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Abstract. In this work, we study the dynamic range (DR) of a neuronal network of excitable neurons with excitatory
and inhibitory synapses. We obtain an analytical expression for the critical point as a function of the excitatory
and inhibitory synaptic intensities. We also determine an analytical expression that gives the critical point value in
which the maximal DR occurs. Depending on the mean connection degree and coupling weights, the critical points
can exhibit ceasing or ceaseless dynamics. However, the DR is equal in both cases. We observe that the external
stimulus mask some effects of self-sustained activity (ceaseless dynamic) in the region where the DR is calculated.
In these regions, the firing rate is the same for ceaseless dynamics and ceasing activity. Furthermore, we verify
that excitatory and inhibitory inputs are approximately equal for a network with a large number of connections,
showing excitatory–inhibitory balance as reported experimentally.
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1. Introduction

The relation between stimuli and sensation is one of
the main research topics in Psychophysics [1]. Stimulus
of different sources and intensities can cause differ-
ent responses in the sensory system [2]. In the early
19th century, Weber and Fechner proposed that stimuli–
response relation corresponds to a logarithmic function
[3, 4]. In the 1950s, Stevens proposed that stimuli–
response relation is given by a power law [5]. Due
to physiological and anatomical limitation, the rela-
tion between stimuli and response has upper and lower
limits. The stimuli difference, between the smaller and

bigger sensation, defines the dynamic range (DR) asso-
ciated with its sense [6]. In the context of biological
systems, e.g. neuronal networks, the DR corresponds
to the ability to differentiate the intensity of external
stimulus [7].

The DR is proportional to the logarithm of the ratio
between the largest value of the external applied stim-
ulus in which the response is close to saturation of the
firing rate and the smallest value of the external applied
stimulus in which it is weak to modify the firing rate. The
human sense of sight can perceive changes in about ten
decades of luminosity, and the hearing covers twelve
decades in a range of intensities of sound pressures
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[5, 8]. The DR of the human vision plays an impor-
tant role in the design of display devices [9], whereas
the hearing case it is relevant to cochlear implants [10].

The DR of a neuronal network increases with the net-
work size until it reaches a saturation value [11]. The
increase of the DR value is also associated with the
increase of the number of excitatory chemical synapses
[12, 13]. Borges et al. [14] reported the complemen-
tary effect of chemical and electrical synapses on the
enhancement of the DR. Protachevicz et al. showed
that chemical synapses can enhance DR of the neural
network submitted to external stimuli [15].

The mammalian brain is composed of excitatory and
inhibitory neurons [16]. The balance between excitation
and inhibition plays a crucial role in the transmission of
information, signal propagation, and regular firing of
neurons in many brain areas [17, 18]. Neuronal net-
works with excitatory and inhibitory neurons have been
considered to describe the dynamics of primary visual
cortex [16, 19], cortical firing patterns [20–23], and
synaptic plasticity mechanisms [24–27].

Kinouchi and Copelli [3] proposed a model of an
excitable network based on Erdös–Rényi (ER) ran-
dom graphs [28]. They demonstrated that the DR is
maximised at the critical point of a non-equilibrium
phase transition. A theoretical approach to study the
effects of network topology on the DR was presented
by Larremore et al. [29, 30], in which only the exci-
tatory nodes are considered. Pei et al. [31] investi-
gated the collective dynamics of excitatory–inhibitory
excitable networks in response to external stimuli. They
found that the DR is maximised at the critical point of
phase transition which depends only on the excitatory
connections.

The spiking dynamics of a network of excitable exci-
tatory nodes resulting from an initial stimulus ceases
after a typically short time at a critical point [3]. How-
ever, when inhibitory nodes are considered, the collec-
tive dynamics can become self-sustaining as shown by
Larremore et al. [32]. They showed this behaviour con-
sidering an additive probabilistic model, where excita-
tory nodes increase the probability of activation of their
neighbours, and inhibitory nodes decrease the probabil-
ity. In addition, at a critical point the collective dynamics
can become self-sustainable (ceaseless dynamics) if a
fraction of inhibitory nodes is greater than a threshold.
However, in their model they did not consider a refrac-
tory period, and, for this reason, the neuronal firing rate
obtained is higher than the experimentally observed.
When refractoriness is included in the model, it is pos-
sible to obtain the critical point leading to realistic firing
patterns [33, 34].

In this work, we investigate the criticality and DR of
a cellular automaton modelling a neuronal network in

which the neurons are connected by means of excita-
tory and inhibitory chemical synapses [12, 14]. In order
to understand the relationship between maximisation
of the DR and the critical self-sustainable activity, we
consider a refractory period in the model like the one
proposed by Larremore et al. [32]. With the refractory
period, the model exhibits more realistic firing rates
and critical self-sustained activity. In our simulations,
we observe a transition from ceaseless dynamics to
ceasing activity when the mean connection degree of
the network is increased. We observe that the exter-
nal stimulus mask effects of self-sustained activity in
the region where the DR is calculated, and the firing
rate is the same for the ceaseless dynamics and ceasing
activity. Furthermore, we obtain an analytical expres-
sion for the DR as a function of the mean excitatory
and inhibitory synaptic intensities. In a network with a
large number of connections, we show that the maxi-
mal DR value occurs in the critical points where exci-
tatory and inhibitory inputs are approximately equal.
In this situation, the neuronal network is in a bal-
anced state. Shew et al. [35] showed experimentally
that the DR is maximised when the excitatory and
inhibitory synaptic inputs are balanced. Our work thus
provides theoretical explanations for this experimental
result.

The paper is organised as follows. In section 2, we
introduce the model. Section 3 presents our analytical
results about the DR. In the last section, we draw our
conclusions.

2. Model

We consider a n states cellular automaton model com-
posed of N excitable elements. The state of each neuron
i is described by the variable si (i = 1, . . ., n). In this rep-
resentation, each neuronal state is associated with the
neuronal activity [3, 36]. The resting state is given by
si = 0, the excited state by si = 1, and si = 2, . . ., n − 1
are the refractory states. The elements cannot be excited
during the refractory states. In the model, we con-
sider excitatory and inhibitory neurons [32]. Inhibitory
and excitatory inputs are related to the excitatory and
inhibitory neurons, respectively. To model the interac-
tion of the synaptic inputs, we considered a probability
function. The activation probability of a node in the
resting state is given by function G(xi) [32]

G(xi) = G

 N∑
j=1

Aij δ(sj(t), 1)

, (1)

where G(xi) = 0 for xi ≤ 0, G(xi) = xi for 0 < xi < 1,
and G(xi) = 1 for xi ≥ 1. G(xi) is a piecewise linear
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function, known as transfer function, with three pieces.
The weighted matrix A has elements Aij > 0 for excita-
tory connections and Aij < 0 for inhibitory connections.
The Kronecker delta δ(a, b) is equal to one when a = b
and zero otherwise. The dynamics of both excited and
refractory states are deterministic. If si = 1, in the
next time steps the state is updated to si = 2, and so
forth, until si = n − 1, returning to the resting state
si = 0 in the next time step. The fractions of exci-
tatory and inhibitory nodes correspond to fex and f in,
respectively, and the condition fex + f in = 1 is always sat-
isfied. In order to simplify the analysis, we arrange the
i indexes as 1 ≤ i ≤ fexN for excitatory nodes, whereas
fexN + 1≤ i≤N for inhibitory ones. Figure 1 displays a
schematic illustration of (a) the neuronal dynamics for
n = 3 states, (b) a neuron receiving chemical synaptic
inputs and (c) the function G(xi) as a function of the
sum of all synaptic inputs.

Figure 1. Representation of the neuronal activity by a cel-
lular automaton with n = 3 states. (a) Illustrative membrane
potential for each neuron i, where si represent the rest (si = 0),
the active (si = 1), and refractory (si = 2) states. (b) Chemi-
cal synaptic inputs arriving in the neuron i. Red triangles and
blue squares represent the excitatory and inhibitory inputs,
respectively. (c) The neuronal activation probability (G(xi))
is given by a function of all chemical inputs arriving in the
neuron i at time t.

The neuronal response at a given time t can be
quantified using the density of spiking neurons

p(t) =
1
N

N∑
i=1

δ(si(t), 1), (2)

which is interpreted as the probability for a random neu-
ron to be in the excited state at time t. With the time series
of p(t), we calculate the average firing rate

F = p(t) =
1
T

T∑
t=1

p(t), (3)

where T is the time window chosen to calculate the
average.

In this work, we consider random networks and for
this case the update equations are the same for both
excitatory and inhibitory nodes [31]. Our networks are
built according to the Erdös–Rényi random graphs with
probability equal to K /(N − 1), where K is the average
degree of connections of the network. Assuming that the
events of the neighbours of an excited node are statis-
tically independent for large t, we obtain the following
mean field map for the density of spiking neurons:

p(t + 1) = [1− (n− 1)p(t)](η + G(x)− ηG(x)), (4)

where the external stimulus η = 1 − exp(−rΔt) is a
Poisson process with mean perturbation rate r in the
time interval Δt [3]. In our simulations, we use Δt = 1.

Setting the weights Aij = Sex for the excitatory con-
nections and Aij = −Sin for the inhibitory ones, when
the network reaches a stationary state, the mean value
of xi is given by

〈x〉 = fexKSexp(t)− finKSinp(t). (5)

Defining σex = KSex and σin = KSin, we obtain

〈x〉 = ( fexσex − finσin)p(t). (6)

In the stationary state we have p(t + 1) = p(t) = p∗ and
F ≈ p∗. Substituting in eq. (4), and considering the case
of no external perturbation (η = 0), we get

F0 = (1− (n− 1)F0) G(x). (7)

In the regime 0 < (fexσex − f inσin)F < 1, the model
implies G(x) = x, and therefore

F0 = (1− (n− 1)F0)( fexσex − finσin)F0. (8)

Solving for F0 we get

F0 =
1− ( fexσex − finσin)−1

n− 1
. (9)
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There is a phase transition from ceasing activity
(F0 = 0) to ceaseless activity (F0 > 0). In the critical
point of this phase transition (F0 → 0), we obtain

σin =
fexσex − 1

fin
. (10)

This relation shows that the critical point in the model
is given by fexσex ≥ 1, implying the necessity of a min-
imum fraction of excitatory neurons. In addition, we
observe that fexσex ≈ f inσin for σex � 1. Then, for a
highly connected network (σ ∝ K), we obtain approx-
imately the same amount of excitatory and inhibitory
mean inputs from probabilistic synapses. In this situ-
ation, our model exhibits a state which is critical and
balanced.

In this work, we split in three theoretical firing
regimes that depend on eq. (9) and on the parameters
fex, σex, f in, and σin. (i) If F0 < 0 we have a subcritical
regime; (ii) if F0 = 0 we have a critical regime; and (iii)
if F0 > 0 we have a supercritical regime. In figures 2a
and 2b, we show the density of spiking neurons with-
out external perturbation as a function of the time for
values of σin in the subcritical, critical, and supercritical
regimes for different values of σex. We choose randomly

Figure 2. Time series of the density of spiking neurons for
subcritical (black line), critical (red line), and supercritical
(blue line) values of σin for (a) σex = 1.5 and (b) σex = 2.5.
In (c), we plot the average firing rate as a function of σin for
σex = 1.5 (black circles), σex = 2.0 (red circles) and σex = 2.5
(blue circles). The points are obtained from numerical simu-
lations while the curves are given by eq. (9). The parameters
are N = 105, K = 104, r = 0, n = 3, and fex = 0.8.

0.4% of neurons to be active (si = 1) at t = 0. In figure 2c,
we show the relation between F0 and σin for some val-
ues of σex. We verify that the theoretical results given by
eq. (9) are in agreement with our numerical simulations.

When a great number of neurons presents xi < 0, even
at the critical point, in the numerical simulations F can
be positive for a large time span. In figure 2, we see
that the spiking activity ceases rapidly when σex = 1.5,
whereas it is persistent at the critical point when
σex = 2.5. We verify that the activity is not persis-
tent if we increase the average degree of connections.
Figure 3a exhibits the density of spiking neurons consid-
ering K = 2×104, for subcritical, critical (three different
initial conditions), and supercritical values of σin. In
figure 3b, we plot the distribution of xi for 1000 time
steps, N = 105, K = 104 (blue), and K = 2 × 104 (red).
In both cases, we find 〈x〉 and F ≈ 0.0031. In the first
case, approximately 2.18% of xi present negative val-
ues. In the second case, about 5.00% of xi are less than
zero. We observe that greater values of Sex = σex/K and
Sin = σin/K contribute to the persistent activity at the
critical point.

3. Dynamic range (DR)

The behaviour of the average firing rate (F) as a function
of the external stimulus (r) shows a minimum and a
maximum saturation (F0 and Fmax, respectively) for a
range of r values, as shown in figure 4. The DR is defined
as

Δ = 10 log10

rhigh

rlow
, (11)

Figure 3. (a) Time series of the density of spiking neurons for
the subcritical (black line), critical (red line), and supercritical
(blue line) values of σin with σex = 2.5. (b) Distribution of xi
values for the average degree of connections K = 2 × 104

(red) and K = 1 × 104 (blue). Parameters are N = 105,
fex = 0.8, σex = 1.5, and σex = 2.5.
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Figure 4. Mean firing rate as a function of intensity stimuli.

where Δ is the stimulus interval (measured in dB)
in which changes in r can be perceived as changes
in F, and it is between the disregarding stimuli that
cause a response small to be distinguished from F0

and the saturation Fmax [3]. The interval [rlow, rhigh] is
found from its correspondent in F, [F low, Fhigh], where
Fhigh = F0 + 0.95(Fmax − F0) and F low = F0 + 0.05
× (Fmax − F0).

For 0 < (fexσex − f inσin)F < 1 (in the stationary state)
we approximate eq. (4) as

F = [1− (n− 1)F]
[
η + ( fexσex − fminσin)F

− ( fexσex − finσin)ηF
]
. (12)

Rearranging the terms, we obtain[
(n− 1)( fexσex − fminσin)(1− η)

]
F2

+
[
1 + (n− 1)η− ( fexσex − fminσin)(1− η)

]
F

− η = 0. (13)

As η depends on r, by solving eq. (13), we are able to
determine the dependence of the average firing rate on
the mean perturbation rate r, as well as its dependence
on all the parameters of the network.

In figure 5a, we plot F as a function of r for subcriti-
cal, critical, and supercritical values of σin. The lines
represent the theoretical values from the solution of
expression (13) and the symbols are obtained through
numerical simulations. In the inset of figure 5a, we show
a magnification to demonstrate that there are differences
between the theoretical and the numerical values of F
for r values out of the region where DR is calculated
(green).

For a cellular automaton with n states, the maximum
average firing rate is given by Fmax = 1/n. Deriving F0

in eq. (9), F low and Fhigh can be obtained. Then, ηlow

and ηhigh can be calculated directly by

ηlow,high =
λFlow,high

1− λFlow,high

[
1

λ− (n− 1)λFlow,high
− 1

]
,

(14)

Figure 5. (a) Average firing rate (F) as a function of the
mean perturbation rate (r). The black, red, and blue symbols
correspond to subcritical, critical and supercritical values of
σin, respectively. (b) DR as a function of σin for σex = 1.5.
The coloured circles are obtained by means of simulations
and the black lines represent the theoretical results from the
analytical expression. DR of (b) is indicated on the σex × σin
parameter space by a dashed line in (c). We consider N = 105,
K = 104, and fex = 0.8.

where we substitute λ = fexσex − f inσin for convenience.
Now we calculate rlow and rhigh according to

rlow,high = − ln |1− ηlow,high|. (15)

Using eqs (9), (14) and (15), and the expressions for
Fmax, F low, and Fhigh, we calculate the DR.

In figure 5b, we compare our numerical and theo-
retical results. We verify that the maximum DR occurs
for σin = 1, which is the critical point for the consid-
ered parameters (σex = 1.5). In figure 5c, the colour
scale represents the value of DR for each pair (σex,
σin). The dashed line indicates the range taken in (b).
From the figure, we see that the maximum value of DR
follows the line given by the critical point expression
σin = 4σex− 5 (eq. (10)). Since the excitatory–inhibitory
ratio is 4, the mean input approaches zero as σex

increases. Therefore, the model shows both the critical
and balanced states in a network with a great number
of connections, where the weights are not small. For
instance, for K = 2 × 104 and Sex = 0.5, we obtain
σex = KSex = 104 and the critical σin = 4 × 104 − 5.
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The ratio between excitatory and inhibitory inputs is
4×σex
σin
≈ 1.0013. In this situation, the DR is maximum

and closes to a balanced state.

4. Conclusions

The firing dynamics of a network of excitable exci-
tatory nodes resulting from an initial stimulus ceases
after a typically short time at a critical point. However,
when inhibitory nodes are considered the collective
dynamics can become self-sustained. In this work, we
build a cellular automaton model with excitatory and
inhibitory connections. In our network, we consider
that the connections have different weights. We find
an expression that relates the mean of excitatory and
inhibitory weights at the critical point. We also calcu-
late an expression for the DR and show that at the critical
point it reaches its maximal value.

Depending on the mean connection degree and cou-
pling weights, the critical points can exhibit ceasing
or ceaseless dynamics (self-sustained activity). How-
ever, the DR is equal in both cases. We observe that the
external stimulus masks some effects of self-sustained
activity in the region where the DR is calculated. In
these regions, the firing rate is the same for cease-
less dynamics and ceasing activity. Furthermore, we
show that at the critical point the amount of excita-
tory and inhibitory inputs can be approximately equal
in a densely connected network. This result show-
ing excitatory–inhibitory balanced was experimentally
reported by Shew et al. [35].

In future works, we plan to consider other network
topologies, such as small-world and scale-free, to study
the influence of inhibitory synapses on the criticality of
excitable neuronal networks.
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