is used to study the infrared
structure of Quantum Electrodynamics in 2 + 1 dimensions.
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Motivated by the recent interest in 2 + 1 dimensional gauge theories, we
investigate in this paper the infrared structure of QEDs. Our basic tool
{or this purpose will be the Bloch-Nordsieck (BN) approximation {1, 2, 3.
The situation is more involved than in QED, because, on shell, ultraviolet
regularized Feynman amplitudes posses infrared singularities whose degree
of divergence grows with the order of perturbation.

In this work, QED; will be approached as the zero mass limit of massive
QEDs, .
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namely, the theory deseribing the coupling of fermions of mass m and electric
chazge e, to the vector meson A* of mass 8. As usual, F,, = 8,4, — &.4,.
Throughout this paper we use natural units {¢ = & = 1). Our metricis goo =
—gu1 = —goz == 1, while for the 4 ~ matrices we adopt the represeniation
7° = o3,9! = io',4? = ie% ¢',i = 1,2,3 are the Pauli spin malrices.
Neither parity nor time-reversal are, separately, symmetries of the model.

The BN approximation, consists in replacing the y*-matrices in (1) by the
vector u#, with 42 = 1. As consequence, the usual free fermion propagator
is replaced by the retarded function
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where H(z") is the Heaviside step function. Then, the interaction does not
correct the vector meson propagator. Presently, this does not repzesent a
gerious drawback since vacaum polarization insertions do not alter the leading
infrared behavior of a graph.

The Green functions of the theory will be computed by functionally differ-
entiating the generating functional Ug[J,, 7,%] with respeet to the external
gources. In this paper, J, and #, i denote the vector meson and fermion
external sources, respectively. After integration on the fermionic degrees of
freedom one finds
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where e” is the fermionic determinant, S[4] = —1FWF™ and GlAlz,y] is
the fermion two point Green function in an external A, field.

"The solubility of the mode} jn the BN approximation is partly due to the
fact that the A, propagator is not corrected by the interaction and partly
due to the factorization of G[Alz, y]. In fact, one can convince oneself that
the differential equation

[iu* (B2, — ied,(z)) - m] GlAlz, y] = 89)(z - y), (4)
is solved by
GlAlz, y] = AlAl2|Gr(z — y)h ' [4ly], (8
wheze 1
h{Alz) = exp{ie j Pat*(z — 2)A,(2)} (6)
and
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One can check that expression (5) can be casted in a form analogous to that
quoted in ref, [2] for the case of QED,.

Formally, the computation of D yields D = [§ de’ § d*z [ 4|z, x]ur A, (<),

which in view of (5) reduces to
D= efd:’mGp(z,z)w"A,,(a:), (8)

showing that D can, at most, depend linearly on A4,. However, a5 seen from
{2), Gr{=,=) is ambiguous. In the real model (y* instead of u*), Lorentz
invariance demands the vanishing of the tadpole contribution to the fermionic
determinant and we shall therefore take, from now on, D = 0,

The complete two point fermion Green function can now be readily found
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where ' :
(@ yi2) =z —2) — €'y - 2) (10)
and iA* is the vector meson propagatar. From (3) follows that, in momen-
tum space,
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From now on we shall always be working in Landau gauge A = 0. For the
Fourier transform G{p;m,d) = [ d*z exp(ipz)@(z;m, §) one gets, after some
algebra,

G(p;m,0) = fomdvexp[iv(u-p—m+£e)+f(v,9)], (12)

where -
F,8) = —éf;)z f P[1 — cosu(u - k)UK, 8) (13)

end “A,,,(k,8)u”
(:;—k)z (14)

By power counting one concludes that f{r,8) is a regular function of § at
# = Q. This, of course, does not imply that G(p,m,#) is finite at § = 0 for
all values of p. On the other hand, the behavior of the integrand in equation
{13) at the limit & — oo, but such that » - k remains constant, tell us that
F(v) develops a logarithmic ultraviolet divergence. This divergence can be
absorbed into a mass renormalization. The two point Green funclion G in
terms of the renormalized mass mp turns out, then, to be given by
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where (} = u - p — mp, Fi(z) is the exponential integral function,
el A
= — — 16
mp m+41m21n(M)’ (16)
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A is an uliraviolet cutoff and M plays the role of a subtraction point. In
patticular, if only terms up to the order ¢* are retained in (16) one finds that
Q
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Therefore, G(*) develops branch cuts starting at @ = 0'and at ¢ = ¢ and
only becomes unbounded at the branch point @ = 4.

We now turn into studymg the limit # — 0 of (15) and (17). As 8 — 0
(17) reduces to

e 1
G (pymap) = ;4—51 (— 9) . (18)
Hence, an on mass shell logatlthmlc diveigence has emerged as a result of
performing the limit § — 0 in (17). Power counting alone tell us that the
infrared divergences become of higher degree as the order of perturbation
increases.

It remains to be investigated whether these divergences sum up to a finite

limit when one considers the complete two point fermion Green function. By -

letting & — 0 in (15) and after performing a Wick like rotation one arrives

at
M
G
(p;mnp) = f dvexp{ v+4 Q [G’+1n( Q )]}, {19)
for negative Q. On the other hand, if Q@ is posntive_ one similarly finds that

Gpymy) = —é fom dvexp{v - [C +ln ( )]} {20)

although in this last case the Wick like rotation is only allowed if e* 3£ 0. We
remark that the expressions (19) and (20} are well defined for generic values
of @ but contain an essential singularity at @ = 0. This result should be
compared with the corresponding one in QED,, where the two point fermion
Green function exhibits a power law behavior in the variable Q {2].

The results presented in this note may be relevant in computing the
radiative corrections for the recently derived [4] effective fermion—fermion
potential in the Maxwell-Chern—Simons theory.

. [2} N. N. Bagoliubov and D. V. Shirkov, “Introduction to the Theory of

References

[1] F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

Quantized Fields” (John Wiley, N. Y., 1980).
[3] A. V. Svidzinskiy, JETP 31 (1956) 324.

[4] H. O. Girotti, M. Gomes and A, J. da Silva, Phys. Lett. B 274 (1992)
357.




