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1. Introduction

Near-integrable Hamiltonian systems are characterized by a
rich dynamical setting with the usual presence of both chaotic
and regular motion when the system is under a small volume-
preserving perturbation [1]. In this case, its phase space is said
to be mixed as it is composed of regions of stability along with
a chaotic sea. In closed systems, chaotic orbits densely fill the
chaotic area as the system is topologically transitive [2]. However,
such motion is not uniform throughout the phase space and
these orbits may temporarily concentrate in certain regions, a
phenomenon called stickiness [3].

In open Hamiltonian systems, on the other hand, the transi-
tivity property does not hold and hence distinct chaotic orbits
may describe very different paths before escaping [4]. In this
situation, stickiness leads to dynamical trapping since the escape
orbits, i.e., chaotic orbits that eventually exit the system’s domain,
stay in sticky regions for a considerable amount of time [5].
Another property evident in open Hamiltonian systems is the role
of the unstable and stable manifolds as the geometrical struc-
tures behind the system’s dynamics. For example, when there
is more than one escape channel, there exist fractal boundaries
between the escape basins corresponding to each exit. These
boundaries are formed by invariant manifolds associated with
certain unstable periodic orbits in the system [6].
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The dynamics of an escape orbit before reaching the escape
threshold in an open system may be understood as a transient be-
havior. Leaking systems also present the same situation, with the
leak corresponding to an escape condition in the phase space [7].
In this work, we address the transient dynamics of Hamiltonian
systems and how it is affected by the choice of initial conditions.
Specifically, we investigate how the paths described in the phase
space by an ensemble of solutions prior to exiting the system
differ from the paths taken by other ensembles. With this, we
can assess which escape orbits experience dynamical effects such
as stickiness and visually illustrate the influence of the system’s
underlying geometrical structures. Such analysis is essential for
understanding the transient dynamics of various physical sys-
tems, especially in the fields of Plasma Physics and Celestial
Mechanics, where the utilization of Hamiltonian mechanics is
notably suitable [7-10].

We focus our analysis on two physical systems. The first one
concerns the configuration of magnetic field lines in a single-
null divertor tokamak, which is described by a symplectic map
with one degree of freedom. The second one concerns the motion
of a body with negligible mass under the gravitational influence
of the Earth and the Moon, as modeled by the two-degrees-of-
freedom planar circular restricted three-body problem. In both
these systems, given our chosen parameters, we have a situation
where there is only one exit and, hence, all the escape orbits
belong to the same escape basin.

For our investigation, we define a finite-time version of the
natural measure specific for escape orbits: the transient measure.
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By calculating this measure for an ensemble of initial conditions,
we depict the transient motion associated with such ensemble on
a given area of the phase space. Later, we characterize each case
by defining two parameters: the transient correlation dimension,
which is similar to the correlation dimension, and the transient
complexity coefficient, which attributes weights to the ensem-
bles based on particular dynamical properties. Our results show
that both parameters are able to recognize and distinguish the
complexity of each ensemble’s dynamics.

In the literature on Hamiltonian systems, it is common knowl-
edge that orbits that begin in distinct regions of the phase space
may experience distinct stickiness effects [11]. In that sense, the
method outlined in this work offers a visual aid, along with a
quantitative characterization, for the paths taken by the differ-
ent ensembles. The detailed knowledge of these possible paths,
namely what a given orbit may experience in the transient
dynamics before escaping, is important and have further im-
plications to both physical systems that are analyzed here. In
magnetically confined plasmas, particularly in tokamaks assem-
bled with a poloidal divertor, it was shown that the heat flux
on the divertor plate closely follows the invariant manifolds
associated with the unstable equilibrium created by the poloidal
divertor [12]. Also, in Celestial Mechanics, for example, orbits in a
thin chaotic layer along with a small dissipation may lead to the
capture of irregular moons by giant planets [13].

This paper is organized as follows. In Section 2 we define the
mathematical framework used in this work, namely, the transient
measure, the transient correlation dimension, and the transient
complexity coefficient. In Section 3 we apply our method to
investigate the single-null divertor tokamak and the Earth-Moon
system. Finally, we present our conclusions in Section 4.

2. Mathematical framework
2.1. Mean transient measure

Let ¢,(xo) be a solution of our dynamical system in the D-
dimensional phase space with initial condition x, and at time
t, and let us cover the region of the phase space that we are
interested in by a grid of D-dimensional boxes of side-length .
We call n(B;, ¢,(x0), T) the total time spent by the solution ¢,(x,)
inside the box B; in the time interval t € [0, T].

If n is the same for almost every xg, the natural measure for
each box B; can be defined as [14]

7I(Bi, ¢[(x0)’ T)

;= lim =002 1
Hi T—o0 T ( )
if the limit exists. It follows that Y%  u; = 1, where N is

the number of boxes in the grid, which depends on the box
side-length &.

The natural measure is defined in the asymptotic limit T — oo
and is usually associated with the dynamics of an orbit on a
chaotic attractor. We are interested here, however, in the tran-
sient dynamics of escape orbits in Hamiltonian systems. Then,
we propose a finite-time version of Eq. (1), which we call the
transient measure,

B;, 0.(xp), T
b = n(B; er(eo) ), 2
where T¢ is the escape time, i.e., the time it takes for the orbit
that starts at X, to reach a predefined escape region. Here, 7 is
the total time spent by the orbit inside the box B; before leaving
the system. It is important to note that Zf’zl v = 1.

If we consider an orbit in the chaotic sea, the transient mea-
sure reflects the path followed by the orbit up until exiting
the system. Hence, this measure is able to depict the transient
dynamics of an escape orbit, including effects such as stickiness.
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An observation here is in order. In practice, we use T¢ =
min (T¢, Tynex) instead of T¢ in Eq. (2) since there is a computa-
tional time limit T, for which we can numerically integrate an
orbit and it can be shorter than the orbit’s escape time. Evidently,
if Tmgx > T¢, then T¢ = T¢. This point will be addressed further
later in this section.

Generally, a single chaotic orbit will visit only a small portion
of the available chaotic area before escaping, making it hard for
us to describe the behavior of escape orbits in the phase space by
looking solely at v. Therefore, we now define the mean transient
measure, the average of the transient measure on an ensemble U
composed by M initial conditions,

;M
Vi = (v)y = M Z Vij, (3)
=1

where v;j = n(Bi, ¢,(%0;), T?)/T{ is the transient measure for
the jth initial condition xo; and f)ox B;. As was the case for the
transient measure, we have that Zf"z =1

Eq. (3) is well defined for any discrete ensemble. For us, U
has a small volume and a high number of elements M which
are uniformly distributed on a grid. The ensemble is centered at
an initial condition of interest, and the mean transient measure,
therefore, describes the transient dynamics associated with a
small neighborhood of said point. In practice, M is chosen big
enough so that the orbits do visit a sufficient number of boxes
and clearly depict the transient behavior in the phase space, and
the volume of U is chosen small enough as to better represent
the dynamics of our point of interest but big enough so that the
orbits are sufficiently far from each other.

Apart from the finite-time aspect, another difference of Eq. (2)
from Eq. (1) is that we do not demand it holds for almost every
Xo. With that, the mean transient measure, Eq. (3), is in fact a
function of the ensemble of initial conditions:

v = vi(U). (4)

Hence, there may be different transient behaviors in the sys-
tem depending on the chosen ensemble of initial conditions U,
which can be illustrated by calculating the mean transient mea-
sure profile. In this work, we are interested specifically in how
the location of U affects the system’s dynamics. Next, we present
two approaches for quantifying Eq. (4).

2.2. Transient correlation dimension

The natural measure y; can also be seen as the visitation
frequency on box B;. In the context of dissipative dynamical
systems, this measure shows which boxes are more visited than
others by a typical orbit on a chaotic attractor. Associated with
such attractor, then, a spectrum of generalized dimensions D, for
the continuous index q can be defined as [14]

1 . Inlye)

Dy = g M in(1/e)’ ()
with
Ny(e)
Ie)= ) uf, 6)
i=1

where Ny < N is the number of visited grid boxes, which depends
on the box side-length .

The main difference between the dimensions in Eq. (5) is given
by Eq. (6), which attributes weight to the visitation frequency
depending on the value of g. Some Dy, such as D, for example,
can be related to specific dynamical concepts [14]. Here, we
are interested in D,, since I, scales in the same fashion as the
correlation integral in a time series [15].
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We can similarly define a spectrum of generalized dimensions
associated with the mean transient measure, Eq. (3). However,
instead of looking at the fractal geometry of an attractor, we are
inspecting the paths taken by escape orbits in a Hamiltonian sys-
tem. In particular, we define the transient correlation dimension,
which is given by

with
Ny(e)

Lee)=Y . (8)
i=1

As the value of D, represents the degree to which the elements
of an orbit are correlated, Dg returns similar information, but
for an ensemble of escape orbits. We then expect the transient
correlation dimension to be high when there is stickiness in
the system, for instance, which makes it a suitable quantity for
analyzing the transient behavior of the system.

For a D-dimensional phase space, we have that Dg < D. The
transient correlation dimension then can assume a non-integer
value, which reflects a tendency of the orbits to collectively
concentrate in given areas of the phase space. Conversely, D; is
equal to D if all orbits beginning in U uniformly cover the chaotic
sea before escaping.

In order to numerically determine D?, we first fix the ensemble
U and calculate I} for different values of the box side-length .
Later, we plot I{’ as a function of ¢ on a log-log plot and inter-
polate the result by means of a linear regression, as expressed by
Eq. (7). The transient correlation dimension D‘;’ is then given by
the slope of the straight line representing the linear interpolation.

2.3. Transient complexity coefficient

We now introduce another quantity for characterizing the
transient dynamics of escape orbits. Besides the visitation fre-
quency, which is given by the mean transient measure, there
are two other aspects that we can take into consideration for
assessing the importance of a box on the grid.

First, the number of orbits m; that begin in the ensemble U
and pass through the box B; is usually not the same for all boxes.
Hence, we may say that the grid boxes with higher values of m;
have a higher influence on the ensemble and, consequently, on
the system’s transient properties.

Second, between the m; orbits that pass through a box B;, the
one with the largest escape time Tf contributes the most to our
analysis, since it reaches the highest number of box visitations.
Therefore, we define 7; = maxj{Tje | (o) € B; for some t < Tf}
and we consider a grid box more important if it has a higher
7;. Conversely, if all the orbits that go through a box B; rapidly
exit the system, i.e. 7; is small, we consider this box to be less
important to the transient motion.

We then define the transient complexity coefficient as

N
c(U,e) =) i, 9
i=1
where the weights of the boxes are given by
m; T
o = Ml and B = Tm‘m, (10)

with M and T4, as introduced before, the number of initial
conditions and the maximum integration time, respectively.

The coefficient ¢ gives an over-the-grid summation of the
mean transient measure weighting in the two aforementioned
aspects. While ¢; reinforces the dependence on the ensemble, S;
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favors the system’s slow dynamics. We also note that ¢ < 1,
where ¢ = 1 in the improbable event that all the orbits visit the
same boxes with the same escape time 7 and Ty;,ox = 7. The higher
the value of the transient complexity is, the more complex are the
paths taken by the orbits before leaving the system.

_ In practice, due to the time limitation Ty, only a subset
U C U composed of M initial conditions leads to trajectories
that escape from the system. Therefore, since only escape orbits
should contribute, we restrict the calculation of the transient
complexity coefficient to U and we use

&;:E and B = i (11)
M

Tmax

in Eq. (9) instead of o; and B;. Here, m; is the number of escape
orbits that pass through box B; with initial condition in U and 7;
is the longest escape time between these orbits. If all orbits that
begin in the ensemble U escape, then T¢ = T¢ for all orbits and
Egs. (11) reduce to Egs. (10).

As a last observation, we calculate the transient complexity
coefficient for different ensembles in our analysis using the same
box side-length £. Hence, we can assume that the dependency on
Eq. (9) becomes ¢ = c(U) and use this quantity to compare the
complexity of the transient motion between different cases.

2.4. Stable and unstable manifolds

In this section, we give a brief introduction to stable and unsta-
ble manifolds of unstable periodic orbits, which are geometrical
structures that will appear throughout our analysis. We restrict
our discussion to two-dimensional maps and three-dimensional
flows, which correspond to the models used here to describe
the single-null divertor tokamak and the Earth-Moon system,
respectively.

Let M be a two-dimensional bijection, with both M and M~!
differentiable, and let y = {p;,p,,...,Pn} be an unstable pe-
riodic orbit (UPO) of period m of the mapping M. The stable
manifold W5(y) and the unstable manifold W"(y ) associated with
y are given by [16]

Wi(y)={xe U CR? | M"(x) > y as n — oo},

2| - (12)
Wiy)={xeUCR’ | M"(x) > y as n — o0}.

where M*"(x) — y is defined by M*"(x) — p, fori=1,...,m.

The invariant manifolds W*"(y) are one-dimensional curves
which are locally tangent to the respective subspaces [17]. We can
calculate these curves numerically by choosing an appropriate
segment in a linear approximation for the dynamical system and
then evolving said segment under the mapping and under its
inverse [18].

Now, let us consider a two-degrees-of-freedom autonomous
Hamiltonian system, and let « be an UPO in this continuous-
time system. The stable manifold W*(p) and the unstable manifold
WH(p) associated with a point p € « are given by
Wip) ={x €V CR* | g,(x) > P as t > oo}, (13)
WiP)={xeV CR*| @,(x) > past — —oo).

The invariant manifolds of the unstable periodic orbit « are
then given by

W (a) = | W (@). (14)

Pea

In this case, the stable and unstable manifolds are two-
dimensional surfaces locally homeomorphic to cylinders [19].
Numerically, we can trace these geometrical structures by deter-
mining the Monodromy matrix at a given p and propagating its
eigenvectors to other points in «. We then select initial conditions
following these directions and evolve these points forward and
backwards in time [20].
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Fig. 1. Poloidal section of a divertor tokamak, showing the closed magnetic field
lines (light gray lines), magnetic separatrix (red line), magnetic saddle (black
cross) and the rectangular coordinates (x, y). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

3. Transient motion analysis

In this section, we numerically investigate the transient be-
havior of escape orbits in two Hamiltonian physical systems: a
tokamak equipped with a single-null poloidal divertor and the
planar version of the Earth-Moon system.

For the tokamak system, escape orbits are related to the mag-
netic field lines that cross the poloidal divertor plate, carrying
impurities and unwanted particles and, consequently, enhancing
the tokamak performance. For the Earth-Moon system, escape
orbits are the trajectories of small objects, such as artificial satel-
lites and asteroids, which leave the Moon'’s realm of gravitational
influence towards the Earth’s vicinity.

For both systems, our defined grid does not cover the whole
phase space, but rather a region V in which we are interested. We,
therefore, restrict our analysis to this region and consider only the
total time spent inside the grid to calculate the transient measure,
Eq. (2). Furthermore, in order to deal with the practical limit on
integration time, we choose a suitable T, to guarantee that, at
least, 85% of the orbits in an ensemble escape, i.e, M > 0.85M.
By setting T,ox and M large enough, we also assure that the
calculated transient complexity coefficient, Eq. (9), is comparable
between the different cases analyzed.

It is also important to note that the definitions presented in
Section 2 are based on grids formed by boxes with congruent
sides. Therefore, we normalize the analyzed two-dimensional
phase space of both systems to the unit square [0, 1] x [0, 1]
when carrying out the numerical procedures. One can show that

0.0

-0.6

-0.6 T

0.998
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the phase space normalization does not interfere with the results
obtained from Egs. (1)-(9). In particular, when calculating the
transient correlation dimension, Eq. (7), the scaling does not alter
the slope of the linear interpolation on the 1n1§ x Ine graph,
which is given by D3.

3.1. Single-null divertor tokamak

Poloidal divertors are external magnetic coils that can be
assembled in a tokamak! to conduct the magnetic field lines at
the plasma edge towards an exit point. Technically, the divertor
induces a magnetic configuration with a single saddle point
near the divertor plate known as the magnetic saddle. Due to
perturbations on the magnetic configuration, a chaotic layer is
formed around the saddle, allowing the magnetic field lines to
escape this chaotic region through the divertor plate [21]. Fig. 1
presents the system’s schematic.

The symplectic map proposed in Ref. [22] is a phenomenolog-
ical model for this system and it is given by

Xn41 = Xp — kyn(l _J'n)s
Yn+1 = Yn + KxXny1,

where (x, y) are rectangular coordinates over a poloidal section
surface, as depicted in Fig. 1, and the control parameter k is
related to the amplitude of toroidal asymmetries that perturb
the magnetic field configuration. Here, we use k = 0.6, which
is adequate to simulate the diverted magnetic field configuration
for large tokamaks like ITER [23].

The left panel of Fig. 2 shows the system’s phase space x-y. The
magnetic saddle is located at (x = 0, y = 1) and we consider that
a magnetic field line escapes when it crosses the divertor plate,
i.e., the escape condition is given by y > 1. We are interested
in a sub-region V which contains the saddle and is close to the
escape threshold. The phase space in V is presented in the right
panel of Fig. 2. We note that the system possesses a separatrix
chaotic layer embedded with several island chains.

For our numerical simulations, we choose four ensembles
inside V and we evolve them up to Tpe = 2 x 108 iterations.
Each ensemble is formed by a square of side-length 1 x 10~> and
is composed of M = 10* initial conditions uniformly distributed
on a grid. In order to illustrate the different paths taken by the
orbits in this system, we define a 512 x 512 grid and we calculate
the mean transient measure profile for all cases. The results are
shown in Fig. 3.

(15)

1 A tokamak is a toroidal-shaped device that uses a strong magnetic field in
order to confine a hot fusion plasma.

1.000

Y

-0.002

Fig. 2. Phase space x-y of the single-null tokamak map. (Left) Full phase space, denoted as X, where the dashed line marks the escape threshold. (Right) Zoom-in

on the V region.
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0.002 0

Fig. 3. Profiles of the mean transient measure v; in logarithmic scale for the single-null tokamak divertor map, calculated on a 512 x 512 grid in the region V of
phase space x-y. The ensembles of initial conditions are represented by the small white squares which are not in scale.

1.000

0.998

" 2
-0.002

70.002

T T

Fig. 4. Unstable manifolds W" associated with the main UPOs in the single-null tokamak divertor map. (Left) Full picture. (Right) Magnification on the neighborhood
of each orbit. The ensembles in Fig. 3 were chosen on top of these orbits, which are marked by black crosses.

Since the phase space in V is dominated by a complex con-
figuration of island chains, it is reasonable that we place such
ensembles on top of the unstable periodic orbits related to these
islands. Ensembles 1 through 4 are then centered at UPOs of
period 28, 57, 29 and 29, which are located at (0.0, 0.9971),
(0.0, 0.9974), (0.0006, 0.9979) and (0.0, 0.9984), respectively.
We readily observe that the v; profile in this region, as depicted by
the logarithmic color scale, is highly dependent on the ensemble
location as each case leads to different transient behavior. In
particular, it highlights the stickiness experienced by the orbits
that begin in Ens. 1 and 2.

In all cases, the color gradient depicts interesting structures
formed between the island chains. These are actually the unstable
manifolds associated with particular periodic orbits in the system
which are outlined by the trajectories as the discrete dynamics
evolve. In Fig. 4, we show the unstable manifolds associated with
the four UPOs at which the Ensembles are centered. We can

https://reader.elsevier.com/reader/sd/pii/S0167278921002700?tok...D087C16B56&originRegion=us-east-1&originCreation=20220107183102

observe that these structures have a complex geometry, which
influences the transport of the system. In Fig. 3, we also notice the
low values of the mean transient measure in the neighborhood of
the islands, being especially visible for Ens. 4. This phenomenon
is related to invariant manifolds as well or, specifically, to the
distribution of heteroclinic crossings in the phase space [4].

To statistically investigate the mean transient measure pro-
files, we present both the histogram and the cumulative his-
togram for all four different ensembles in Fig. 5. Here, we consider
only the boxes visited at least once by the simulated dynamics.
We quickly recognize that not only the histogram distributions
but also the cumulative curves are quite different between the
analyzed cases. Ensemble 1 shows a wider distribution in v;,
presenting at least four distinct peaks. Meanwhile, Ens. 2, 3,
and 4 show more centralized distributions, displaying a different
number of peaks in each case, with the last one being the most
well behaved.

Page 5 of 13
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Fig. 5. Histogram (black rectangles) and cumulative histogram (red line) of the mean transient measure v; for the single-null tokamak divertor map. The grid is
formed by 5122 = 26.2144 x 10* boxes and only the ones visited by an orbit are considered.
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Fig. 6. Linear fitting of lnlg’ as a function of Ing¢ for the single null tokamak divertor map, with D‘z_’ given by the slope of the resulting straight line. The values of
the box side-length are ¢ = 1/128, 1/256, 1/512, 1/1024 and 1/2048 for a phase space normalized to the unit square.
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T

Fig. 7. (Top) Profile of the mean transient measure in logarithmic scale for the
special case in the single null tokamak divertor map. On the inset, the same
profile is calculated on a smaller region. The ensemble position is represented by
a small white square in both figures. (Bottom) Unstable manifolds W" associated
with three UPOs that are located in the vicinity of the island presented in the
inset at the top canvas.

The calculated histogram distributions stress the different
transient behaviors which can emerge from the complex dynami-
cal scenario of the system, as seen in Fig. 3. All orbits beginning in
Ens. 1 pass through all the island chains, following their invariant
manifolds, before reaching the divertor plate at y = 1. This is
reflected by a high number of peaks in the histogram. Ensemble
4, on the other hand, is located closer to the system’s exit and,
hence, the influence from the islands below it is low, reflected by
two well-defined peaks in the histogram. Therefore, the influence
of the island chains on the paths described by the escape orbits
depends on the location of the chosen ensemble, and this is
translated as the number of peaks in Fig. 5.

The cumulative histograms not only reflect the number of
peaks in the histograms, but they also reveal that, even though
the transient scenario is very different between the analyzed
cases (see Fig. 3), the total number of visited boxes remains the
same, i.e., they all cover the same area of the phase space before
escaping.

In order to quantify the differences illustrated by the mean
transient measure profiles, we proceed with the calculation of the
transient correlation dimension for each analyzed case. In Fig. 6,
we plot I, Eq. (8), as a function of the box side-length . We
see that all cases can be well fitted by a linear regression in the
log-log plot, which corroborates Eq. (7). Also, by comparing the
calculated values for D} to the profiles in Fig. 3, we find that the
transient correlation dimension is well suited for characterizing
the transient behavior in this system. As expected from Fig. 5,
these dimensions monotonically decrease as the ensemble of ini-
tial conditions gets closer to the escape threshold, which indicates
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Table 1
Transient complexity coefficient ¢ for the ana-
lyzed cases in the single-null tokamak divertor

map.
Ensemble Coefficient ¢
1 5.723 x 107!
2 1.344 x 107!
3 1.408 x 1072
4 2.908 x 1073
S 7.539 x 107!

that the transient behavior is more complex when the orbits
begin far from the exit.

We continue our analysis by considering a special case where
we position an ensemble S in the neighborhood of a stability re-
gion. Specifically, S is centered at an UPO of period 464 associated
with the satellite islands of the center island chain of period 30.
Like the other cases, it is composed of M = 10* initial conditions
and we also iterate it until T,y = 2 x 10°, but, this time, it is
formed by a smaller square of side-length 1 x 107, The mean
transient measure profile for this special case is presented in the
top panel of Fig. 7 for a 512 x 512 grid. We consider the same
region V of the phase space that was used for the other ensembles
and also a smaller region that focuses on the center island (inset).
It is clear that the v; profile highlights the presence of stickiness
and outlines the invariant manifolds associated with the UPO, and
also the invariant manifolds associated with other UPOs in the
vicinity, as shown in the bottom panel of Fig. 7.

As a second quantitative comparison for the single-null toka-
mak divertor map, we present the computed transient complexity
coefficients in Table 1, considering all the chosen ensembles
of initial conditions, including the special one. We readily see
that c can properly differentiate between the transient behaviors
observed in Figs. 3 and 7. For Ens. 1 through 4, the values of
¢ decrease as the ensemble location gets closer to the escape
boundary. Moreover, for the special set S, the calculated coeffi-
cient accurately expresses how complex, on average, it is the path
of an escape orbit in this case.

3.2. Planar Earth—-Moon system
The motion of small bodies in the Earth-Moon system can

be modeled, as a first approximation, by the planar circular re-
stricted three-body problem. This model concerns the dynamics

1.1

y L

0.0

-1. L L L

-0.8 0.3 T 1.4

Fig. 8. The Earth-Moon system as modeled by the planar circular restricted
three-body problem. The gray area indicates the forbidden region to which the
third particle does not have access for C = 3.187. Orbits in the vicinity of the
Moon can only escape the Moon’s realm through the neck in L;. Our chosen
surface of section X' is portrayed by a dashed line.
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of a body with negligible mass under the influence of a two-body
gravitational potential [24]. In a non-inertial reference frame,
which rotates with the same constant frequency as the two-body
system, the dimensionless equations of motion on the plane x-y
for the third body are given by

. . 0

X—2y= W’

o gp 02 (16)
X = —),

y 3y

with
1 1-—

2=+ +—L+ L (17)
2 TE ™

where = 1.215 x 1072, the ratio between the mass of the
Moon and the system’s total mass. rz and ry are the distances
from the primaries, Earth and Moon, which are located at (—u, 0)
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and (1 — u, 0), respectively. The system’s schematic is shown in
Fig. 8.

From Eq. (16), we can derive the Jacobi constant of motion
C(x,y) = 282 —x*>—y?. It restricts the dynamics of the system to a
three-dimensional surface and also delimits the accessible region
in coordinate space x-y. There are two Lagrangian equilibrium
points called L; and L, next to the Moon and collinear to the
primaries. If we set the Jacobi constant between the values of C
for these points, namely, C;, &~ 3.188 and C;, ~ 3.172, we arrive
at a situation where orbits that start near the Moon can transfer
to the Earth’s vicinity but cannot leave the system.

In this work, we set C = 3.187 and we consider that orbits
escape when they exit the Moon'’s realm and enter the Earth’s
one, which are separated by L;. Therefore, the escape condition
is given by x < x;,. The equations of motion are numerically
integrated up to Tmax = 5 x 103 units of time using the explicit
embedded Runge-Kutta Prince-Dormand 8(9) method [25] and

0.25]

o2l LA AL
g x 1.120

Fig. 9. Phase space x-x for the planar Earth-Moon system calculated at the surface of section X. (Left) Full phase space, where the dashed line marks the escape

threshold. (Right) Zoom-in on our region of interest V.

1.120

0.993

1.120

Fig. 10. Profiles of the mean transient measure ; in logarithmic scale for the Earth-Moon system, calculated on a 512 x 512 grid in the region V of phase space
x-X. The ensembles of initial conditions are chosen in the surface of section X' and are represented by the small white squares, which are not in scale.
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Fig. 11. Unstable manifolds W" associated with the main UPO in the Earth-Moon system. (Left) The regular region. (Right) Magnification on the neighborhood of
the rightmost islands. The first ensemble in Fig. 10 was chosen on top of this orbit, which is marked by black crosses.

the orbits are analyzed on a surface of section X' defined by
E={(X,y,5‘,}")|XL1 <X<XL2! ,V=0, jl>0}7 (18)

where x;;, ~ 0.8369 and x;, ~ 1.1556 are the location on the
x-axis of L; and L, respectively. See Fig. 8.

Fig. 9 presents the system’s phase space x-x in our surface
of section X, along with the escape threshold x = x;, and the
region V C X that we are interested in. We can observe one
main stability region formed by regular solutions together with
a large chaotic sea. There is a clear presence of stickiness around
the stability region and also areas with a higher or a lower density
of orbits in the chaotic sea.

It is important to note here that the method presented in
Section 2 does not require the escape threshold to be inside the
region of interest. In this case, V is far from the neck region that
divides the realms and it contains the direct periodic orbit around
the Moon for this Jacobi constant [26].

In order to investigate this system, we choose our four en-
sembles of M = 10* initial conditions in the region V. These
ensembles are now formed by rectangles of size 5 x 10~* by
4 x 1073 in the phase space x-x and are equally distant from
each other, with Ens. 1 centered at approximately (1.025, 0.0)
and Ens. 4 at (1.102, 0.0). The size for the ensembles was chosen
so that the first ensemble analyzed would fit between two of the
resonant islands in the regular region. In Fig. 10, we present the
mean transient measure profiles for a grid of 512 x 512 boxes.

Ensemble 1 was selected in the neighborhood of the stability
region, as we did for the special case in the tokamak system. In
this system, however, we do not have a series of island chains, but
rather one main stability region along with a large chaotic sea. As
was the case there, we readily notice a higher visitation frequency
in the boxes around the stability region, highlighting the sticki-
ness effect and also delineating the invariant manifolds associated
with the period-7 UPO in which the ensemble is centered, as
shown in Fig. 11. It is interesting to observe, though, that none
of the other cases experience the same stickiness effect. While
the orbits that begin in Ens. 2 and 3 spread across the region
V with a higher visitation frequency in the middle section, the
ones that begin in Ens. 4 seem to concentrate more on the outer
part. Therefore, we observe here three very distinct transient
behaviors.

In Fig. 12, we present both the histogram and the cumulative
histogram of the mean transient measure for all cases, consider-
ing only the visited boxes. As expected due to the stickiness effect,
Ensemble 1 leads to the highest number of boxes with high mean
transient measures, visible as a small bump in the first histogram.
Furthermore, even though Ens. 2 and 3 look similar in Fig. 10,

https://reader.elsevier.com/reader/sd/pii/S0167278921002700?tok...D087C16B56&originRegion=us-east-1&originCreation=20220107183102

they present different distributions, with the latter having two
clear peaks. This could indicate the presence of another UPO in
the system, which would be influencing the path of these orbits.
As for Ens. 4, the distribution is thinner than the others and the
reason why this is so is addressed later.

As before, we initially quantify our observations by calculating
the transient correlation dimension for all cases. In Fig. 13, we
show I;’ as a function of the box side-length ¢ in a log-log plot,
along with the linear fitting for each case and the corresponding
value for Dj. The results obtained again validate Eq. (7) and show
that such quantity is well suited for characterizing the transient
behavior in this system as well. The calculated dimension is
higher for Ens. 1 and lower for Ens. 4, as we would expect
by looking at Fig. 10. In here, however, the relation between
transient correlation dimension and distance from the escape
threshold is not linear, since Dg is slightly higher for Ens. 3 when
comparing to Ens. 2, which suggests a more complicated transient
scenario for this system.

There are two observations we need to make about the in-
terpolation for Ens. 4. First, the total number of visited boxes
is significantly lower than the other cases, which is the main
information we can extract from the cumulative histograms in
Fig. 12. Second, there is a lower number of orbits with high v;, as
we can also see from the histograms. Therefore, the statistics nec-
essary for calculating I;’ and, consequently, the escape dimension
correlation, are not optimal in this case.

The cumulative histograms also show that less than half of
the grid boxes are being visited in all cases, which can be ex-
plained in the following manner. From Fig. 10, we observe the
presence of “black lakes”, which are not visited in any of the
analyzed cases and yet are not composed by regular structures
(see Fig. 9). As special cases, then, we choose two ensembles
of initial conditions inside one of these regions and calculate
the respective mean transient measure profiles. The results are
presented in Fig. 14, with ensemble S1 centered at (1.107, 0.0)
and S2 at (1.096, —0.09744), approximately.

For Ens. S1, we observe an interesting situation where all
orbits evolve closely together and exit the system after crossing
V three times, which means that there are fast escape routes
inside these regions. However, for Ens. S2, the orbits do not
rapidly escape and, instead, they spread across the phase space
after crossing V through other black lakes. This means that it is
possible for orbits that begin in one of these regions to access
the same part of the phase space that was visited in the previous
cases, though the opposite is not true as we can see from Fig. 10.

The black lakes are actually formed by the crossing with the
surface of section of the unstable manifolds of the Lyapunov
orbit, an UPO that revolves around the equilibrium point L;.
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Fig. 12. Histogram (black rectangles) and cumulative histogram (red line) of the mean transient measure v; for
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the Earth-Moon system. The grid is formed by

Fig. 13. Linear fitting of In I{' as a function of Ine for the Earth-Moon system, with D‘;’ given by the slope of the resulting straight line. The values of the box
side-lengths are ¢ = 1/128, 1/256, 1/512, 1/1024 and 1/2048 for a phase space normalized to the unit square.
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Fig. 14. Profiles of the mean transient measure in logarithmic scale for the
special cases in the Earth-Moon system. The ensembles are represented out
of scale by the white squares. For S1, we also show the contour of the chosen
black lake in white and the magnification of the profile for the second crossing.

Table 2
Transient complexity coefficient ¢ for the ana-
lyzed cases in the planar Earth-Moon system.

Ensemble Coefficient ¢
1 1.718 x 107!
2 1.569 x 1073
3 2.377 x 1073
4 9.460 x 104
S1 4.483 x 1073
S2 1.235 x 103

These geometrical structures cross X perpendicularly at V and
are responsible for the transport of orbits that enter the Moon'’s
realm [27,28]. Ensemble S1 is fully inside an intersection between
manifolds of different stabilities, which causes the orbits that
begin in this set to exit the Moon’s vicinity following the stable
one [29]. Furthermore, Ensemble 4 is partially inside an inter-
section and, consequently, a portion of the orbits originating in
this set rapidly escape the system, lowering the number of visited
boxes in comparison to the first three ensembles, as seen in the
cumulative histogram of Fig. 12.

We now proceed to the calculation of the transient complexity
coefficient, which is shown in Table 2 for all the cases analyzed
in this system, including the two special ones. For Ensembles 1
through 4, the coefficient c differentiates the transient behavior
between the cases similar to the transient correlation dimension,
with the value for Ens. 3 being higher than for Ens. 2. For Ens. S1,
in particular, the transient complexity coefficient takes into con-
sideration the system’s fast dynamics and correctly gives a value
lower than the regular cases.

11

https://reader.elsevier.com/reader/sd/pii/S0167278921002700?tok...087C16B56&originRegion=us-east-1&originCreation=20220107183102

07/01/22 15:33

Physica D 431 (2022) 133126
4. Conclusions

In this work, we introduced a practical numerical method
that visually illustrates and quantifies the transient behavior of
Hamiltonian systems with a defined escape, and we investigated
the dynamics of two physical systems with very different dy-
namical scenarios: a tokamak with a single-null divertor and the
planar Earth-Moon system. The first one was described by a
two-dimensional map, which presented a complex structure of
island chains and associated unstable periodic orbits of varied
periods. The second one was modeled by a four-dimensional
time-continuous system with a constant of motion and presented
a phase space structure composed of one main regular region
along with a large chaotic sea.

By plotting the profiles of the mean transient measure for
different ensembles on these systems, we verified that, depending
on the location of the ensemble of initial conditions, the escape
orbits experienced very different paths in the phase space be-
fore reaching the escape condition, which characterized distinct
transient scenarios. Furthermore, the profiles provided a clear
picture of the stickiness phenomenon and highlighted the in-
fluence of particular invariant manifolds. Later, with the mean
transient measure histograms, we were able to show the differ-
ences between the phase space distributions associated with each
ensemble, and also between the two physical systems.

The transient scenarios were quantified by two distinct pa-
rameters, the transient correlation dimension, and the transient
complexity coefficient, both of which were capable of determin-
ing which situations lead to the most complex behavior. The
transient correlation dimension was defined directly from the
mean transient measure, without further considerations. This
quantity does not depend on the box side-length, since it is
defined in the limit ¢ — 0, which makes it somewhat more
general. However, calculating the transient correlation dimension
was costly and it required a high number of box visitation.

The transient complexity coefficient, on the other hand, takes
into consideration how many orbits of the ensemble go through
a given box of the grid and how fast said orbits exit the sys-
tem. As a result, it returned numerical values on a non-linear
scale, providing a clear distinction between the analyzed cases.
On the downside, this quantity is related to a specific grid box
side-length, which needed to be properly chosen based on com-
putational time and, more importantly, on whether the mean
escape measure profile for said grid box side-length is properly
depicting all the interesting transient dynamical phenomena in
the system.

In summary, we showed that the mean transient measure is an
effective numerical tool for visually describing and characterizing
the different transient scenarios that may arise in Hamiltonian
systems, which can be very complex and diverse, as was shown
here for the single-null divertor tokamak and the planar Earth-
Moon system. This method can be used to analyze both dis-
crete and continuous-time systems, provided a Poincaré map
can be constructed, and its application to other low-dimensional
physical models should be direct.

Future research on this topic might include the investiga-
tion of time-dependent systems, such as periodically perturbed
systems, and the comparison to other finite-time tools for an-
alyzing dynamical systems, such as the Finite-Time Lyapunov
Exponent and the Finite-Time Rotation Number, which are useful
for determining Lagrangian Coherent Structures [30,31].
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