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A B S T R A C T

Synaptic dynamics plays a key role in neuronal communication. Due to its high dimensionality, the main
fundamental mechanisms triggering different synaptic dynamics and their relation with the neurotransmitter
release regimes (facilitation, biphasic, and depression) are still elusive. For a general set of parameters, and
employing an approximated solution for a set of differential equations associated with a synaptic model, we
obtain a discrete map that provides analytical solutions that shed light on the dynamics of synapses. Assuming
that the presynaptic neuron perturbing the neuron whose synapse is being modelled is spiking periodically,
we derive the stable equilibria and the maximal values for the release regimes as a function of the percentage
of neurotransmitter released and the mean frequency of the presynaptic spiking neuron. Assuming that the
presynaptic neuron is spiking stochastically following a Poisson distribution, we demonstrate that the equations
for the time average of the trajectory are the same as the map under the periodic presynaptic stimulus,
admitting the same equilibrium points. Thus, the synapses under stochastic presynaptic spikes, emulating
the spiking behaviour produced by a complex neural network, wander around the equilibrium points of the
synapses under periodic stimulus, which can be fully analytically calculated.
1. Introduction

Synapses are specialized structures in neuronal communication
which play a key role in the transmission of neuronal signals in the
brain [1]. There are two types of synapses, the electrical and the
chemical [2]. Through the electrical synapses, neurons communicate
with each other by direct exchange of ion currents [3]. In the axon
terminals of the presynaptic neurons with chemical synapses, the action
potentials generate the release of neurotransmitters in the synaptic
cleft that arrive at the receptors and then produce a current in the
postsynaptic neurons [4]. In the mammalian brain, most synapses are
chemical [5]. The effectiveness of these transmitted currents depends
on the synaptic strength that usually changes in time due to the
previous activity of the synapse [6].

Some mathematical models were proposed in the literature to de-
scribe the dynamics of chemical synapses. Many of them provide a
simplified description of the signal transmission between the neu-
rons [7], for instance, single exponential decay, alpha, and double
exponential synaptic functions [8,9]. However, in these models, the
maximal conductance associated with each spike event has a fixed
value and does not exhibit synaptic regimes, such as facilitation and
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depression [10]. Others, however, provide more realistic synaptic dy-
namics where the intensity of synaptic conductance is altered over
time [11]. This process of change in the synaptic intensity is called
synaptic plasticity [12], where short- and long-term are the two main
types of synaptic plasticity [13]. While for a long time scale, plasticity
can exhibit long-term potentiation (LTP) or depression (LTD) [14,15],
for short time scales, the synaptic dynamics are associated with facili-
tation, depression and biphasic regimes [16–18]. Both facilitation and
depression synaptic regimes are found between excitatory neurons in
the neocortex [19]. These two kinds of plasticity also have different
functions in the brain, for example, long-term plasticity is associated
with processes such as memory and learning, while short-term plastic-
ity is related to processing functions and working memory in neural
circuits [20,21].

In simple terms, short-term plasticity consists of the changes in
synaptic strength conductance in a relatively small period of time
which are associated with the release of neurotransmitters in each
synapse [22]. These synaptic changes can act in the time scale of
milliseconds to seconds, but can also last longer in the order of min-
utes [23–25]. A relevant model in this framework for short-term plas-
ticity was introduced by Markram et al. [26]. According to it, spiking
960-0779/© 2024 Published by Elsevier Ltd.
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frequency and the amount of neurotransmitters released in the synaptic
cleft are two important factors in synaptic dynamics [22]. The mech-
anism described by the mentioned model considers that the changes
in synaptic transmission strengths depend mainly on the spike activity
of the presynaptic neuron [27]. Depending on the time constants,
frequency of spikes, and the amount of neurotransmitter released,
different regimes such as facilitation, depression, and biphasic regime
of the synapse can emerge [28]. The synapses with a high probability of
release tend to present short-term depression [29]. On the other hand,
facilitation regimes emerge when the number of vesicles available
increases due to consecutive spikes [30]. In addition, the combination
of depression and facilitation has been reported to generate particular
synaptic and network dynamics [31,32].

An important behaviour found in neuron activities is the spike
variability [7]. To study neuronal activities, Poisson processes are
standard to model the spike time variability of irregular firings [33–
35]. The Poisson process can be considered as homogeneous [36] or
inhomogeneous [37]. The main difference between these two types of
Poisson processes is that the homogeneous has a constant rate of events
over time while the inhomogeneous has the rate of events changing
over time [38,39]. In the field of neuroscience, the Poisson process is
considered as an approximation for spontaneous neuron spikes that can
be useful to investigate some aspects of neuronal dynamics [40–42].
Moreover, the Poisson process is one of the simple ways to describe
the spike activities with stochastic firings [43]. There are some evi-
dences that Poisson-like behaviours can be related to the emergence of
neuronal variability [44]. The Poisson distribution allows us to derive
results which, under certain conditions, are relate to real dynamics.
Neurons can exhibit near periodic and Poissonian spike activities over
time [45]. The comprehension of how periodic and Poisson-like spike
activities induce different synaptic dynamics can shed light into the
understanding of neuronal communication.

In this work, we obtain a map from a synaptic model described
by a set of fourth ODEs proposed by Tsodyks et al. [22], and analyse
how different synaptic states depend on relevant parameters, such
as the spiking frequency of presynaptic neuron and the percentage
of neurotransmitters released. We obtain analytically the equilibrium
points in the periodic regime, identify the synaptic regimes, and deter-
mine the final and maximal value of active neurotransmitters in the
space parameter of frequency and the fraction of neurotransmitters
released. The maximal value corresponds to the most intense release
of neurotransmitters that can generate the highest synaptic currents
on the postsynaptic neurons. However, the interest in analytically
calculating these values is because the solution will depend on the
peculiarities of the transient behaviour in biphasic and depression, and
the asymptotic behaviour of the facilitation. Furthermore, we identify
when the maximal fraction of active neurotransmitters can occur in
each regime. In addition to that, assuming that the presynaptic neuron
is spiking following a Poisson distribution, we showed that the equa-
tions for the time average of the trajectory are the same as the map
under periodic presynaptic stimulus, admitting the same equilibrium
points. The periodic and Poisson spikes are approximations of the
dynamics observed in real neuronal dynamics for regular and random
spikes. Furthermore, we demonstrate numerically the correctness of
our analytical derivations for the map and its equilibrium points of
active neurotransmitters. These results can contribute to understand
how communication in the brain is mediated by synapses under regular
or irregular stimulus.

The paper is organized as follows. In Section 2, we introduced
the synaptic model considered in this work. In Section 3, we showed
the analytical and numerical results. In the last section, we draw our
2

conclusions.
2. Methods

In short-term plasticity, the effective synaptic conductance changes
in time depending on the neuron spike historic. The relevant parame-
ters in synaptic dynamics are the presynaptic neuron firing frequency,
the percentage of neurotransmitters released, and the time constants
of the synapse. All these parameters in the model take into account
the fact that there is a finite amount of neurotransmitters in each
synapse and that they are not always available in the same quantity
over time. Based on this, to study the synaptic dynamics, we considered
the phenomenological model proposed in [22]. The model considered
in this study is based on a map derived to describe experimental data
reported in [46], which was modelled by an ODE in [22]. We provide
a map and solutions for the ODE system proposed in [22].

In this model, each directional synaptic connection from a presy-
naptic neuron [47] is represented by the set of ODEs
𝑑𝑥
𝑑𝑡

= 𝑧
𝜏rec

− 𝑥𝑢𝛿(𝑡 − 𝑡sp), (1)

𝑑𝑦
𝑑𝑡

= −
𝑦
𝜏ina

+ 𝑥𝑢𝛿(𝑡 − 𝑡sp), (2)

𝑑𝑧
𝑑𝑡

=
𝑦
𝜏ina

− 𝑧
𝜏rec

, (3)

𝑑𝑢
𝑑𝑡

= − 𝑢
𝜏facil

+ 𝑈 (1 − 𝑢)𝛿(𝑡 − 𝑡sp), (4)

where 𝑥, 𝑦, and 𝑧 represent the fractions of neurotransmitters in the
recovered (available), active, and inactive state (refractory or recover-
ing), respectively. 𝑢 corresponds to the fraction of available resources
(𝑥) used in each presynaptic spike becoming active. In Eq. (1), 𝜏rec is the
recovery time for inactive neurotransmitters. In Eq. (2), 𝜏ina is the decay
time for neurotransmitters from active to inactive state. In Eqs. (1) and
(2), the Dirac delta function moves the fraction 𝑥𝑢 of neurotransmitter
from the recovery state to the active one at the instant which a spike
is considered in the model, namely 𝑡sp. We consider that when 𝑡 = 𝑡sp,
the delta Dirac function can be approximated by the Kronecker delta
so that 𝛿(𝑡 − 𝑡sp) = 1, otherwise 𝛿(𝑡 − 𝑡sp) = 0. In Eq. (3), the amount of
ecovering neurotransmitters depends on the inactivation and recovery
rocess. In Eq. (4), 𝜏fac is the time for the synapses to return from
he facilitation regime. As 𝜏fac approximates to zero, less facilitation
s exhibited in the model. 𝑈 describes how 𝑢 value increases and is
ssociated with the percentage of available neurotransmitters which are
eleased due to each spike. In this work, we fixed the parameters 𝜏rec
= 800 ms, 𝜏ina = 3 ms, and 𝜏fac = 1000 ms [22]. Thus, we studied the
parameters 𝑈 and 𝑡sp, where 𝑡sp is related to the mean spike frequency
𝐹 and mean period 𝑇 = 1∕𝐹 . We consider the initial condition 𝑥 = 1
and 𝑦 = 𝑧 = 𝑢 = 0, which corresponds to a synapse with no recent
activity and neurotransmitters totally recovered.

Fig. 1(a) shows a schematic representation of the neurotransmitters
in the synapse by means of the variables 𝑥, 𝑦, and 𝑧. When a spike is
considered in the model, the fraction of recovered neurotransmitters
𝑥 can be released in the synaptic cleft, assuming an active state 𝑦 that
effectively will generate a current in the postsynaptic neuron. After the
activation, these fraction of neurotransmitters are inactivated staying
in the 𝑧 variable until be in the recovered state 𝑥 again and restart the
cycle.

3. Results

Definitions and notations

The variables 𝑥, 𝑦, and 𝑢 are continuous in time when the evolution
is considered between two sequential spike events, from the time
immediately after a spike event until the last time immediately before
the next spike event. The variable 𝑧 is continuous all the time. We
define 𝑡′ = 𝑡 − 𝑡sp = 0 to represent the time immediately after the spike

′
of the neuron where 𝛿(𝑡 ) = 1. Fig. 1(b) shows the time evolution of the
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Fig. 1. (a) Schematic representation of the neurotransmitter states in a synaptic connection. 𝑥, 𝑦, and 𝑧 stand for recovered, active, and inactive neurotransmitters, respectively.
(b) Variable evolution 𝑥, 𝑦, 𝑧, 𝑢 overtime for the facilitation regime. 𝑥𝑏 and 𝑥(0) stand by the 𝑥 variable immediately before and after the spike event, respectively. 𝑥∗ stands
the fixed point of 𝑥 after the transient time immediately before the spike event in the periodic spike regime. 𝑥∗𝑢∗ represents the amount of neurotransmitters removed from the
recovered state 𝑥 and added to active state 𝑦. The same notation is used to identify the values of the variables before and after the spike event, as well as the fixed point after
the transient. In Figure (b), we fixed 𝑈 = 0.1 and 𝐹 = 2.5 Hz.
variables, where 𝑥𝑏 corresponds to the value of 𝑥 immediately before
the spike (𝑡sp). 𝑥(0) and 𝑥𝑎 represent both the value of 𝑥 immediately
after a spike event (𝑡 = 𝑡sp), with the notation 𝑥(0) being used to handle
the variables describing the evolution of the system of ODEs. Such
notation is extended for other variables, 𝑦, 𝑧, and 𝑢. In this way, it is
possible to relate the variable value before and after each spike to be
considered in all variables that are also described by the Eqs. (1)–(4)
by

𝑥(0) = 𝑥𝑎 = 𝑥𝑏 − 𝑢𝑏𝑥𝑏, (5)
𝑦(0) = 𝑦𝑎 = 𝑦𝑏 + 𝑢𝑏𝑥𝑏, (6)
𝑧(0) = 𝑧𝑎 = 𝑧𝑏, (7)
𝑢(0) = 𝑢𝑎 = 𝑢𝑏 + 𝑈 (1 − 𝑢𝑏). (8)

Note that Eqs. (5)–(8) for the left equalities represent the time ‘‘𝑡sp’’
immediately after the first spike occurs in the presynaptic neuron.
In the right equality of Eqs. (5)–(8), in a more general case, these
equations relate the variable values immediately before (𝑏) and after
(𝑎) the spike events.

Analytical approximation

To improve our understanding of the synaptic model, we search
for an analytical approximation. We seek a solution between two
sequential spike events for the set of differential Eqs. (1)–(4). We note
that a general solution for 𝑦(𝑡′) and 𝑢(𝑡′) is independent of the other
variables, resulting in

𝑦(𝑡′) = 𝑦(0)𝑒
− 𝑡′

𝜏ina and 𝑢(𝑡′) = 𝑢(0)𝑒
− 𝑡′

𝜏fac , (9)

where 𝑡′ ∈ [0, 𝑡sp], 𝑡sp being the time interval terminating just before the
next spike happens. These solutions can be obtained just by integrating
directly Eqs. (2) and (4). As can be observed, given a certain initial
condition of these two variables, 𝑦(0) and 𝑢(0), the time evolution of
𝑦 and 𝑢 is determined until just before the next spike event. Since we
have a solution for 𝑦(𝑡′) and 𝑧(𝑡′), it is possible to find an approximation
for the solution of Eq. (3), replacing the solutions of Eq. (9) in Eq. (3),
which result in

𝑧(𝑡′) =
[

𝑧(0) + 𝑦(0)(1 − 𝑒−𝑡
′∕𝜏ina )

]

𝑒−𝑡
′∕𝜏rec . (10)

Considering now the solution of Eq. (10) into Eq. (1), similarly we
have done to find the 𝑧(𝑡′), we determine the solution of Eq. (1) as

𝑥(𝑡′) = 𝑥(0) − 𝑧(0)(𝑒−𝑡
′∕𝜏rec − 1)
3

−𝑦(0)
[

(𝑒−𝑡
′∕𝜏rec − 1) −

𝜏ina
𝜏rec + 𝜏ina

𝑒
−𝑡′

(

1
𝜏ina

+ 1
𝜏rec

)
]

. (11)

Taking into account Eqs. (5)–(8) and the following definitions

𝐴(𝑡′) = 𝑒−𝑡
′∕𝜏ina , 𝐵(𝑡′) = 𝑒−𝑡

′∕𝜏rec , 𝐶(𝑡′) = 𝑒−𝑡
′∕𝜏fac , (12)

and

𝐸(𝑡′) = 𝐵(𝑡′)
[

1 −
𝜏ina

𝜏rec + 𝜏ina
𝐴(𝑡′)

]

, (13)

we can write Eqs. (9), (10), and (11) as

𝑥(𝑡′) = (𝑥𝑏 + 𝑦𝑏) − 𝑧𝑏[𝐵(𝑡′) − 1] − (𝑦𝑏 + 𝑥𝑏𝑢𝑏)𝐸(𝑡′), (14)
𝑦(𝑡′) = (𝑦𝑏 + 𝑢𝑏𝑥𝑏)𝐴(𝑡′), (15)
𝑧(𝑡′) =

{

𝑧𝑏 + (𝑦𝑏 + 𝑥𝑏𝑢𝑏)
[

1 − 𝐴(𝑡′)
]}

𝐵(𝑡′), (16)

𝑢(𝑡′) =
[

𝑢𝑏 + 𝑈 (1 − 𝑢𝑏)
]

𝐶(𝑡′). (17)

Note that Eqs. (12) and (13) are considered to make the solutions
in Eqs. (8)–(10) more compact, the result is presented in Eqs. (14)–
(17). This compact solution describes the variable values for 𝑡′ times
after a spike. In other words, given a spike event that occurs when the
variables are equal to 𝑥𝑏, 𝑦𝑏, 𝑧𝑏, 𝑢𝑏, the variable values after 𝑡′ are equal
to 𝑥(𝑡′), 𝑦(𝑡′), 𝑧(𝑡′), and 𝑢(𝑡′).

Synaptic map model - Periodic regime

For periodic presynaptic spikes with a certain frequency 𝐹 , the
period between two spikes is given by 𝑇 = 1∕𝐹 and we set 𝑡′ = 𝑡− 𝑡sp =
𝑇 . The map is constructed by relating the value of the variables at the
time 𝑡′ = 𝑇 (immediately before the second spike)

(𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝑢𝑛+1) = (𝑥, 𝑦, 𝑧, 𝑢), (18)

with those of the variables at the time 𝑡′ = 0 (immediately before the
first spike)

(𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑢𝑛) = (𝑥𝑏, 𝑦𝑏, 𝑧𝑏, 𝑢𝑏). (19)

Thus, this map relates the value of the variables immediately before
two consecutive spikes. This is important because such values deter-
mine the changes in synaptic variables as well as the fraction of active
neurotransmitters.

From Eqs. (14)–(17), we obtain the map for the synapse

𝑥𝑛+1 = (𝑥𝑛 + 𝑦𝑛) − 𝑧𝑛[𝐵(𝑇 ) − 1] − (𝑦𝑛 + 𝑥𝑛𝑢𝑛)𝐸(𝑇 ), (20)

𝑦𝑛+1 = (𝑦𝑛 + 𝑥𝑛𝑢𝑛)𝐴(𝑇 ), (21)
{ }
𝑧𝑛+1 = 𝑧𝑛 + (𝑦𝑛 + 𝑥𝑛𝑢𝑛) [1 − 𝐴(𝑇 )] 𝐵(𝑇 ), (22)
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𝑢𝑛+1 =
[

𝑢𝑛 + 𝑈 (1 − 𝑢𝑛)
]

𝐶(𝑇 ). (23)

Fixed point solutions

For periodic spikes, after a certain transient time, the equilibrium
point represented by 𝑥∗, 𝑦∗, 𝑧∗ and 𝑢∗ is achieved. The equilibrium point
is obtained by solving the system

(𝑥𝑛+1, 𝑦𝑛+1,…) = (𝑥𝑛, 𝑦𝑛,…) = (𝑥∗, 𝑦∗,…), (24)

which lead us to

𝑥∗ = 1 − 𝑦∗ − 𝑧∗, (25)

𝑦∗ = [𝑦∗ + 𝑥∗𝑢∗]𝐴(𝑇 ), (26)

𝑧∗ = {𝑧∗ + [𝑦∗ + 𝑥∗𝑢∗][1 − 𝐴(𝑇 )]}𝐵(𝑇 ), (27)

𝑢∗ = [𝑢∗ + 𝑈 (1 − 𝑢∗)]𝐶(𝑇 ), (28)

and finally

𝑥∗ =
𝐴(𝑇 )[1 + 𝐵(𝑇 )] + 𝐵(𝑇 ) − 1

𝐷(𝑇 )
, (29)

𝑦∗ =
𝐴(𝑇 )[𝐵(𝑇 ) − 1]

𝐷(𝑇 )
𝑢∗, (30)

𝑧∗ =
𝐵(𝑇 )[𝐴(𝑇 ) − 1]

𝐷(𝑇 )
𝑢∗, (31)

𝑢∗ =
𝑈𝐶(𝑇 )

1 + [𝑈 − 1]𝐶(𝑇 )
, (32)

here

(𝑇 )=𝐴(𝑇 )𝐵(𝑇 )[2𝑢∗−1]+[𝐴(𝑇 )+𝐵(𝑇 )][1−𝑢∗]−1, (33)

nd 𝐴, 𝐵 and 𝐶 are defined in Eqs. (12), for 𝑡′ = 𝑇 .

pproximation for low frequency

In the numerical simulation, we considered a small value of the time
or inactivation given by 𝜏ina = 3 ms. Such value generates a fast decay
n the 𝑦 variable, so that we can approximate 𝑦𝑛 to zero in Eqs. (20),
21), and (22). In this case, we also can approximate 𝐴(𝑇 ) to 0 since

we can neglect 𝐴(𝑇 ) for the inactivation time constant 𝜏ina = 3 ms and
ow frequencies, rewriting the map of Eqs. (20)–(22) as

𝑛+1 = 𝑥𝑛 − 𝑧𝑛[𝐵(𝑇 ) − 1] − 𝑥𝑛𝑢𝑛𝐵(𝑇 ), (34)

𝑛+1 = 0, (35)

𝑛+1 =
{

𝑧𝑛 + [𝑥𝑛𝑢𝑛]
}

𝐵(𝑇 ), (36)

𝑛+1 =
[

𝑢𝑛 + 𝑈 (1 − 𝑢𝑛)
]

𝐶(𝑇 ). (37)

Noticing that 𝐵(𝑇 ) and 𝐶(𝑇 ) for the time constants 𝜏rec = 800 ms and
fac = 1000 ms have typically a far from zero value for low frequencies
nd we can rewrite the fixed points as

∗ =
𝐵(𝑇 ) − 1

𝐷
, (38)

𝑦∗ = 0, (39)

𝑧∗ =
−𝐵(𝑇 )
𝐷(𝑇 )

𝑢∗, (40)

𝑢∗ =
𝑈𝐶(𝑇 )

1 + [𝑈 − 1]𝐶(𝑇 )
, (41)

here

(𝑇 ) = 𝐵(𝑇 )[1 − 𝑢∗] − 1. (42)
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a

umerical analysis

By a numerical approach, we study the synaptic regimes as the
unction of the constant spike frequency 𝐹 and the amount of neuro-
ransmitter released associated with the parameter 𝑈 . The range of 𝑈
s taken in the interval from the minimal (𝑈min = 0) to the maximal
raction (𝑈max = 1) of neurotransmitters that can become active due to
spike in a certain time. Values higher than 1 are related to an amount
f neurotransmitters higher than the available in the synapse. There is
o negative fraction of neurotransmitters. The range for the frequency
s taken in an appropriate interval where the regimes, maximal, and
quilibrium values change considerably for the combinations of 𝑈 and
𝐹 , for the parameters considered in our study [22].

To classify the synaptic regimes we considered the evolution of 𝑦
because it represents the effective fraction of neurotransmitters that is
transmitted from the presynaptic to the postsynaptic neuron [22]. To
mentioning, the synaptic current induced in the postsynaptic neuron is
given by

𝐼syn(𝑡′) = (𝑉 rev
pre − 𝑉post )𝑔c𝑦(𝑡′), (43)

here 𝑉 rev
pre is the synaptic reversal potential associated with the presy-

aptic neuron type (excitatory or inhibitory), 𝑉post is the potential of
he postsynaptic neuron, 𝑔c is the maximal synaptic conductance in the
hemical synapse, and 𝑦(𝑡′) is the fraction of active neurotransmitters
eleased by the presynaptic neuron [7,22,48]. This quantity described
y the model is the effective amount of neurotransmitters released due
o each spike event, which in the considered case has amplitude

(𝑡′) = 𝑥𝑏𝑢𝑏𝐴(𝑡′) = 𝑦𝑎𝐴(𝑡′). (44)

This value represents the fraction of neurotransmitters in the active
tate that will arrive in the receptors. 𝑥𝑏 and 𝑢𝑏 are the values of 𝑥 and
variables immediately before the spike, respectively, 𝑦a is the value of
immediately after the spike. This quantity is the effective amount of

ctive neurotransmitters released due to each spike event. Such values
epend on the initial conditions and history of the synaptic activity.

ynaptic regimes - Periodic

Fig. 2(a)–(c) show examples of the three different regimes for
eriodic spikes, namely (a) facilitation, (b) biphasic, and (c) depression.
he red line represents the fraction of active neurotransmitters, 𝑦(𝑡),
hile the green points, 𝑦a, represent the maximal value of 𝑦 due to each

pike which describes the value of 𝑦 immediately after the spike event.
ased on this value, we define the three synaptic regimes previously
entioned. Facilitation corresponds to the synaptic regime where the

alue of active neurotransmitters only increases due to each spike or
emains with an equal intensity after the transient period. Depression
s the case where the value of active neurotransmitters only decreases
ue to each spike or remains at the same value after a transient
ime. Biphasic is associated with the synaptic regime where there is
n increase and decrease in the value of active neurotransmitters. 𝑦max
epresents the maximal value of 𝑦 over time, while 𝑦f in indicates the
inal amplitudes of 𝑦 after the transient time for periodic spikes. In
ig. 2(a)–(c), we considered 𝐹 = 2.5 Hz, Fig. (a) 𝑈 = 0.1 for facilitation,
ig. (b) 𝑈 = 0.4 for biphasic, and Fig. (c) 𝑈 = 0.8 for the depression
egime. The mentioned parameters are indicated in Fig. 2(d) by white
quare, circle, and triangle, respectively. Fig. 2(d) displays the synaptic
egimes in the parameter space of the fraction of neurotransmitters
eleased and the periodic spike frequency, 𝑈 and 𝐹 , respectively. As
an be seen in the figure, the synaptic regimes are dependent on the
arameters. The facilitation regime is found for the lowest frequency or
mallest probabilities of neurotransmitter release, or both conditions.
epression is mainly found in the highest values of neurotransmitter

elease. A biphasic regime appears between the two previously cited
egimes. In the map, we can identify the different regimes taken into

ccount if some conditions are satisfied. In the facilitation regime, the
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Fig. 2. (a–c) Dynamics of the active neurotransmitters in the synapse for three different regimes, (a) facilitation, (b) biphasic, and (c) depression. Red lines show the dynamics
of active neurotransmitters represented by the 𝑦 variable, and the green line with circles represents the 𝑦 amplitude immediately after the spike event, 𝑦𝑎 = 𝑦(0). In Figs. (a–c),
we consider 𝐹 = 2.5 Hz, (a) 𝑈 = 0.1 for facilitation, (b) 𝑈 = 0.4 for biphasic, and (c) 𝑈 = 0.8 for depression regime. In Figs. (a–c), the maximal value of 𝑦 overtime is identified
as 𝑦max while the final amplitude of 𝑦 is represented by 𝑦f in. (d) Regimes found in the dynamics synapses: facilitation, depression and biphasic. The facilitation and depression
regimes are identified by means of Eqs. (45) and (46). If both conditions of Eqs. (45) and (46) are satisfied over time we identified the biphasic regime. The parameters 𝑈 and
𝐹 considered in Figs. (a–c) are indicated in Fig. (a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
amplitude of 𝑦 variable will always increase or be equal to the final
value 𝑥∗𝑢∗ if

𝑥𝑛(𝑇 )𝑢𝑛(𝑇 ) ≤ 𝑥𝑛+1(𝑇 )𝑢𝑛+1(𝑇 ), (45)

for 𝑛 > 1 with fixed 𝑈 and 𝑇 , otherwise, for the depression regime, the
amplitude of 𝑦 variable will reduce or be equal to the final value 𝑥∗𝑢∗,
if the condition

𝑥𝑛(𝑇 )𝑢𝑛(𝑇 ) ≥ 𝑥𝑛+1(𝑇 )𝑢𝑛+1(𝑇 ) (46)

is satisfied for 𝑛 > 1 with fixed 𝑈 and 𝑇 . If the Eqs. (45) and (46) are
satisfied in different iterations for 𝑛 > 1, and fixed 𝑇 and 𝑈 values, the
synapse exhibits a biphasic regime. If the fraction of neurotransmitter
released or frequency assumes values very near to zero, the value of
active neurotransmitters behaves as a linear dynamics where there
is no change on this value (very small frequencies) or very close to
zero (𝑈 close to zero), consequently, it is not possible to identify the
regime in the parameter space. We identify such dynamics as ‘‘N/A’’
(not applicable) since the considered methodology does not identify
such regimes, once conditions in Eqs. (45) and (46) become close to
equalities. The different regimes obtained in our simulation, namely
facilitation, depression, and biphasic, qualitatively agree with experi-
mental [22] and reconstructions of synaptic dynamics in silico [49].

Final fraction of active neurotransmitters - Periodic

Fig. 3(a) shows the time evolution of the variables given by the
model described by the ODE taking into account only the time imme-
diately before the spike event. The figure also exhibits the value of 𝑦
immediately after considering the spike event (𝑦𝑎) due to its importance
in synaptic communication. The values of the fixed points of the map
are determined by Eqs. (38)–(41). The black dashed lines indicate the
calculated fixed points 𝑥∗, 𝑦∗, 𝑧∗, and 𝑢∗, as well as the final value of
𝑦 immediately after the spike event, 𝑦f in. The value of 𝑦f in is given by

𝑦 = 𝑥∗𝑢∗. (47)
5

f in
Such values do not depend on the historic and initial conditions of the
synapse. Note that for this model the initial condition 𝑥(0), 𝑦(0), 𝑧(0),
and 𝑢(0) must satisfy 𝑥(0) + 𝑦(0) + 𝑧(0) = 1 and 𝑢(0) = [0,1].

As it can be observed, the calculated fixed points agree with the
evolution of the dynamics by Eqs. (1)–(4), as well as the synaptic
map model. Fig. 3(b) and (c) show the maximal and final value of
𝑦, where 𝑦f in is obtained after the transient time. In Fig. 3(b), the
maximal value corresponds to the highest value of 𝑦 due to its entire
time evolution given the initial condition of the synapse in the rest. The
maximal values in the temporal series are found for the highest 𝑈 and
𝐹 values. However, these highest values of 𝑦 might appear only briefly,
cases observed in depression and biphasic regimes. For facilitation, the
maximal 𝑦 values correspond to 𝑦f in and are exhibited after the transient
time. As can be seen in Fig. 3(c), the final values of 𝑦 do not appear
for large frequencies, but there is a range of frequencies where 𝑦f in is
higher. For such a range of frequency, the higher values of 𝑈 leads to
higher 𝑦f in.

Maximal fraction of active neurotransmitters - Periodic

We study the maximal fraction of active neurotransmitters for a
synapse initially on the rest. Fig. 4 displays the number of map
iterations to obtain the maximal value of 𝑦 from a synapse initially
in the rest. We iterate the map and plot the number of iterations to
arrive at the maximal fraction of active neurotransmitters. Fig. 4(a)–
(d) shows the 𝑦a dynamics for (a) depression, (b) and (c) biphasic,
and (d) facilitation regime, identifying the 𝑦max by a blue square. For
depression, the maximal value occurs for 𝑛 = 1 while for biphasic
regime occurs for 𝑛 ≥ 2. Fig. 4(e) shows the 𝑛 value to find 𝑦max in
the synaptic map considering the initial condition of the synapse on
the rest state. The 𝑛 value to obtain the 𝑦max varies on the parameter
space 𝐹 × 𝑈 .

To analytically determine the maximal values for the three synaptic
regimes, we consider the following initial condition of the synapse on
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Fig. 3. (a) Time evolution of the variable values immediately before considering the spike event on the synaptic model described by the ODE (𝑥𝑏, 𝑦𝑏, 𝑧𝑏, 𝑢𝑏). As the 𝑦 variable is
responsible for generating the current in the postsynaptic neuron, the value of 𝑦 immediately after considering the spike event (𝑦𝑎) and 𝑦max, are also indicated in the figure. The
black dashed lines represent the calculated equilibrium points, 𝑥∗, 𝑦∗, 𝑧∗, and 𝑢∗ of the discrete map, as well as the final value 𝑦f in. The parameters 𝑈 = 0.8 and 𝐹 = 2.5 Hz are
indicated in figures (b) and (c) by a black X. (b) Maximal 𝑦 values in the parameter space 𝑈 × 𝐹 . 𝑦max is obtained as the maximal value of 𝑦 in the entire temporal evolution of
the model. (c) 𝑦f in in the equilibrium point, which is the 𝑦 amplitude immediately after each spike past the transient time.
rest,

𝑥0 = 1, 𝑦0 = 0, 𝑧0 = 0, and 𝑢0 = 0. (48)

These values represent the state variables immediately before the
first spike. One map iteration takes them to the states immediately
before the second spike, given by

𝑥1 = 1, 𝑦1 = 0, 𝑧1 = 0, and 𝑢1 = 𝑈𝐶(𝑇 ). (49)

For the depression regime shown in Fig. 4(a), the maximal value of 𝑦
is given by Eq. (15) for 𝑡′ = 0, and therefore equal to

𝑦max = 𝑥1𝑢1 = 𝑈𝐶(𝑇 ). (50)

For the biphasic regime showed in Fig. 4(b,c), the maximal 𝑦 value
is also provided by Eq. (15) for 𝑡′ = 0, however depending on the
parameters that maximal is only reached after a certain number of
spikes. So,

𝑦max = 𝑥𝑖𝑢𝑖, (51)

where 𝑖 representing the number of spikes applied to the initial condi-
tion at rest can assume values equal to 2, 3, 4, …. Abusing the notation
and dropping the argument (𝑇 ) of 𝐴(𝑇 ), 𝐵(𝑇 ), and 𝐶(𝑇 ), for simplicity,
the variable states immediately before the second spike is given by

𝑥2 = 1 − 𝑈𝐵𝐶, 𝑦2 = 0, 𝑧2 = 𝑈𝐵𝐶, (52)
and 𝑢 = 𝑈𝐶2 + 𝑈𝐶(1 − 𝑈𝐶). (53)
6

1

Inputting these values into Eq. (15) provides the potential maximal
value after 2 spikes of the neuron (𝑖 = 2) given by

𝑦max = 𝑥2𝑢2 = 𝑈{2𝐶 − 𝑈𝐶2[1 + 2𝐵 − 𝐵𝐶]}.

This maximal value for 𝑖 = 2 is predominant in the parameter space
𝐹 ×𝑈 for the biphasic regime. The larger the value of 𝑖, the smaller the
area in the parameter space, showing that it is less likely to be observed.
Notice that to calculate the maximal values analytically, the larger the
value of 𝑖 the larger the degree of the polynomial associated with the
solution sought. So, we only calculate maximal values up to 𝑖 = 2.

Finally, for the facilitation regime shown in Fig. 4(d), the maximal
value of 𝑦 is asymptotically increasing towards the equilibrium point
and can be calculated by using the values from the equilibrium points
in Eqs. (38) and (41) into Eqs. (14) and (17), and then plugging these
values into Eq. (15) for 𝑡′ = 0. Keeping in mind that 𝑥∗ and 𝑢∗ are the
equilibrium values for 𝑥 and 𝑢, for the facilitation regime we have

𝑦max = 𝑥∗𝑢∗ = 𝑦f in. (54)

For 𝐹 higher than 10 Hz, the synaptic regimes, 𝑛 and the maximal val-
ues of active neurotransmitters have just a small shift in the parameter
space for the constant parameters considered. However, as 𝐹 increases,
the fraction of active neurotransmitters in the equilibrium decreases.

Mean synaptic map model - Poisson

In this section, we consider non-periodic spike times given by a
homogeneous Poissonian process to generate the time of spikes 𝑡sp.
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Fig. 4. 𝑦 variable after the spike (𝑦𝑎) for different values of the parameter of 𝑈 identifying the maximal value (𝑦max). In Fig. (a–d), we fix 𝐹 = 9 Hz, (a) 𝑈 = 0.6, (b) 𝑈 = 0.4,
(c) 𝑈 = 0.15 and (d) 𝑈 = 0.01. Fig. (e) shows the number of iterations to find the maximal value of 𝑦 from the rest state of the synapse. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Different from the periodic case, the time interval 𝑇 between two spikes
is not constant but rather is described by a Poisson process and thus
assumes different values for each iteration. Namely, for 𝑁+1 iterations,
we have 𝑇0, 𝑇1, 𝑇2, . . . , 𝑇𝑁 , where 𝑁 is considered as a large integer
value. Just showing the iteration for these time intervals for the 𝑦
variable described by Eq. (21), we have

𝑦1(𝑇0) = 𝑦0𝐴(𝑇0) + 𝑥0𝑢0𝐴(𝑇0), (55)
𝑦2(𝑇1) = 𝑦1𝐴(𝑇1) + 𝑥1𝑢1𝐴(𝑇1), (56)
𝑦3(𝑇2) = 𝑦2𝐴(𝑇2) + 𝑥2𝑢2𝐴(𝑇2), (57)
⋯ = ⋯ + ⋯ (58)

𝑦𝑁+1(𝑇𝑁 ) = 𝑦𝑁𝐴(𝑇𝑁 ) + 𝑥𝑁𝑢𝑁𝐴(𝑇𝑁 ). (59)

Considering the sum of all the terms in the equations and dividing by
𝑁 + 1 to obtain a temporal average, we find

1
𝑁 + 1

𝑁
∑

𝑛=0
𝑦𝑛+1(𝑇𝑛) =

1
𝑁 + 1

𝑁
∑

𝑛=0

[

𝑦𝑛𝐴(𝑇𝑛) + 𝑥𝑛𝑢𝑛𝐴(𝑇𝑛)
]

.

Identifying the mean values by

𝑦𝑛+1 = 1
𝑁 + 1

𝑁
∑

𝑛=0
𝑦𝑛+1(𝑇𝑛), (60)

𝑦𝑛𝐴(𝑇𝑛) = 1
𝑁 + 1

𝑁
∑

𝑛=0
𝑦𝑛𝐴(𝑇𝑛), (61)

𝑥𝑛𝑢𝑛𝐴(𝑇𝑛) = 1
𝑁 + 1

𝑁
∑

𝑛=0
𝑥𝑛𝑢𝑛𝐴(𝑇𝑛), (62)

we can write the expression of the temporal average for the 𝑦 variable
as

𝑦𝑛+1 = 𝑦𝑛𝐴(𝑇𝑛) + 𝑥𝑛𝑢𝑛𝐴(𝑇𝑛). (63)

Taking into account that the product of the mean is equal to the mean
of products, we can rewrite the last expression as

𝑦𝑛+1 = (𝑦𝑛 + 𝑥𝑛 𝑢𝑛)𝐴(𝑇𝑛). (64)

To determine the value of 𝐴(𝑇𝑛), we consider the power series expan-
sion for exponential function in the case that 𝑇 ≪ 𝜏 , obtaining the
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𝑛 fac
approximation

𝐴(𝑇𝑛) = 1
𝑁 + 1

𝑁
∑

𝑛=0

∞
∑

𝑚=0

1
𝑚!

(

−𝑇𝑛
𝜏fac

)𝑚

= 1
𝑁 + 1

∞
∑

𝑚=0

(−1)𝑚

𝑚!

(

𝑇 𝑚
0 + 𝑇 𝑚

1 + 𝑇 𝑚
2 +⋯ 𝑇 𝑚

𝑁
𝜏𝑚fac

)

≈
∞
∑

𝑚=0

1
𝑚!

(

−𝑇
𝜏fac

)𝑚
= 𝐴(𝑇 ). (65)

Using the same calculations for the other map variables in Eqs. (20),
(22), and (23), for a homogeneous Poisson process, we obtain the map
evolution of the temporal average given by

𝑥𝑛+1 = (𝑥𝑛 + 𝑦𝑛) − 𝑧𝑛[𝐵(𝑇 ) − 1] − (𝑦𝑛 + 𝑥𝑛 𝑢𝑛)𝐸(𝑇 ), (66)

𝑦𝑛+1 = (𝑦𝑛 + 𝑥𝑛 𝑢𝑛)𝐴(𝑇 ), (67)

𝑧𝑛+1 =
{

𝑧𝑛 + (𝑦𝑛 + 𝑥𝑛 𝑢𝑛) [1 − 𝐴(𝑇 )]
}

𝐵(𝑇 ), (68)

𝑢𝑛+1 =
[

𝑢𝑛 + 𝑈 (1 − 𝑢𝑛)
]

𝐶(𝑇 ). (69)

The temporal averaged map for the Poissonian presynaptic spikes
exhibits the same evolution as the synaptic map for presynaptic neurons
spiking periodically, since the equations are the same. These equations
for the temporal averaged map admit a solution for the equilibrium
point if

𝑥𝑛+1 = 𝑥𝑛 = 𝑥∗, (70)

𝑦𝑛+1 = 𝑦𝑛 = 𝑦∗, (71)

𝑧𝑛+1 = 𝑧𝑛 = 𝑧∗, (72)

𝑢𝑛+1 = 𝑢𝑛 = 𝑢∗. (73)

Since Eqs. (20)–(23) are the same as Eqs. (66)–(69), the equilibrium
points of the periodic stimulus are the same for the mean values in
Poissonian stimulus. The mean value of the active neurotransmitters
for Poisson spikes remains the same as the final value of active neuro-
transmitters for the periodic spikes. In other words, the time average
value of 𝑥𝑢 immediately before spikes for both the Poissonian and
periodic spikes tends to product 𝑥∗𝑢∗. Based on that result, our analysis
suggests that the average behaviour of a synapse forced by Poissonian
spikes is determined by the dynamics of synapses driven by periodic
spikes.
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Distinguishing from the periodic case, when the spikes follow a
Poisson process it is not possible to determine the synaptic regimes
since the fraction of active neurotransmitters released oscillates in time
with higher and lower values than the periodic spikes. For this reason,
the maximal values of 𝑦 can be significantly higher for the Poisson
spikes than for the periodic ones.

4. Conclusions

In this paper, we study short-term plasticity considering the model
proposed by Tsodyks et al. [22]. We focus our analysis on the synap-
tic regimes facilitation, depression, and biphasic that emerge as a
function of the frequency and fraction of released neurotransmitters.
Depression regime is mainly dependent on the percentage of released
neurotransmitters, while facilitation is observed for low frequencies
or small amounts of neurotransmitter release, or for both cases. The
biphasic regime is found between the facilitation and depression, being
a combination of both regimes. This model presents both depression
and facilitation mechanisms. Some simplified versions provide only one
of such regimes. It takes in account the emergence of both regimes
depending on the synaptic parameters and firing frequency.

Our main result was to obtain an approximated solution for the set
of differential equations and derive a map where the synaptic dynamics
can be understood in terms of the time intervals between the spike
events. From this map, we determined analytically the equilibrium
points for periodic spiking regimes, allowing for the determination of
the asymptotic values of active neurotransmitters as a function of the
frequency, the probability release of neurotransmitters, and the time
constants. We also determined the expected maximal and asymptotic
values for the three synaptic regimes. We observe that the highest value
of active neurotransmitters occurs by a brief time period from the rest
regime in the depression and biphasic regime, while for the facilitation
regime, the maximal values are the asymptotic ones.

Furthermore, we obtain a temporal average map when the time
intervals between spikes follow a Poisson distribution and show that the
equilibrium point for such a configuration is the same as found for the
periodic spikes. This result suggests that the time average dynamics of
a stochastic driven synapse emulating presynaptic spikes by a complex
neural network is regulated by the periodically driven synapses.

To better understand the dynamic response of our synaptic model
in the presence of presynaptic neurons, we consider that these neurons
spike following a Poisson distribution. This hypothesis is often done
in the literature. However, other more general stochastic dynamics
could be considered as a way to emulate the spiking regime of neurons
connected in a network. A stochastic description would, however, be
an approximation. Ideally, the spiking regime of presynaptic neurons
should be determined either experimentally or by a neural network of
realistic neural models connected under a synaptic model that could be
ours.

One practical implication of our results is the analytical description
of the synaptic dynamics, which can provide insights into how neurons
communicate and synchronize. Our map has analytical solutions, then
very large neuronal networks, considering our realistic synaptic model,
can be considered to make simulations in computational neuroscience,
artificial neural networks, and neuroengineering. It is possible to obtain
analytical solutions of the synaptic dynamics, thus speeding up simula-
tions of very large multi-synaptic networks [50]. In addition, since the
alternation of the fraction of neurotransmitters released is observed in
some neuronal disorders [51,52], developing drugs capable of restoring
the normal fraction on the synapses can be a potential strategy to relive
symptoms or treat brain diseases. Advances in the research on such
topic can be based on the theoretical results showed in the present
work.

We believe that our results can allow other neuroscientist to con-
struct neuronal networks with a biologically relevant synaptic model
that can be analytically solved. In the future, we plan to extend the
results for correlated spikes, burst patterns [53], inhomogeneous spike
times [54] as well as spike sequences induced by spontaneous network
8

activities [55].
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