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ABSTRACT

We provide a formulation that describes the propagation of solitons in a nondissipative, nonmagnetic plasma, which does not depend on the
particular electron density distribution considered. The Poisson equation in the plasma sheath is expressed in terms of the Mach number for
ions entering the sheath from the plasma and of a natural scale for the electrostatic potential. We find a class of reference frames with respect
to which certain functions become stationary after arbitrary small variations of the Mach number and potential scale, that is, by determining
the critical values of those quantities based on a variational method. It is shown that the critical Mach number defines the limits for the
applicability of the reductive perturbation technique to a given electron density distribution. Based on our provided potential scale, we show
that the Taylor expansion of the suprathermal electron distribution around equilibrium converges for all possible values of the spectral j-
index. In addition, owing to the admissible range for the critical Mach number, it is found that the reductive perturbation technique ceases to
be valid for 3=2 < j � 5=2. In the sequel, we show that the technique is not valid for the deformation q-index of nonextensive electrons
when q � 3=5. Furthermore, by assuming that the suprathermal and nonextensive solitons are both described with respect to the same
critical reference frame, a relation between j and q, which has been previously obtained on very fundamental grounds, is recovered.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059437

I. INTRODUCTION

Soliton (or solitary) waves (or oscillations) are spatially localized
structures traveling in a way that nonlinearity balances out dispersion.
Investigations of solitons find countless applications in diverse areas,
ranging from fiber optics1 to neurobiology,2 nuclear physics,3 and
even two-dimensional quantum systems.4 Modern soliton theory owes
much to the seminal work of Gardner, Greene, Kruskal, and Miura.5

Following that formulation, many interesting predicted configurations,
such as high-order polarization-locked vector solitons6 and accelerat-
ing solitary wavepackets,7 have been recently observed.

In a Boltzmann plasma, the Korteweg–de Vries equation that
describes the propagation of nonlinear, dispersive, small-amplitude
ion-acoustic waves may be derived by making use of the reductive per-
turbation technique.8,9 Based on that approach, suprathermal electron
effects on envelope solitons,10 dust-acoustic and dust-ion-acoustic
shock waves,11 and multi-ion dusty plasmas in the presence of a
magnetic field12 have been investigated. Nonextensive influences on

ion-acoustic solitons following the Tsallis13 and Cairns-Tsallis mod-
els,14 and dusty plasmas15 have been also examined on the same
ground. Even Majorana solitons,16 soliton trains,17 and solitonic cas-
cades18 in a Fermi gas have been recently explored on that foundation.

It should be noticed, however, that the applicability of the reduc-
tive perturbation may be limited to certain values of the relevant physi-
cal parameters. One of those instances has attracted our attention. In
Refs. 19 and 20, it has been claimed that the technique is not valid for
3=2 < j � 3, given that, in general, j > 3=2, where j is the spectral
index marking suprathermal electrons. The authors have credited their
result to the fact that the Taylor expansion of the electron distribution
around equilibrium diverges for 3=2 < j � 3. Nonetheless, it should
be emphasized that such a justification heavily relies on the choice of
the normalization for the electrostatic potential. Those authors simply
have chosen the usual Boltzmann thermal energy per elementary
charge as the normalization. So, what if we could choose another nor-
malization? In that case, would the reductive perturbation remain
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invalid for the same range of the spectral index? That has been the
original motivation for this work.

This paper is organized as follows. In Sec. II, we express the
Poisson equation in the plasma sheath in terms of the Mach number
for ions entering the sheath from the plasma and of a natural scale for
the electrostatic potential. In Sec. III, we find a class of reference frames
with respect to which certain functions become stationary after arbi-
trary small variations of the Mach number and potential scale, that is,
by determining the critical values of those quantities based on a varia-
tional method. In Sec. IV, we show that it is actually the critical Mach
number that defines the limits for the applicability of the reductive
perturbation technique to a given electron density distribution.

In Sec. V, we apply our proposed formulation to four different
electron distributions. First, we recover the usual results for the
Boltzmann distribution. Then, based on our provided potential scale,
we show that the Taylor expansion of the suprathermal electron distri-
bution around equilibrium converges for all possible values of the
spectral j-index. In addition, owing to the admissible range for the
critical Mach number, we find that the reductive perturbation tech-
nique ceases to be valid for 3=2 < j � 5=2.

In the sequel, we show novel results for the deformation q-index
of nonextensive electrons, similar to those for j. Furthermore, by
assuming that the suprathermal and nonextensive solitons are both
described with respect to the same critical reference frame, we recover
a relation between j and q which has been previously obtained on
very fundamental grounds. Finally, we find that our model may be
applied even to a Fermi gas. Moreover, we offer independent confir-
mation of that. In the concluding section, we summarize this work
and briefly address possible extensions of our theory.

II. MACH NUMBER AT PLASMA-SHEATH INTERFACE

In an ionized gas, the layer surrounding the plasma is dubbed the
sheath. Different from the plasma, in which the densities of ions and
electrons are high, but essentially equal, the number of ions much
exceeds that of electrons in the sheath. Let us consider singly ionized
ions with charge e> 0, mass mi, concentration N0, velocity ~V 0, and
negligible temperature, entering the sheath from the plasma. As usual,
the electrostatic potential U is assumed to decrease very rapidly with
the distance from the plasma-sheath interface to the ionized gas exter-
nal wall. Since we regard a steady state problem in a collisionless
region, dissipative processes may be ignored, and the conservations of
mass and energy of the ion gas may be expressed through

N0~V 0 ¼ Ni~V i;
miV2

0

2
¼ miV2

i

2
þ eU; (1)

respectively, where Ni and ~V i are the concentration and velocity,
respectively, of ions within the sheath. Combining both Eq. (1), we get

Ni

N0
¼ 1� 2eU

miV2
0

� ��1=2
: (2)

Equation (2) may be then interpreted as a distribution-like function.
By including the concentration of electrons Ne in the problem,

the potential profile in the plasma sheath is controlled by the Poisson
equation,

r2U ¼ � e
�0

Ni � Nef g; (3)

where �0 is the vacuum electric permittivity. Both particle concentra-
tions in Eq. (3) may be expressed in terms of the equilibrium concen-
tration N0 through

Ni ¼ N0Fi Uð Þ; Ne ¼ N0Fe Uð Þ; (4)

where FiðUÞ is given by the right-hand side of Eq. (2) and FeðUÞ is
treated as an abstract function of the potential. Substituting Eq. (4) in
Eq. (3), we have

r2U ¼ �N0e
�0

Fi Uð Þ � Fe Uð Þ
� �

: (5)

Let us Taylor-expand FiðUÞ and FeðUÞ around their equilibrium val-
ues Fið0Þ ¼ Feð0Þ ¼ 1,

Fi Uð Þ � 1þ eU
miV2

0
þ 3e2U2

2m2
i V

4
0
; Fe Uð Þ � 1þ F0e 0ð ÞUþ F00e 0ð ÞU2

2
;

(6)

where a prime denotes the derivative with respect to U. Substituting
Eq. (6) in Eq. (5), we obtain

r2U ¼ �N0e
�0

e
miV2

0
� F0e 0ð Þ

� �
Uþ 1

2
3e2

m2
i V

4
0
� F00e 0ð Þ

" #
U2

( )
: (7)

We now express the ion flow intensity V0 at the plasma-sheath inter-
face in a more convenient form for our purposes.

The ratio of the intensity of the flow past a fluid boundary to the
local speed of sound is termed the Mach number. The natural time-
scale of an ion-acoustic oscillation is given by the inverse of the ion-
plasma frequency,

xi ¼
N0e2

�0mi

� �1=2

: (8)

Introducing the length scale ke (the meaning of the index “e” included
in our notation will be further clarified) in the problem and subse-
quently requiring that the speed of sound may be expressed through
kexi, we may define the Mach number for the ion flow at the plasma-
sheath interface through

M¼ V0

kexi
: (9)

Substituting Eq. (8) in Eq. (9), we get

ke ¼
�0
N0e

� �1=2 miV2
0

eM2

� �1=2

: (10)

Now, since ke is our length scale, the dimensional analysis of Eq. (5)
shows that

ke ¼
�0
N0e

� �1=2

u1=2; (11)

where u is the natural potential scale. Therefore, comparing Eqs. (10)
and (11), we have

e
miV2

0
¼ 1

uM2 : (12)
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Finally, substituting Eq. (12) in Eq. (7), we obtain

r2U ¼ �N0e
�0

1

uM2 � F0e 0ð Þ
� �

Uþ 1
2

3

u2M4 � F00e 0ð Þ
� �

U2
� 	

:

(13)

In Sec. III, we show that Eq. (13) may be used to determine a natural
potential scaling in our problem.

III. POTENTIAL SCALING BY VARIATIONAL METHOD

Let us suppose that the potential scale in our problem is deter-
mined by requiring that u satisfies the condition,

1

uM2 � F0e 0ð Þ
� �

¼ u
2

3

u2M4 � F00e 0ð Þ
� �

; (14)

which is dimensionally consistent with Eq. (13). Our hypothesis
expressed through Eq. (14) may be manifested as the following varia-
tional problem. We seek the critical value of M2 that keeps the
function,

F M2ð Þ ¼ F00e 0ð Þu� 2F0e 0ð Þ

 �

uM4 þ 2M2 � 3 ¼ 0; (15)

stationary after an arbitrary small variation of the Mach number. To
solve the problem, we differentiate Eq. (15) with respect toM2 to get

F0 M2ð Þ ¼ 2 F00e 0ð Þu� 2F0e 0ð Þ

 �

uM2 þ 2 ¼ 0: (16)

The solution of Eq. (16) is given by

1

uM2 ¼ 2F0e 0ð Þ � F00e 0ð Þu: (17)

Equation (17) states the following. Among all possible values ofM2

that satisfy Eq. (15), those given by Eq. (17) keep Eq. (15) stationary
after an arbitrary small variation of the Mach number. Therefore, we
have not determined the value of the Mach number for the ion flow at
the plasma-sheath interface. What we have determined was the critical
value of the Mach number that defines a class of reference frames with
respect to which ion-acoustic waves may be described in our problem.
We are not yet done.

To determine the potential scale properly, we substitute Eq. (17)
in Eq. (14), which leads us to a further variational problem, that of to
seek the critical value of u which keeps the function,

f uð Þ ¼ 3F00e 0ð Þu2 � 6F0e 0ð Þuþ 1 ¼ 0; (18)

stationary after an arbitrary small variation of the potential scale. We
differentiate Eq. (18) with respect to u to get

f 0 uð Þ ¼ 6F00e 0ð Þu� 6F0e 0ð Þ ¼ 0: (19)

The solution of Eq. (19) is given by

u ¼ F0e 0ð Þ
F00e 0ð Þ : (20)

Among all possible values of the potential scale that satisfy Eq. (18),
those given by Eq. (20) keep Eq. (18) stationary after an arbitrary small
variation of u. We are done now.

It follows from Eq. (20) that the critical length scale, ion flow,
and Mach number, all may be fully expressed in terms of just the first

and second derivatives of the electron distribution with respect to the
electrostatic potential at equilibrium through

ke¼
�0
N0e

� �1=2 F0e 0ð Þ
F00e 0ð Þ

" #1=2
; V0¼

e=mi

F0e 0ð Þ

" #1=2
; M¼ F00e 0ð Þ

F0e 0ð Þ

 �2

( )1=2

;

(21)

respectively. In Sec. IV, we show that the last of Eq. (21) gives the coef-
ficients of the nonlinear and dispersive terms of the Korteweg–de
Vries equation in the plasma bulk.

IV. KORTEWEG–DE VRIES EQ.
A. Ion and electron-acoustic waves, and shock
structures

The Korteweg–de Vries equation in one space dimension may be
expressed through

@w
@h
þ Bw

@w
@v
þ C

2
@3w
@v3
¼ 0; (22)

where w is some low-amplitude field, h and v are dimensionless time
and space coordinates, respectively, and B and C are constants.
Equation (22) allows for wave-like solutions. Introducing the phase
speed b, we may define the wave-front coordinate r ¼ v� bh. Hence,
on the usual assumption that w and its derivatives, all become vanish-
ingly small in the limit r! 61, we may integrate Eq. (22) twice to
get

dw
dr

� �2

¼ 2b
C

w2 � 2B
3C

w3; (23)

with the help of dw=dr as an integrating factor. The soliton wave then
comes about as the solution of Eq. (23), namely,

w rð Þ ¼ 3b
B
sech2 r

b
2C

� �1=2
" #

: (24)

In this work, we will derive Eq. (22) in the framework of our proposed
analytical formulation. Accordingly, a slight modification will be intro-
duced in the usual reductive perturbation technique. Our starting
point will be the ion fluid and Poisson equations. Thus, Eq. (24) will
describe ion-acoustic waves. A couple of comments on possible
descriptions of other wave-like structures within the realm of our for-
mulation are in order now.

The so-called electron-acoustic waves were numerically explored
by Fried and Gould21 in uniform and unmagnetized plasmas. Later
on, analytic studies by Watanabe and Taniuti22 showed that such
structures may be actually interpreted as acoustic modes, provided
that the thermal pressure due to the hotter electrons be responsible for
the restoring force, and inertial effects be attributable to the colder
electrons. The electron-acoustic waves have been intensively investi-
gated in both space23–26 and laboratory27–32 plasmas. Since the
electron mass me is much lower than the ion mass mi, the electron-
plasma frequency xe will be much higher than the ion-plasma fre-
quency xi,
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xe ¼ xi
mi

me

� �1=2

; (25)

where xi is given by Eq. (8). Therefore, we think that our proposed
formulation could be applicable to the description of the electron-
acoustic waves whether the characteristic timescale in the problem
would be determined by the inverse of the electron-plasma frequency
for the colder electrons [cf. the second of Eq. (28) below].

Now, when the usual assumption of a vanishingly small field at
infinity is not appropriate, Eq. (23) will be replaced with

dw
dr

� �2

¼ � 4C0

C
� 4C1

C
wþ 2b

C
w2 � 2B

3C
w3; (26)

where C0 and C1 are constants of integration. The general solution of
Eq. (26) may be expressed in terms of the well-known periodic elliptic
(or Jacobi) functions.33 In particular, the application of the so-called
Whitham modulation technique to the small dispersion limit of Eq.
(26) leads to shock-like solutions.34–36 Consequently, we think that
our proposed formulation cannot be applied at once to the description
of shock structures, otherwise the relation of w with further relevant
small-amplitude fields in the problem may become unsatisfactorily
involved [cf. Eq. (37) below].

B. Modified reductive perturbation technique

In Secs. II and III, we have analyzed the physics in the plasma
sheath in order to determine natural scalings of relevant quantities in
our problem. We now move to the plasma bulk. Consider the simple
case of motions in one space dimension. Since the ion temperature
may be neglected, the fluid equations of continuity and motion, and
Poisson equation are

@Ni

@t
¼ � @

@x
NiVið Þ; @Vi

@t
þ Vi

@Vi

@x
¼ � e

mi

@U
@x

;

@2U
@x2
¼ � e

�0
Ni � Neð Þ;

(27)

respectively. The dimensionless variables

n ¼ x
ke
; s ¼ xit; ni ¼

Ni

N0
; ne ¼

Ne

N0
; vi ¼

Vi

kexi
; / ¼ U

u

(28)

will make all the coefficients unity in Eq. (27),

@ni
@s
¼ � @

@n
nivið Þ;

@vi
@s
þ vi

@vi
@n
¼ � @/

@n
;

@2/

@n2
¼ � ni � neð Þ:

(29)

As usual, we regard the expansions around equilibrium,37,38

ni ¼ 1þ dn1 þ d2n2; vi ¼ dv1 þ d2v2; / ¼ d/1 þ d2/2; (30)

where d ¼ jM� 1j � 1. Following the last of Eq. (6), the expansion
of the electron distribution around equilibrium becomes

ne ¼ 1þ d
/1

M2 þ d2
/2

M2 þ
/2
1

2M2

� �
: (31)

Use of Eqs. (30) and (31) turns Eq. (29) into

@

@s
dn1þd2n2
� 


¼� @

@n
dv1þd2 v2þn1v1ð Þ

 �

;

@

@s
dv1þd2v2
� 


þ @

@n
d2v21
2

� �
¼� @

@n
d/1þd2/2

� 

;

@2

@n2
d/1þd2/2

� 

¼�d n1�

/1

M2

� �
�d2 n2�

/2

M2�
/2
1

2M2

� �
;

(32)

respectively. We introduce now a slight modification in the usual
reductive perturbation technique.8,9

Let us define the stretched variables f and g in a reference frame
moving with the critical velocity vi ¼M with respect to the
laboratory,

f ¼ d1=2 n�Msð Þ; g ¼ d3=2s: (33)

As a consequence of Eq. (33), the well-known chain rule of partial
derivatives provides

@

@n
¼ d1=2

@

@f
;

@

@s
¼ �d1=2M @

@f
þ d3=2

@

@g
: (34)

Use of Eq. (34) turns Eq. (32) into

d3=2M@n1
@f
þd5=2 M@n2

@f
�@n1
@g

� �
¼ d3=2

@v1
@f
þd5=2

@

@f
v2þn1v1ð Þ;

d3=2M@v1
@f
þd5=2 M@v2

@f
�@v1
@g
� v1

@v1
@f

� �
¼ d3=2

@/1

@f
þd5=2

@/2

@f
;

d2
@2/1

@f2
¼�d n1�

/1

M2

� �
�d2 n2�

/2

M2�
/2
1

2M2

� �
;

(35)

respectively. The terms of order d3=2 in the first, and second of Eq.
(35), and the term of order d in the last of Eq. (35) lead to

M @n1
@f
¼ @v1
@f

; M @v1
@f
¼ @/1

@f
; n1 ¼

/1

M2 ; (36)

respectively. On the usual assumption that n1; v1;/1 ! 0 in the limit
f! 61, the integration of the two first of Eq. (36) shows that the
first-order amplitudes become related to each other through powers of
the critical Mach number,

n1 ¼
v1
M¼

/1

M2 ; (37)

which, as expected, is consistent with the last of Eq. (36). Now, the use
of Eq. (37) reduces Eq. (35) to

�M
3

2
@n2
@f
þ 1
2
@/1

@g
¼ �M

2

2
@v2
@f
� 1
M/1

@/1

@f
;

�M
2

2
@v2
@f
þ 1
2
@/1

@g
þ 1
2M/1

@/1

@f
¼ �M

2
@/2

@f
;

M3

2
@3/1

@f3
¼ �M

3

2
@n2
@f
þM

2
@/2

@f
þM

2
/1
@/1

@f
;

(38)

respectively. Finally, combining Eq. (38), we find the Korteweg–de
Vries equation [cf. Eq. (22) above],
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@/1

@g
þ B/1

@/1

@f
þ C

2
@3/1

@f3
¼ 0; (39)

whose coefficients B and C may be fully expressed in terms of powers
of the critical Mach number, namely,

B ¼ 3�M2

2M ; C ¼M3: (40)

The critical Mach number may be related to physically measurable
quantities.

The usual soliton solution of the Korteweg–de Vries equation [cf.
Eq. (24) above],

/1 f� bgð Þ ¼ A sech2
f� bg
D=2

� �
; (41)

where b is the phase speed, when substituted in Eq. (39), shows that
the wave amplitudeA and half-width D=2 are given by

A ¼ 3b
B
;

D
2
¼ 2C

b

� �1=2

: (42)

Eliminating B and C between Eqs. (40) and (42), we find an algebraic,
biquadratic equation for the critical Mach number,

M4 � 3M2 þ 3b2D2

4A ¼ 0; (43)

whose solution is given by

M¼ 3
2

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2D2

3A

s0
@

1
A

2
4

3
5
1=2

: (44)

The minus sign in front of the square root between round brackets on
the right-hand side of Eq. (44) has been chosen because such a choice
correctly provides the aforementioned small, positive d-parameter for
the expansions around equilibrium in Eq. (30). In accordance with Eq.
(44), we have three situations,

(i) 0 < ðb2D2Þ=ð3AÞ < 8=9 ) 0 <M < 1,

(ii) ðb2D2Þ=ð3AÞ ¼ 8=9 ) M¼ 1,

(iii) 8=9 < ðb2D2Þ=ð3AÞ < 1 ) 1 <M <
ffiffiffiffiffiffiffi
3=2

p
.

The lower- and upper-bounds, 0 and 1, respectively, of the com-
bination ðb2D2Þ=ð3AÞ must be excluded from our analysis because all
relevant functions depend on M and might have derivatives with
respect to the potential to all orders.

A couple of clarifying comments is in order now. First, each one
of the three above referred cases corresponds to a different class of ref-
erence frames. Therefore, situations (i), (ii), and (iii), determine sub-
sonic, sonic, and supersonic, respectively, reference frames. Second, of
course, the soliton speed b, amplitude A, and half-width D=2, all may
vary widely. However, those quantities conspire in a way that the com-
bination ðb2D2Þ=ð3AÞ varies between 0 and 1 only. In Sec. V, we
apply our just proposed formulation to four different electron density
distributions.

V. APPLICATIONS
A. Boltzmann

As a first application, consider the well-known Boltzmann
distribution,

Fe Uð Þ ¼ exp
eU
kBTe

� �
; (45)

where kB and Te are the Boltzmann constant and electron Maxwell
temperature, respectively. Equation (45) implies

F0e 0ð Þ ¼ e
kBTe

� �
; F00e 0ð Þ ¼ e

kBTe

� �2

; (46)

which lead to

u ¼ kBTe

e

� �
; ke ¼

�0kBTe

N0e2

� �1=2

; V0 ¼
kBTe

mi

� �1=2

; M¼ 1:

(47)

It follows from the last of Eq. (47) that the coefficients of the
Korteweg–de Vries equation are given by

B ¼ 1; C ¼ 1: (48)

All the above results recover those for the usual description of soliton
waves in Boltzmann plasmas by the reductive perturbation technique
with respect to a sonic reference frame.39,40 In particular, the second of
Eq. (47) recovers the so-called electron Debye length. That is the
meaning of the index “e” included in our notation for the length scale.

B. Kappa

We analyze now the Kappa (or Lorentzian) distribution,41

Fe Uð Þ ¼ 1þ eUð Þ= kBHeð Þ
�jþ 3=2

" #�jþ1=2

; (49)

where the so-called spectral index j > 3=2 and the quantity He is
related to the electron Maxwell temperature Te through

42

He ¼
�j

�jþ 3=2

� �
Te: (50)

In the limit j!1, Eq. (49) recovers Eq. (45) and Eq. (50) shows
that He ! Te. Since He � Te, the Kappa distribution is said to favor
suprathermal electrons, that is, those possessing higher Maxwell tem-
peratures. The introduction of He in the problem is necessary; other-
wise, the electron thermal speed should be modified and then the
speed of sound in the ionized gas would be also modified.43,44 In that
case, our proposed formulation should be modified too. Therefore, in
order to avoid complications, He is simply included in the following
analysis. Equation (49) implies

F0e 0ð Þ ¼ �jþ 1=2
�jþ 3=2

� �
e

kBHe

� �
;

F00e 0ð Þ ¼ �jþ 1=2
�jþ 3=2

� �
�j� 1=2
�jþ 3=2

� �
e

kBHe

� �2

;

(51)

which lead to the potential and length scales

u ¼ �jþ 3=2
�j� 1=2

� �
kBHe

e

� �
; ke ¼

�jþ 3=2
�j� 1=2

� �1=2 �0kBHe

N0e2

� �1=2

;

(52)

respectively, as well as to the ion flow at the plasma-sheath interface
and associated critical Mach number,
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V0 ¼
�jþ 3=2
�jþ 1=2

� �1=2 kBHe

mi

� �1=2

; M¼ �j� 1=2
�jþ 1=2

� �1=2

; (53)

respectively. It follows from the last of Eq. (53) that the coefficients of
the Korteweg–de Vries equation are given by

B¼ �jþ1
�jþ1=2

� �1=2 �jþ1
�j�1=2

� �1=2

; C¼ �j�1=2
�jþ1=2

� �3=2

: (54)

We arrive at the following results.
The combination of Eq. (44) and the last of Eq. (53) shows that

the description of soliton waves due to suprathermal electrons by the
reductive perturbation technique is possible only with respect to super-
sonic reference frames and ceases to be valid for 3=2 < j � 5=2. Such
an interval for the spectral index contrasts with that previously
obtained in Refs. 19 and 20 which state that the technique is not valid
for 3=2 < j � 3. The authors have justified their result by claiming
that the Taylor expansion of the suprathermal electron density distri-
bution around equilibrium diverges for 3=2 < j � 3. However, they
have chosen the first of Eq. (47) as the normalization for the electro-
static potential, which, as we have shown, is valid only for Boltzmann
plasmas. Nonetheless, we have chosen the correct normalization for
suprathermal electrons, which is given by the first of Eq. (52). In
Table I, we calculate the first few low-order coefficients of the Taylor
expansion for the suprathermal electron density distribution (49), nor-
malized by the first of Eq. (52), around equilibrium for selected values
of j > 3=2. As one may easily infer, the expansion will converge for
all possible values of the spectral index. This shows that it is the value
of the critical Mach number, not functional analysis properties, which
determines the description limit of soliton waves due to suprathermal
electrons by the reductive perturbation technique.

C. Tsallis

Let us regard now the Tsallis distribution,45

Fe Uð Þ ¼ 1þ q� 1ð Þ
eU
kBTe

� � qþ1½ �= 2 q�1ð Þ½ �
; (55)

where we choose the so-called deformation index q � 1. In the limit
q! 1, Eq. (55) recovers Eq. (45). Equation (55) implies

F0e 0ð Þ ¼ qþ 1
2

� �
e

kBTe

� �
; F00e 0ð Þ ¼ qþ 1

2

� �
�qþ 3

2

� �
e

kBTe

� �2

;

(56)

which lead to the potential and length scales,

u ¼ 2
�qþ 3

� �
kBTe

e

� �
; ke ¼

2
�qþ 3

� �1=2 �0kBTe

N0e2

� �1=2

; (57)

respectively, as well as to the ion flow at the plasma-sheath interface
and associated critical Mach number,

V0 ¼
2

qþ 1

� �1=2 kBTe

mi

� �1=2

; M¼ �qþ 3
qþ 1

� �1=2

; (58)

respectively. It follows from the last of Eq. (58) that the coefficients of
the Korteweg–de Vries equation are given by

B ¼ 2q
qþ 1

� �1=2 2q
�qþ 3

� �1=2

; C ¼ �qþ 3
qþ 1

� �3=2

: (59)

We arrive at the following results.
The combination of Eq. (44) and the last of Eq. (58) shows that

the description of soliton waves due to nonextensive electrons by the
reductive perturbation technique is possible only with respect to super-
sonic reference frames and ceases to be valid for q � 3=5. In Table II,
we calculate the first few low-order coefficients of the Taylor expan-
sion for the nonextensive electron density distribution (55), normal-
ized by the first of Eq. (57), around equilibrium for selected values of
q � 1. As one may easily infer, the expansion will converge for all pos-
sible values of the deformation index. This shows that it is the value of
the critical Mach number, not functional analysis properties, which
determines the description limit of soliton waves due to nonextensive
electrons by the reductive perturbation technique.

Since suprathermal and nonextensive solitons are both described
by supersonic reference frames, let us assume that the parameters of
those waves be measured with respect to the same coordinate system.
In that case, we must require that the last of Eq. (53) be identical to the
last of Eq. (58), from which it follows that the spectral and deforma-
tion indexes might be related as q ¼ 1� 1=j, where j is the spectral
index introduced in Eq. (49). Such a restriction of the Tsallis to Kappa

TABLE I. Coefficients OðjÞ, for order j ¼ 1; � � � 6, of the Taylor expansion for the
suprathermal electron density distribution (49), normalized by the first of Eq. (52),
around equilibrium for j ¼ 2:25; 2:50; 2:75; 3:00; 3:25. As one may easily infer,
the expansion will converge for all possible values of the spectral index. This shows
that it is the value of the critical Mach number, not functional analysis properties,
which determines the description limit of soliton waves due to suprathermal electrons
by the reductive perturbation technique.

j-index 2.25 2.50 2.75 3.00 3.25

Oð1Þ 0.64 0.67 0.69 0.71 0.73
Oð2Þ 0.32 0.33 0.35 0.36 0.37
Oð3Þ 0.14 0.15 0.15 0.15 0.15
Oð4Þ 0.06 0.06 0.06 0.06 0.06
Oð5Þ 0.03 0.02 0.02 0.02 0.02
Oð6Þ 0.01 0.01 0.01 0.01 0.01

TABLE II. Coefficients OðjÞ, for order j ¼ 1; � � � 6, of the Taylor expansion for the
nonextensive electron density distribution (55), normalized by the first of Eq. (57),
around equilibrium for q ¼ 0:40; 0:50; 0:60; 0:70; 0:80. As one may easily infer,
the expansion will converge for all possible values of the deformation index. This
shows that it is the value of the critical Mach number, not functional analysis proper-
ties, which determines the description limit of soliton waves due to nonextensive
electrons by the reductive perturbation technique.

q-index 0.40 0.50 0.60 0.70 0.80

Oð1Þ 0.54 0.60 0.67 0.74 0.82
Oð2Þ 0.27 0.30 0.33 0.37 0.41
Oð3Þ 0.13 0.14 0.15 0.16 0.16
Oð4Þ 0.06 0.06 0.06 0.06 0.06
Oð5Þ 0.03 0.03 0.02 0.02 0.02
Oð6Þ 0.01 0.01 0.01 0.01 0.00
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distributions has been previously obtained on very fundamental
grounds.46,47 This strongly suggests that other possible consequences
of our proposed formulation to the general soliton theory deserve fur-
ther investigation.

D. Fermi

As a final application, let us examine a Fermi gas ofN e electrons
with mass me, which occupies a volume V at the Fermi temperature
TF. The Fermi energy of the gas may be expressed through48

kBTF ¼
�h2

2me

3p2

V=N e

 !2=3

; (60)

where �h ¼ h=ð2pÞ is the normalized Planck constant, with h denoting
the Planck constant. To be specific, consider the Thomas-Fermi
distribution,49,50

Fe Uð Þ ¼ 1þ eU
kBTF

� �3=2

: (61)

Equation (61) implies

F0e 0ð Þ ¼ 3
2

e
kBTF

� �
; F00e 0ð Þ ¼ 3

4
e

kBTF

� �2

; (62)

which lead to

u ¼ 2kBTF

e

� �
; ke ¼

2�0kBTF

N0e2

� �1=2

;

V0 ¼
2kBTF

3mi

� �1=2

; M¼ 1
3

� �1=2

:

(63)

It follows from the last of Eq. (63) that the coefficients of the
Korteweg–de Vries equation are given by

B ¼ 4
1
3

� �1=2

; C ¼ 1
3

1
3

� �1=2

: (64)

We arrive at the following results.
It has been shown that the Mach number may be fully expressed

in terms of a perturbation a (jaj � 1) on the amplitude of a soliton
that propagates in a Fermi gas,51

M¼ 4 1þ að Þ1=3 � 3; (65)

where a < 0 describes a subsonic (or dark) soliton, a¼ 0 describes
a sonic soliton, and a > 0 describes a supersonic (or bright) soliton.
Given the last of Eq. (63), we expect the amplitude perturbation to
be negative in our problem. To check whether that is true, we sub-
stitute the last of Eq. (63) in Eq. (65) to actually find a � �0:28.
Such a result offers independent confirmation that our proposed
formulation succeeds in describing the soliton propagation in a
Fermi gas with respect to a subsonic frame. Moreover, this reveals
that our provided theory may be applicable even in semiclassical
contexts, which are appropriate, for instance, to describe phenom-
ena in dense plasmas.

VI. CONCLUSION

We have provided a formulation that describes the propagation
of solitons in a nondissipative, nonmagnetic plasma, which does not
depend on the particular electron density distribution considered. The
Poisson equation in the plasma sheath has been expressed in terms of
the Mach number for ions entering the sheath from the plasma and of
a natural scale for the electrostatic potential.

We have found a class of reference frames with respect to which
certain functions become stationary after arbitrary small variations of
the Mach number and potential scale, that is, by determining the criti-
cal values of those quantities based on a variational method. It has
been shown that the critical Mach number defines the limits for the
applicability of the reductive perturbation technique to a given elec-
tron density distribution.

We have applied our proposed formulation to four different elec-
tron distributions. First, the usual results for the Boltzmann distribu-
tion have been recovered.

Then, based on our provided potential scale, we have shown that
the Taylor expansion of the suprathermal electron distribution around
equilibrium converges for all possible values of the spectral j-index. In
addition, owing to the admissible range for the critical Mach number,
it has been found that the reductive perturbation technique ceases to
be valid for 3=2 < j � 5=2.

In the sequel, we have shown that the technique is not valid for
the deformation q-index of nonextensive electrons when q � 3=5.
Furthermore, by assuming that the suprathermal and nonextensive
solitons are both described with respect to the same critical reference
frame, a relation between j and q, which has been previously obtained
on very fundamental grounds, has been recovered.

Finally, we have found that our model may be applied even to a
Fermi gas. Moreover, independent confirmation of that has been
offered.

To summarize, we stress that our proposed analytical formula-
tion, namely, the critical scaling of the electrostatic potential, and the
modified reductive perturbation technique, has two important conse-
quences. First, it provides a unifying approach to the description of
soliton dynamics, thereby avoiding unnecessary efforts and contradic-
tory results in this topic, as may be found in the literature. Second, it
shall serve as a starting point to further investigations in nonlinear
structures.

The first, natural extensions of our theory should include mag-
netic and dissipative effects. Application of the reductive perturbation
technique has shown that dense electron-positron plasmas may sup-
port Korteweg–de Vries solitons associated with magnetosonic
modes.52 In particular, it has been found that no soliton solution exists
at certain critical angles between the species flow and magnetic field.

Strongly coupled, dusty plasmas have also been shown to support
Korteweg–de Vries solitons in the presence of a magnetic field.53 In
that case, certain forces have been identified as the cause of the soliton
decay.

The reductive perturbation technique applied to dense astrophys-
ical environments, such as neutron stars and pulsar magnetospheres,
shows the emergence of both oscillatory and monotonic shock waves
as solutions of a Korteweg–de Vries-Burgers-type equation.54 In par-
ticular, different plasma parameters have been found to perform a rele-
vant role in the transition between the oscillatory and monotonic
regimes.
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Self-sustained pulses have been found as solutions of modified
Korteweg–de Vries (or Burgers) equations in plasmas with finite ther-
mal conductivity.55 In that case, it has been shown that nonadiabaticity
affects the establishment of stationary wave configurations. All the
above referred issues shall be investigated in further communications.
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