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h i g h l i g h t s

• We investigate Slater’s theorem in the context of area-preserving maps.
• The breakup diagram of the nontwist map was obtained using Slater’s criterion.
• Slater’s criterion can be implemented to determine the last invariant curve.
• To the standard map our heuristic Slater’s criterion was Kc = 0.9716394.
• Our result is very close to the widely accepted Greene’s result, Kc = 0.971635.
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a b s t r a c t

We numerically explore Slater’s theorem in the context of dynamical systems to study the breakup of
invariant curves. Slater’s theorem states that an irrational translation over a circle returns to an arbitrary
interval in at most three different recurrence times expressible by the continued fraction expansion of
the related irrational number. The hypothesis considered in this paper is that Slater’s theorem can be
also verified in the dynamics of invariant curves. Hence, we use Slater’s theorem to develop a qualitative
and quantitative numerical approach to determine the breakup of invariant curves in the phase space of
area-preserving maps.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the late of 1940s, N.B. Slater proved that an irrational trans-
lation over a unity circle can take at most three different return
values to a connected interval of size ϵ < 1. In addition, these
three recurrence times are expressible by the continued fraction
expansion of the irrational number used to the translation [1]. This
remarkable result has an immediate connection with two dimen-
sion dynamical systems, because regular solutions of such systems
are constituted by a set of quasi-periodic orbits named invariant
curves, whose rotation in the phase space is also irrational and can
be related to a motion over the circle.

Our goal with the present paper is to relate the recurrent be-
havior of invariant curves according to Slater’s theorem develop a
procedure for determining the breakup of such invariants in the
phase space of area-preserving maps. In physics, it is important to
predict breakup of invariant curves because, in two degrees of free-
dom, such curves represent absolute barriers in the phase space,
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playing a crucial role to the confinement and transport of orbits.
This property is valid only in 2D-phase space because the dimen-
sion of the invariant surface differs by one unit from the space. Oth-
erwise, invariant surfaces in high-dimensional systems do not split
the phase space and, thus, do not represent barriers for the chaotic
trajectories, leading to the phenomenon of Arnold diffusion [2].

Different methods have been proposed to study the persistence
of invariant curves under perturbation [3–5]. It is worth mention-
ing the pioneer quantitative method, known as Greene’s residue
criterion [6–8], that relates the existence of an invariant curve to
the stability of a family of periodic orbits nearby. On the other
hand, the observation of at most three recurrence times in in-
variant curves have shown a useful method to treat set of pa-
rameters in area-preserving maps with special symmetries [9,10].
However, Slater’s theorem is quite robust to be limited to qual-
itative analysis. In the present paper we use Slater’s theorem to
estimate the breakup of invariant curves by a qualitative and quan-
titative numerical approach. Hence, we initiate our paper intro-
ducing Slater’s theorem (Section 2); next, we apply the qualitative
technique based only on the three recurrence times to determine
the breakup diagram of the standard nontwist map (Section 3). Fi-
nally, we step forward considering evidences and hypotheses to
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develop a procedure able to indicate with accuracy, the breakup of
the last invariant curve in the standard map (Section 4).

2. Slater’s criterion

Let us consider a circle of unit circumference and an irrational
{θ} (where {x}means the fractional part of x) such that {Nθ}withN
integer, partition the circle into segments. Surprisingly, no matter
which θ and the number of steps N we take, there will be at most
three distinct sizes to these segments. Furthermore, according to
Slater [1], as a consequence of the three segments, if we consider
the time (iterations) between the exit and the first return to a
connected interval ϵ < 1, i.e., {Nθ} < ϵ, at most three different
recurrence times are expected and expressible by the continued
fraction expansion of the irrational θ ,

θ = [a1, a2, a3, . . .] =
1

a1 +
1

a2+
1

a3+
1
...

. (1)

From (1), notice that the continued fraction of an irrational
number is infinite and a convergent Ps/Qs represents a rational
approximation of order s, e.g., [a1, a2, . . . , as] = Ps/Qs. The
problem of the distribution of the sequence {Nθ} < ϵ was
extensively explored by mathematicians [1,11,12]. The steps to
such a solution have been done by Slater in Ref. [1]. According to
Slater any ϵ between0 and1 can be expressed uniquely in the form,

ϵ = (n + 1)ηs + ηs+1 + Ψ (0 < Ψ ≤ ηs), (2)

with n integer and ηs given by the decreasing sequence [12],

ηs = (−1)s−1(θQs−1 − Ps−1), (3)

with ηs > 0, η1 = θ and η0 = 1. Indeed, given some irrational
number θ and the interval ϵ, there is a unique pair (n, s) that
satisfies (2).

According to Slater, the three recurrences, such that {Nθ} < ϵ,
where θ is irrational, are given by:

σ1 = Qs−1,

σ2 = Qs − nQs−1,

σ3 = Qs − (n + 1)Qs−1, (4)

where n and s are found by solving (2) and (3).
Thus, the distribution of the sequence {Nθ} < ϵ presents at

most three recurrence times expressible by the denominators Qs
of the continued fraction expansion of the number θ . Furthermore,
note that σ2 = σ1 + σ3, i.e., one of the recurrence times is always
the sum of the other two. From Slater’s theorem (4) and Eqs. (2)
and (3) it is possible to verify that the recurrences times σ1, σ2 and
σ3 depend on ϵ and, the third recurrence, σ3, appears only ifΨ > 0
as a consequence of (2).

As an example, let us consider the irrational 1/γ =

0.618033988 . . . (inverse of the golden mean) whose continued
fraction expansion is shown in Table 1. Taking ϵ = 0.05, it is found
that the unique solution of (2) is given by n = 0 and s = 8. So,
according to (4), for {N(1/γ )} < 0.05we have (Q7,Q8,Q8 −Q7) =

(21, 34, 13) no matter how big is the integer N . It means that
the constant translation of 1/γ over a unity circle returns to a
connected interval of size 0.05 only after 13, 21 or 34 iterations.
For more details see Ref. [1].

The above result has an immediate connection with dynamical
systems, since the regular part of phase spaces of area-preserving
maps presents a set of quasi-periodic orbits named invariant
curves. These invariants have irrational rotation on the phase space
and are persistent under small perturbation. Moreover, the quasi-
periodic motion of invariant curves is related with a simple rota-
tion of a circle since such invariant curves are graphs [13], or can be
Table 1
A set of convergents for the irrational 1

γ
(inverse of the golden mean)

obtained by the truncation of the continued fraction expansion.

s as Ps/Qs

0 0 P0 = 0,Q0 = 1
1 1 1
2 1 1/2
3 1 2/3
4 1 3/5
5 1 5/8
6 1 8/13
7 1 13/21
8 1 21/34
.
.
.

.

.

.
.
.
.

24 1 46368/75025
25 1 75025/121393
26 1 121393/196418
27 1 196418/317811
.
.
.

.

.

.
.
.
.

represented by giving some parametrization in which the motion
becomes a rotation [14]. Therefore, we expect to verify three recur-
rence timeswithin an interval of size ϵ for the quasi-periodic orbits
in the phase space of area-preserving maps. However, (2)–(4) are
no longer valid because the rotation of the points that compose in-
variant curves in the phase space are not uniformly distributed as
the rotation over the circle previously described. This conjecture is
numerically confirmed in the following sections.

3. Breakup diagram of standard nontwist map

In Ref. [9] the authors used Slater’s three recurrence times to
determine, qualitatively, the breakup of a shearless curve in a pa-
rameter space of a non Hamiltonian nontwist system. In this sec-
tion we apply the technique to the standard nontwist map (SNM).

The SNM is given by,

(x′, y′) → (x + a(1 − y′2), y − b sin(2πx)), (5)

where x is mod 1 and (a, b) are parameters. The map (5) is area-
preserving and violates the twist condition, i.e., (∂x′/∂y) = 0 along
the curve y = b sin(2πx). The violation of the twist condition
asserts at least one maximum or minimum point in the rotation
number profile which leads the nontwist maps generally have
orbits with the same rotation number. The invariant curve in the
phase space whose rotation number is maximum or minimum
point of the rotation number profile is called shearless.

The particular interest on the shearless curve comes from the
fact that along it the shear ∂x′/∂y vanishes, so analysis about
its stability is outside of the range of KAM theory. Around the
shearless curve some nontwist phenomena are observed with dif-
ferent scenarios, e.g., separatrix reconnection and island chains
collisions [15–19]. Furthermore, the shearless curve possesses re-
markable stability owing to small resonanceswidths nearby [20]. It
implies that, usually, the shearless curve is the last to be broken as
the parameters are modified and, therefore, its breakup is related
to the onset of global chaos.

The reversing symmetry group of the SNM [21] gives a set of
fixed points that lies on the shearless curve whenever it is not
broken. These set of fixed points, sometimes denoted as indicator
points (IP), are: [22],

n
2

−
1
4
, (−1)n+1 b

2


and


a
2

+
n
2

−
1
4
, 0


. (6)



36 C.V. Abud, I.L. Caldas / Physica D 308 (2015) 34–39
Fig. 1. Phase space of the nontwist map with a = 0.455 and: (a) b = 0.800, emphasizing the robustness of the shearless curve (green curve). (b) b = 0.847, showing the
breakup of the shearless curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Parameter space of SNM showing the breakup boundary for the central shearless curve. The red color indicates the set of parameters (a, b) in which the shearless
curve exists in the phase space. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In Fig. 1, we show a typical phase space of the SNM in different
stages. In Fig. 1(a) with parameters a = 0.455 and b = 0.800 the
shearless curve (obtained by IP: (x, y) = (1/4, b/2)) remains in
the phase space separating the phase space in two isolated regions.
Fig. 1(b) shows that the shearless curve does not exist anymore and
the two chaotic regions are unified, allowing the transport through
the y-coordinate [23].

As previously mentioned the stability of the shearless curve de-
pends on the parameters (a, b), and its destruction allows the full
transport through thephase space. Thus, the existence of the shear-
less curve should be verified in the parameter space (a, b)-breakup
diagram.

In order to study the breakup diagram, we applied Slater’s
recurrence as made in Ref. [9]. The method consists in counting
the number of different recurrence times of the iterates of some IP
inside an arbitrary region of size ϵ. In this case, the shearless curve
is considered broken if the number of recurrence times exceeds
three or one of them is not the sum of the other two as the theorem
(4) states. Note that, a priori, the cases for one or two recurrences
are not conclusive andmay bemodified aswe increase the number
of iteration. Even that, in our numerical procedure we considered
both cases as an indicative that the shearless curve is not broken.
The implementation of the procedure is straightforward since the
reversing symmetry group of the SNM provides IPs. Using the IP:
(1/4; b/2) as initial condition, and choosing a square of size ϵ
around it, we can evaluate the recurrence times in order to point
out the existence or not of the shearless curve according to Slater’s
theorem. In Fig. 2 we show the breakup diagram using ϵ = 0.02
and N = 1 × 106.

The red color in Fig. 2 represents the set of parameters forwhich
the shearless curves exist in the phase space. Thus, the limit bound-
ary between red and white colors represents the threshold of the
shearless curve breakup. Fig. 2(b) and (c) shows two successive am-
plification about threshold regions.
Different procedures were previously employed to study the
breakup diagram of SNM. In Ref. [22], the authors obtained a rough
estimate for the breakup of shearless curves by investigating for a
range of parameter values whether iterates of one of the IP remain
bounded. A different strategy was presented in Ref. [17] where
the authors analyzed the fluctuations of the rotation number of
some IP, basing on the fact that a trajectory in a periodic or quasi-
periodic motion leads to a converging rotation number. Both pro-
cedures are computationally expensive and the results may be
masked by stuck trajectories that spend very long time around reg-
ular islands. We stress that the procedure based on Slater’s recur-
rence does not require a large CPU-time, because whenever the
fourth recurrence appears we consider the curve as broken, and
we moved on to the next pair of parameters (a, b). For Fig. 2, for
example, our simulation took less than half an hour, using a single
core of 2.5 GHz.

Another method relies on Greene’s residue criterion [6–8], usu-
ally indicated when high accuracy is needed. This method can
be used, for example, to determine with precision the critical
parameters (ac, bc) that correspond to specific shearless curves
breakups [16,24,25], however, it may not be suited to explore a
large sets of parameters. On the other hand, the countingmethodof
recurrence times, based on Slater’s theorem (4), may be efficient to
scan sets of parameters becausewe can control the size of ϵ and the
number of iterationsN in detriment of the accuracy. Consequently,
the procedure requires a shorter computational time to determine
critical curves in parameter space.

In the next section, we will show a procedure able to define,
with accuracy, the breakup of a single invariant curve.

4. The last invariant curve of the standard map

In order to study the breakup of a single invariant curve with
high precision, let us introduce the standardmap (SM), also knows
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Fig. 3. Phase space of the SMwith K = 0.971. The red line shows the 1/γ -invariant
curve estimated via Slater’s theorem. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

as the Chirikov–Taylor map [26]:

(q′, p′) →


q + p′, p −

K
2π

sin(2πq)

, (7)

where both coordinates are mod 1. For K = 0 the map is
integrable and only periodic or quasi-periodic orbits are possible.
The chaotic dynamic is achieved by increasing the parameter K ,
with appropriate initial conditions.

In contrast to the SNM, the SM is a twist map since (∂q′/∂p) ≠

0. Hence, the destruction of invariants curves and the formation of
regular islands, as we perturb themap, are in the scope of KAM and
Poincaré–Birkhoff theorems, respectively. As a result of both theo-
rems the phase space presents the following picture. Small values
of K do not destroy the most of invariant curves. As we increase
the K parameter we should observe a set of invariant curves divid-
ing regular island formations that, usually, may contain chaotic or-
bits around them. In this case the invariant curves divide the phase
space in the sense that chaotic orbits are formed by different initial
conditions, i.e., they are distinct and disconnected, see Fig. 3 with
K = 0.971. The invariant curves are destroyed as we increase K
and, at some critical value, Kc , the last invariant disappears leading
to a spreading of the chaotic region.

Some different methods were proposed to find the critical pa-
rameter Kc for the SM. Among analytical [5] and numerical re-
sults [3,4,6], the great accuracy relies again on Greene’s method [6]
where the criticality was estimated as Kc = 0.971635. In the
present paper we propose an alternative numerical procedure to
calculate the critical parameter Kc through the three recurrence
times stated by Slater’s theorem. It isworth to note that the present
case is essentially different from the map of the previous section,
because the symmetry of the SM does not provide the called indi-
cator points.

Firstly, it is well established from KAM and renormalization
theory [27,28] that the last invariant curve to be broken in the stan-
dard map Eq. (7) is the one whose rotation number is the most ir-
rational as possible. By continued fraction expansion (1), a given
number is more irrational than another if its approximation by ra-
tional numbers (see the convergent in Table 1) is slower. In terms
of (1) it means that the most irrational number possible is one
that presents ais = 1, resulting in the so called golden mean:
γ = (

√
5 + 1)/2. As the SM is mod 1, we have in the phase space

the inverse of the golden mean curve, 1/γ .
As discussed before, we do not expect to verify (2) and (3) for

the perturbed system. It means that we are not able to predict the
recurrence times from the size ϵ. However, since we know that
invariant curves can be reduced to a simple rotation of a circle,
it seems reasonable to assume Slater’s theorem here, i.e., we are
Table 2
Estimated value pe for the 1/γ -curve in the SMwith K = 0.971. For this procedure
we record the three recurrence times σi=1,2,3 according to Slater’s theorem and we
vary the size ϵ, the number of iteration N and the step of initial conditions.

ϵ σi=1/2/3 N Step pe

1×10−5 10946/17711/28657 1×106 10−09 0.66472043300
5×10−6 28657/75025/46368 5×106 10−10 0.66472043430
1×10−6 121393/196418/317811 1×107 10−11 0.66472043445

assuming that the three recurrence times for perturbed invariant
curve remain to be expressible by continued fraction expansion of
its rotation number. Thus, to investigate the breakup of the last
curve in SM we can use this assumption to find the 1/γ -curve in
the phase space and determine the critical parameter Kc when the
recurrence times to the interval ϵ do not satisfy Slater’s criterion
anymore.

To start our procedure we need to determine the location
of 1/γ -curve in the phase space. For that, we provide initial
conditions over the line q = 0.5. Each initial condition is placed
in the middle of a square of size ϵ and iterated a large number of
times until finding recurrence times that satisfy the values of three
consecutive denominators of the continued fraction expansion of
the irrational 1/γ . In our procedure, we started from K = 0.971
(see Fig. 3) with ϵ = 10−5 iterating each initial condition 106

times. In this case, the first condition that meets the requirements
is pe = 0.66472043300, however, there are a lot of curves whose
three recurrence times are also related to the convergent of the
irrational 1/γ , namely, σ1 = 10 946; σ2 = 17 711 and σ3 =

28 657. Therefore, we conclude that the real 1/γ -curve is enclosed
by other orbits with very close rotation number and that are not
destroyed yet. In order to improve our estimate, we decrease the
size of the square to ϵ = 5 × 10−6 with 5 × 106 iterations and,
finally, we stopped with ϵ = 10−6 and 2 × 107 iterations. Table 2
shows the estimated value, pe, to the position of the 1/γ -curve in
the SM with K = 0.971. We also record the number of times N
that each initial condition was iterated and the step considered to
vary the initial conditions. Note that the smaller the size of the box
ϵ the larger the recurrence times and, consequently, more longer
the required CPU-time.

From now, to determine the critical parameter Kc for the 1/γ -
curve, we repeat the process discussed above changing slightly
the parameter K until that the three exact recurrence times are
not observed anymore. We should stress that the three recurrence
times need to be, necessarily, convergent of the continued fraction
expansion of the number 1/γ . Following this procedure we found
the critical parameter as Kc = 0.9716394. To confirm the result,
different sizes of ϵ should have recurrence values related to the
convergent of the number 1/γ without the emergence of the
fourth recurrence. The recurrence times σ1,2,3 are shown in order
of appearance in Table 3, as well as the number of times N1,2,3 that
each one was verified after 5 × 106 iterations.

It is remarkable that even after 5 × 106 iterations we verify
only three recurrence times to a limited region of size ϵ and all
of them are consecutive denominators of the continued fraction
expansion of the irrational number 1/γ , in accordance to Slater’s
theorem proved to the translation over a unity circle. Furthermore,
wewould like to point out that our result is very close to thewidely
accepted result provided by Greene [14], where Kc was estimated
as 0.971635.

To finalize, in Fig. 4 we show the phase space for the SM with
Kc = 0.9716394 and successive amplifications around the esti-
mated last invariant curve. Note that the invariant curve really
seems to be unbroken, giving support to our procedure.

Wewould like to call attention for problems in Slater’s criterion
when orbits after criticality describe a cantorus. As is well known,
a cantorus is a remnant of an invariant curve after its breakup, con-
stituted by an infinite set of nowhere dense invariant points, i.e., a
cantorus presents a countable infinity of gaps. As Slater’s criterion
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Fig. 4. (a) Phase space for the SM with Kc = 0.9716394. (b) The 1/γ -last invariant curve. (c) and (d) are amplifications of the last invariant curve.
Table 3
(Left) The three recurrence times in order of appearance for different ϵ for the
last invariant curve in SM (Kc = 0.971639(4)) estimated via Slater’s theorem. All
the recurrence values belong to the continued fraction expansion of the number
1/γ . (Right) The number of times that each recurrence appeared after 5.0 × 106

iterations.

ϵ σ1 σ2 σ3 N1 N2 N3

1×10−6 196418 121393 75025 10 10 23
5×10−6 28657 17711 46368 88 34 40
1×10−5 17711 10946 28657 128 53 75
5×10−5 4181 2584 6765 616 285 249
1×10−4 2584 1597 987 1250 1015 150
5×10−4 610 377 233 4943 4654 988
1×10−3 377 233 144 7594 7934 2003
5×10−3 89 55 34 29627 36151 11026
1×10−2 34 21 55 93082 52429 13349
5×10−2 8 5 13 421699 249489 29151

depends on the connected interval ϵ, an orbit on a cantorus will
not satisfy the three recurrence if the interval ϵ is placed exactly in
the gap. Otherwise, a cantorusmay return atmost three recurrence
times and, therefore, Slater’s criterion fails since the cantorus is not
an invariant curve. In such case, orbits in cantori could eventually
contribute to a slightly overestimated critical parameter values as
compared with the values obtained by applying Greene’s criterion.

5. Conclusion

The present paper has used Slater’s theorem to study the
breakup of invariant curves in phase space of area-preserving
maps. Basically, we have explored the concept that the sequence
Nθ mod 1 returns to an arbitrary interval ϵ in at most three differ-
ent recurrence times expressible by the continued fraction expan-
sion of the irrational θ . As the quasi-periodic motion of invariant
curves in the phase space is related with a simple rotation of a cir-
cle by parametrization, we have shown that the three recurrence
times can be an indicator to determine if such invariants are broken
or not.

The procedure based on Slater’s theorem (three recurrence
times) is indicated to verify the existence of invariant curves in
a system with a set of parameters, as done in Refs. [9,10] and in
the present paper for the nontwist map. Nevertheless, we have
shown that the motion of invariant curves in the phase space
has at most three recurrence times also expressible by continued
fraction expansion of their rotation number. As a consequence, an
approaching procedure based on the observation of these three
recurrence times was developed to determine the breakup of
invariant curves in the standard map, where we obtained Kc =

0.9716394. Since the accuracy depends critically on choosing an
optimum relation among the return region of size ϵ, the number
of iteration and, the initial conditions steps, our result for Kc can
be improved, although it is likely that the exact value is about our
Kc = 0.9716394 and Greene’s result, Kc = 0.971635.

The procedure considered here offers an alternativemethod for
determining criticality of invariant curves in bi-dimensional phase
spaces, moreover its applicability is straightforward, adaptable
and, fast to simulate.

We have observed that a relation should exist between the
return region of size ϵ and the three recurrence times σ1,2,3 for
area-preserving maps, likewise Slater’s theorem states for the
translation over a unity circle. Nomathematical proof has been ob-
tained in this paper, however, we believe that our numerical solu-
tion can be useful to estimate invariant curves breakup of other
dynamical systems.

Apart from area-preserving maps, it could be interesting to ex-
tend the procedure based on Slater’s theorem for high dimensional
maps (e.g., volume preserving maps [29]) and also continuous sys-
tems. However, applications of the procedure used in the present
paper to determine critical parameters in other area preserving
maps and especially for those with higher dimension may require
to overcome specific difficulties.
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