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Abstract
Energy-momentum tensor : Metrical and

. The relation between these two types of energy-momentum tensor is ex-
Canonical

plained in a way that is easily appended to most text-book freatments.
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1 INTRODUCTION

It is well known that the canonical energy-momentum tensor [1] of a classical

field theory is not symmetric in its indices, except for zero-spin fields, and
" that this spoils the elegance of the formalism by requiring an ugly expression
for the angular momentum density of the field. This is clearly exposed in
many places, like, for instance, [2], and the solution is given in the classical
works of Belinfante [5} and of Rosenfeld [6]. All the matter is scholatly
settled there, though strictly in a research report style, not appropriate for
inclusion in a set of lectures using standard texts, like Landau, Lifshitz [1] or
Jackson [4].The rules for replacing the canonical energy-momentum tensor
by a symmetrical, equivalent one, the so-called Belinfante-Rosenfeld tensor,
however, are quite simple, and deservedly well-known. A possible alternative
is to use the so-called metrical energy-momentum tensor, introduced by
Hilbert in his classical paper [7]. In this note we intend to elucidate in a
simple way when these two kinds of energy-momentum tenser are equivalent
and when they are not, We will restrict our treatment to a scalar field ¢. The
extension to other cases is obvious. This paper purports to be a pedagogical
one.

2 QUESTIONS OF EQUIVALENCE

In order to properly introduce the metrical energy-momentum tensor we

must work in curvilinear coordinates. Let £{g", 2 %g; , ¢, 0i¢) be a Lagrangian

density.
The action is given by

§= [dts (-9 (1)

The metrical tensor is obtained {1] by exploiting the fact that 5 must be
invariant under infinitesimal coordinate transformations =* — ", with

o = ot £(z). (2)

Fields and the metric respond to this transformation in the following way

[1]: _
¢(z) = ¢/(a) - (2} = —§(2)0id (3

6_(]"0(33) - &-i;k +£k;i' (4)

This induces in the action § the variation
65 = [dab(y(-0)0) + [ dog(-g)t ®)

where the second integral is essential, as a general coordinate transformation
doesn't have to vanish at the boundaries of the integration domain. For a
nice derivation of this term see [3] . It is his equation (170). Actually, this
surface term is the key to the proof, as will be shortly seen. More explicitly,

/ d‘*w«(—g){%w + %a;w}

5(~/( g)ﬁ) i AW(-g)L) @8
+/crl 89Y + ) 319971

+ f armek/(-g)z:- (©
The usual partial integrations lead to
[ #2055 - (IV-I0lV(-a) 555166 +
+/d4 6‘(\/( ~9L) 59~ 9)3)] o+

39'-1 " a(Big)
+ [ dol/(-a)gp0goe
+ [ ao r"’(g{é f?f Digh + [ doel =o)L @

For ¢(x) satisfying the equations of motion the first integral vanishes. Defin-
ing [1] the metrical energy-momentum tensor Tj; by

_ d/(=9)f) 5 H(—9L))
u\/( Bg'J I a(a!gu) (8)

one has
, 3} oL

8(V(=9L), i; :

+ [ =L e + [ dag(-a)c ©®)
(%)

Assume for a moment that £ does not depend on the derivatives of

¢'f. This means that the connection coefficients I‘_';-kare not present, either
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explicitly or inside curvature tensors.(Of course this is always the case in
Minkowski spacetime described by ‘“cartesian” coordinates).Inserting into
{9) the values of §¢ and &g one has

15 =5 [ dtav-g)T(e¥ + )+ [ dorv/("y)fm{—%amé + 6,0},
' (10)

that is,

85 = 5 [ a(-0Ts(e? + ) - [dos-gemet, ()

where we recognize

ar
Of = 9.8 ¢
= aag) o

as the canonical energy-momentum tensor. Now, as shown in detail by [1],

2 [ EVOTHE + 69 = - [dla/(-The + [ dory(-orhen
{12)
Taking (12} into (11),
85 = - [d'a/(-qThe + [do/-g)en(Th - 6L).  (13)
As 68 should vanish for arbitrary £, one has
TH =0 (14)
and
[ dor/(-9)Th - 04) =0
or
Jdow/-oyth = [ don/i-g)0. (15)
Finally, in the particular case of afline Minkowskian coordinates, one has

HTF =10
f P10 = f B0, (16)

showing the equivalence in the sense of Belinfante-Rosenfeld. Notice that
the equivalence expressed in (16) is always true in Minkowski { described by
affine coordinates ). That expressed by (15), on the contrary, valid for the
case of curved space times as well, is only true when there is no dependence
in §g". This is the basic criterion.

3 CONCLUSION

It is a common, and eflicient, practice to get the energy-momentum tensor
of a theory directly from the metrical one. Arguments to the effect that this
is equivalent to taking the Belinfante-Rosenfeld tensor are usually omitted.
As shown here , a slight modification of the formalism ( I am thinking
of Landau’s), and a correct book-keeping of the surface terms, proves the
equivalence as a bonus. To summarize: in Minkowski spacetime metrical
and symmetrized-canonical tensors are equivalent. In curved spacetimes,
not always. Eq.(9) provides the basis for the analysis of the equivalence in
all cases.

It is my pleasure to thank Professor J. Frenkel for suggestions , criticism
and encouragement.
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