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We investigate the statistics of recurrences to finite size intervals for chaotic dynamical systems. We
find that the typical distribution presents an exponential decay for almost all recurrence times
except for a few short times affected by a kind of memory effect. We interpret this effect as being
related to the unstable periodic orbits inside the interval. Although it is restricted to a few short
times it changes the whole distribution of recurrences. We show that for systems with strong mixing
properties the exponential decay converges to the Poissonian statistics when the width of the
interval goes to zero. However, we alert that special attention to the size of the interval is required
in order to guarantee that the short time memory effect is negligible when one is interested in
numerically or experimentally calculated Poincaré recurrence time statistics. ©2004 American
Institute of Physics. [DOI: 10.1063/1.1795491]

The recurrence of trajectories to a neighborhood of a
region in the phase space can be used to analyze impor-
tant properties of dynamical systems. When this tool is
applied to experimental or numerical generated data the
limit of infinitely small recurrence interval (the Poincaré
limit) is never achieved. In this article, we present an
effect that appears due to the finite size of the recurrence
interval and changes the exponential decay of the distri-
bution of recurrence times. The results are analyzed for
the logistic and Hénon maps but are expected to apply to
a large class of chaotic dynamical systems.

I. INTRODUCTION

Since it was settled, the Poincaré recurrence theorem has
been the source of a number of paradoxes relating reversible
microscopic dynamics on the one hand and irreversible mac-
roscopic behavior on the other hand. An answer to these
paradoxes was given by Boltzmann, who adopted the law of
big numbers(N→`, whereN is the number of degrees of
freedom of the system under study) and the recognition that
the Poincaré recurrence time(PRT) to a highly improbable
initial condition is too large to be observed in times normally
available. Boltzmann’s point of view was recently restated
by Lebowitz1 in contrast with a point of view based on non-
linear dynamics. In this approach, rather than the limitN
→`, the central role is played by the sensitivity to initial
conditions added to the idea that the Poincaré recurrence
time do not need to be very large to lie beyond the observ-
able range limit.2,3

Besides its fundamental importance for classical statisti-
cal mechanics,4,5 PRT statistics have been used, in recent
years, as a tool for time series analysis in a variety of areas
ranging from economics to plasma physics,6–9 and as a way
of studying trapping properties in Hamiltonian systems,10–12

which is an important feature for anomalous transport

processes.13,14 The series of recurrence times itself has also
been the subject of fractal analysis.15–17 All these aspects
have brought a renewed interest in the study of recurrence
time statistics.

General results have shown that the exponential-one law
e−t holds for the cumulative probability of first recurrence
times(scaled by the mean first recurrence time) of transitive
Markov chains,18 hyperbolic dynamical systems such as
axiom A diffeomorphisms19 and for systems verifying a
strong mixing property.20 Further improvement to the study
of recurrences to finite size intervals has been given by
Galves and Schmitt.21 They have computed an upper bound
for the difference between the cumulative probability of first
recurrence times and the exponential-one law. Moreover,
they have shown that the right scaling of the first recurrence
times should include an extra factor besides the mean first
recurrence time. This factor lies between two strictly positive
constants independent of the recurrence interval. Recently
these results have been extended to unimodal maps.22

The Poissonian statistics, or its cumulative equivalent
exponential-one law for scaled recurrence times, is deduced
in the limit of an infinitely small recurrence interval. How-
ever, in many of the recent applications mentioned previ-
ously the recurrence times are obtained either from numeri-
cal simulations or experimental data. In these cases it is
unavoidable to use a recurrence interval with a finite size.
The size of the interval is chosen in order to obtain a suffi-
cient number of recurrences to build the recurrence time
(RT) statistics. In this article we are interested in the RT
statistics to finite size intervals of chaotic dynamical systems.

We begin using simple basic concepts of combinatorial
analysis to deduce the statistics of recurrences to a given
finite size interval for random processes and chaotic systems
with strong mixing. This statistics applies not only for the
first recurrence time(RT) but for all ther-th recurrence time.
We obtain these statistics, which we call binomial-like dis-
tribution of RT, as a result of a simple combinatorial analysis
problem. This distribution is valid for every size of the return
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region. When the probability of coming back to the return
region is very small, the binomial-like RT statistics reduces
to the Poissonian statistics, commonly observed for PRT
problems in the literature.9,16,23Since we adopt a combinato-
rial approach to deduce these statistics, almost no informa-
tion about the dynamics of the system, but its strong chaotic
mixing property, can be obtained from it. Therefore, dynami-
cal properties show their signature when the recurrence time
statistics deviates from the former ones. One of these devia-
tions is particularly important for Hamiltonian systems and
concerns with a power law tail for long recurrence times.23

In this article, we study a type of deviation which is related
with the presence of unstable periodic orbits inside of the
recurrence interval. We call it short time memory effect. This
deviation originates the extra factor, which should multiply
the mean recurrence time in order to give the right scaling of
the series of recurrence times as considered by Galves and
Schmitt.21 It appears when a finite recurrence interval is con-
sidered. Although this deviation is restricted to a few short
recurrence times, it changes the whole statistics. Moreover,
we would like to emphasize that our deviation is in agree-
ment with the bounds estimated in the previous works.

The article is structured as follows: in Sec. II, we present
the deduction of the binomial-like statistics, which is exem-
plified by a Gaussian stochastic process. The statistics for
chaotic dynamical systems(logistic and Hénon map) are cal-
culated numerically in Sec. III, where the short time memory
effect is clearly observed. In Sec. IV, we explore the origins
of this effect and how it changes the RT statistics. Finally, in
Sec. V we summarize our conclusions of this article.

II. BINOMIAL-LIKE DISTRIBUTION

Let f :M→M be a homeomorphism with an invariant
measuremsMd=1. Given a regionI ,M with msId.0, the
Poincaré recurrence theorem asserts that a trajectory, having
started insideI, returns toI infinitely many times. The time
interval Ti between thei-th and thesi +rd-th return is what
we refer to as ther-th recurrence time. This time interval is
just one of an infinite sequencehTi : i =1,2, . . . ,̀ j, and we
are interested in the statistics of this sequence.

For convenience, most of the calculations are made for
unidimensional systems. In this case, the intervalI is defined
as IsXc,dd=fXc−d ,Xc+dg, as illustrated in Fig. 1 with a
Gaussian random time series. When we have small values of
d, and thus a small probabilitymsId, we are dealing with the
Poincaré recurrence time.

This article concerns the discrete time case, where the
system is observed at a constant sample ratet=1. A few
adjustments are needed for the continuous time case.24,25

In order to obtain the statistics for the recurrence time,
consider the following simple problem: Lete1 ande2 be two
mutually exclusive events. The evente1 occurs with the con-
stant probability m and e2 with the constant probability
s1−md. Consider now a sequence ofTi trials hSk:k
=1,2, . . . ,Tij whereSk=e1 or Sk=e2. What is the probability
of having r events of typee1 and sTi −rd events of typee2

with the constraint that the last trial results is an event of the
type e1? This kind of problem is known in the literature of

combinatorial analysis as Bernoulli trials(“ repeated inde-
pendent trials for which there are only two possible out-
comes with probabilities that remain the same throughout the
trials” 26).

The answer for this problem is the following: The prob-
ability of having r eventse1 and sTi −rd eventse2 is mrs1
−mdTi−r. The last event must be of the typee1, then there are

sTi − 1d!
sTi − rd ! sr − 1d!

ways of havingsr −1d eventse1 in the previoussTi −1d trials.
Combining these results and suppressing the indexi, sinceTi

is just one of an infinite sequence ofr-th recurrence times,
we have

PsT;r,md =
sT − 1d!

sT − rd ! sr − 1d!
mrs1 − mdT−r . s1d

For a dynamical system with an invariant ergodic measure
and for which each step is independent from the previous
ones, it is easy to see that Eq.(1) gives the probability ofr-th
recurrence time if we consider the following analogy: Be-
tween thei-th and thesi +rd-th return to the intervalIsXc,dd
the trajectory spendsTi steps, each step(one trial) has a
probability m=mfIsXc,ddg of being in the intervalIsXc,dd
(evente1) and a probabilityh1−mfIsXc,ddgj of being outside
IsXc,dd (evente2).

Usually one is interested in the first recurrence time sta-
tistics (r =1). In this case, Eq.(1) gives

PsT;1,md = ms1 − mdT−1, s2d

that can be rewritten as

PsT;1,md =
m

1 − m
elns1−mdT,

which, by its turn, reduces to the Poissonian statistics

PsT;1,md = me−mT, s3d

whenm→0.

FIG. 1. First recurrence time to the intervalI for a random time series with
Gaussian distribution.
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This statistic is the one commonly encountered for
Poincaré recurrences in chaotic dynamical systems.6,16 The
smallmfIsXc,ddg condition is, usually, satisfied when we take
small values ofd.

For any r, in the usual limit,26 m→0 and T@1, the
binomial-like distribution[Eq. (1)] reduces to the Poisson-
like distribution

PsT;r,md =
msmTdr−1

sr − 1d!
e−mT. s4d

Equations(2) and (3), as well as any other distribution of
first RT, must satisfy two conditions: The first one is, obvi-
ously, the normalization,

o
T=1

`

PsT;1,md = 1, s5d

and the second one is Kac’s lemma5,24,27

kTl ; o
T=1

`

T PsT;1,md =
1

m
. s6d

Although Kac’s lemma is usually applied to closed Hamil-
tonian systems, its original derivation24 was based in general
assumptions that cover a large class of dynamical systems
including those we shall discuss in this work.

The above conditions will be used in Sec. IV to take into
account dynamical effects on the recurrence time statistics.

To finalize this section we shall exemplify the binomial-
like distribution obtaining the RT statistics of a stochastic
process whose variable,x, is governed by a Gaussian density
of probability:

rGsxd =
1

Î2ps2
e−fsx − kxld2g/2s2

, s7d

with kxl=0 ands=0.2 (see Fig. 2).
The probability,mfIsXc,ddg, of returning to an interval

IsXc,dd is given by

mfIsXc,ddg =E
Xc−d

Xc+d

rGsxddx, s8d

in particular, for the intervalsI1 and I2, shown in Fig. 2, we
have sXc1=0.3,d1=0.02d and sXc2=−0.2,d1=0.06d, respec-
tively. Their corresponding probabilities aremsI1d=0.025 96
andmsI2d=0.096 79.

Figure 3 shows the statistics of recurrences to the inter-
vals I1 andI2 for the Gaussian random time series. The solid
lines correspond to the analytical results given by Eq.(1) and
they are in a good agreement with the numerical results.

III. CHAOTIC DYNAMICAL SYSTEMS

Let us see now what happens when we consider the sta-
tistics of first recurrence of two deterministic dynamical sys-
tems.

The first system we analyze is the logistic map

xn+1 = b xns1 − xnd, s9d

in the completely chaotic regime(parameterb=4). Its invari-
ant probability density,

rLsxd =
1

pÎxs1 − xd
, s10d

is shown in Fig. 4. In this figure, we also see the return
interval I1 sXc1=0.9,d1=0.01d with measure msI1d
=0.021 24.

Using the logistic map, we create a trajectory withN
=108 points and look for recurrences to the intervalI1

=fXc1=0.9,d1=0.01g, indicated in Fig. 4. The statistics of
first recurrence times to this interval is shown in Fig. 5.

As our second example of a dynamical system we
choose the Hénon map,

xn+1 = 1 −a xn
2 − yn, yn+1 = b xn, s11d

with the parametersa=1.4 andb=0.3.
The distribution of first recurrence to a finite size inter-

val for the Hénon map is shown in Fig. 6. In order to obtain
this result, we eliminate the transient by iterating the Hénon

FIG. 2. Gaussian density of probability withkxl=0 ands=0.2. The prob-
abilities of returning to the regionsI1 and I2 is given bym1 andm2, respec-
tively.

FIG. 3. Ther-th RT statistics for a Gaussian random walk. We chose arbi-
trary values ofr and the two intervals illustrated in Fig. 2. The solid lines are
given by Eq.(1).
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map 103 times and take the final pointXc=sxc,ycd as the
center of the phase space intervalI, with radiusd=10−2. An
initial condition inside the intervalI is chosen and the Hénon
map is iterated until we obtain 107 recurrence events.

Both maps present distributions of recurrence times
which fall exponentially (a straight line for a linear-log
graphic) after someTùn* (n* <10 for the logistic map and
n* <40 for the Hénon map). What is indicated through the
solid lines in Figs. 5 and 6 for the logistic map and Hénon
map, respectively. Nevertheless, these solid lines do not co-
incide with the ones(dashed lines) given by the binomial-
like statistics, Eq.(2), which is indistinguishable from what
would be the correct Poissonian statistics withkTl=1/msId
for the particular size of the intervals used. In particular, the
difference between the right mean recurrence time and the
inverse of the slope of the solid line in Fig. 6 is approxi-
mately 9.3%. This difference indicates that an extra factor,

besides the mean recurrence time, should be considered in
order to obtain the right scaling of the series of recurrence
times.21

The reason for this deviation is the following: In the
previous section, we showed that the complete independence
of iteration and the existence of an invariant measure were
necessary to obtain the binomial-like statistics of recurrence
to an interval of finite size. However, deterministic dynami-
cal systems hardly fulfill the condition that an iteration is
completely independent from the previous ones. Therefore,
dynamical systems have a kind of memory which affects the
distribution of short recurrence times as we shall show in the
next section.

IV. MEMORY EFFECTS ON THE RT DISTRIBUTION

In this section, we show how the memory effect changes
the probability of short recurrence times, and how the latests
are responsible for the deviation of the whole distribution.

We take the advantage of working with a simple dynami-
cal system, the logistic map, which gives us the possibility of
calculating analytically the probability of short recurrence
times.

A. Short recurrences and lack of memory

The procedure to obtain the probability of short recur-
rence times, illustrated in Fig. 7, consists in identifying the
region Rn, I of initial points whose trajectories return toI
after n iterations of the mapfsxd, what is equivalent to the
first recurrence of the mapfnsxd. Since we are specially in-
terested in the first return time, we note that, ifRnùRm

Þx for m,n, the points from the intersection will return to
I in m, not n, iterations. To avoid this error, we define a new

interval R̄n=Rn−sRnùRmd for every m,n. The probability
of a first recurrence timeT=n is, then, given by

P1sT = nd =
msR̄nd
msId

. s12d

FIG. 4. Invariant probability density for the logistic map. The marked area
m1 represents the measure of the intervalI1sXc1=0.9,d1=0.01d.

FIG. 5. Recurrence time distribution for a logistic map(I1=fXc=0.9,d
=0.01g and N=108 points) trajectory. The dashed line is the binomial-like
distribution for msI1d=0.021 24(which coincides with the corresponding
Poissonian distribution). The full line is the curve calculated to satisfy Eqs.
(5) and(6) afterT=n* =10. The inset is an amplification of the small return
times region and the squares are the analytic calculation of the return time
probability as explained in Fig. 7.

FIG. 6. Recurrence time statistics for the Hénon map withIsXc,dd given by
Xc=s0.304,0.210d and d=10−2. The total of 107 recurrence events were
considered. Dashed line is the binomial-like distribution formsId=kTl−1

=0.007 85. The inset is an amplification of the short recurrence times region.
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This method provides the probability of any first recur-

rence time. Nevertheless, the determination of the regionsR̄n

becomes a cumbersome task asn grows.
Although the above procedure is not useful for calculat-

ing the probabilities of first return whenn becomes large, it
is useful for showing how the chaotic dynamics simulates a
random process for large recurrence times.

When n grows, the regionRn becomes the union of a
large number,N, of disjoint subregions in the intervalI, that
is

Rn = ø
i=1

N

Rn
i , with msRnd = o

i=1

N

msRn
i d. s13d

The more subregions we have, the smaller they are.
In particular, as the mapfnsxd is a polynomial of order 2n

there are 2n unstable periodic orbits, each one with its asso-
ciated subregion. The 2n subregions are distributed in the
interval f0,1g according to the invariant density,rLsxd, given
by Eq. (10). The subregionsRn

i are just the ones which are
inside the intervalI.

For largen, there areN<2nmsId subregions in the inter-
val I, each one with the same measure

msRn
i d =

msId
2n . s14d

The probability of having a recurrence toI in the time
T=n is

PsT = nd =
msRnd
msId

. s15d

Putting Eqs.(13) and (14) in Eq. (15), we obtain the recur-
rence probability,PsT=nd<msId, independent ofn for large
n, which is the same hypothesis assumed for the Bernoulli
trials problem in Sec. II. This argument justifies the exponen-
tial decay of the recurrence time statistics after the short
times. It must be emphasized, however, thatPsTd given by
Eq. (15) is not the probability of first recurrence toI in the

time T=n. This one is given by Eq.(12), whereR̄n, instead

of Rn, is used. It is in the calculations ofR̄n that the memory
effect appears, since the approximationN<2nmsId is not
valid for n,n* . The same arguments hold for a general hy-
perbolic chaotic system, since the number of recurrence sub-
regions is equal to the number of periodic orbits, and the
latest grows asehT, whereh is the topological entropy.

B. Fitting of the memoryless exponential

Let us see how the deviation of the shortest recurrence
times affects the whole distribution. As it was shown in Fig.
5, for greater values ofT (after the decay of the memory,
T.n*) the recurrence time distribution approaches a straight
line in a linear-log graphics, what can be generally repre-
sented by an exponential

PexpsTd = g0e
−gT. s16d

Since we know the mean recurrence time(or the measure of
the recurrence interval), the above two parametersg0 andg
can be analytically obtained by using the two conditions pre-
sented in Sec. II, namely, the normalization

o
T=1

n*−1

P1sTd + o
T=n*

`

PexpsTd = 1, s17d

and Kac’s lemma

kTl = o
T=1

n*−1

TP1sTd + o
T=n*

`

TPexpsTd =
1

msId
, s18d

whereP1sTd is given by Eq.(12) or obtained directly from
the data. The agreement of the exponential[Eq. (16)] ob-
tained by this procedure with the linear part(in the linear-log
representation) of the RT distribution for the logistic map, as
shown by the solid lines in Figs. 5 and 6, was verified for
different recurrence intervals.

C. Dependence of the memory effect on the interval

In this subsection, we explore the dependence of the
memory effect on the positionXc and size of the interval
with a special interest in small intervals. As we argued be-
fore, only a few number of short recurrence times diverge
from a straight line in the linear-log representation, but their

FIG. 7. Analytic calculation for the return time probability forT=2 in the
logistic map. The regionR2 represents the points insideI that return toI
after two iterations of the map. We also see thatR1=x.
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effects on the whole distribution is considerable. So we can
take the deviation of the asymptotic exponential from the
binomial (Poissonian) distribution as a quantifier of the short
time memory effect. Let

gsTd = g0e
−gT

be the exponential adjusted to the asymptotic part of the
distribution. As shown in Sec. II, the binomial distribution
results ing=−lns1−md, that reduces tog=m in the Poisso-
nian case. Since we are specially interested in small inter-
vals, we will use the relative deviation from the Poisson
statisticsg /msId−1=gkTl−1 as the quantifier of the memory
effect.

In Fig. 8, it is shown the dependence of the memory
effect with the position of the interval. We note that the effect
occurs for virtually all recurrence intervals. Most of the in-
tervals deviate from the exponential positively but for recur-
rence intervals that contain periodic orbits of small periods
the asymptotic exponential is negatively deviated when com-
pared to the binomial distribution.

To explore the dependence of the memory effect on the
size of the interval we took, by chance, an arbitrary position
Xc=0.582 and we vary its semiwidthd. The results obtained
numerically are illustrated in Fig. 9. For the logistic map, the
relation between the measuremsId and the semiwidthd is
easily found out integrating the distribution(10)

FIG. 8. Dependence of the memory effectsgkTl−1d on
the position of the recurrence intervalsXcd. (a) Results
for the 103 intervals with measuremsId=10−3, centered
in Xc, that covers the intervalxP f0,1g of the logistic
map. (b) Histogram of (a). (c) Amplification of (a)
showing the size of the fitting errors. The gray line rep-
resents the expected value for the binomial distribution.

FIG. 9. Dependence of the memory
effect sgkTl−1d on the size of the re-
currence intervalsdd. The position of
the interval was chosen randomly as
Xc=0.582. The dashed and solid lines
are the expected results for the Poisson
and binomial distribution, respec-
tively. (b) and(c) are amplifications of
(a) for small values ofd and show the
convergence to the binomial statistics
for d,10−4 in the fitting precision.
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msXc,dd =E
Xc−d

Xc+d 1

pÎsxs1 − xdd
dx

= arcsinsXc + dd − arcsinsXc − dd. s19d

With the relation(19) and remembering that for the bi-
nomial distributiong=−lns1−md we obtain the solid line in
Fig. 9. From Fig. 9, we see that for great values ofd the
results deviate from both the Poissonian(dashed line) and
binomial-like distributions. The convergence of the numeri-
cal results of the logistic map to the Poissonian statistics
occurs in the limit of small interval, coherently with what is
found in the literature.22 This convergence occurs clearly
only for d,10−4. Considering the error bars obtained by the
numerical fitting, these are much smaller intervals than the
ones for which the convergence of the binomial-like to Pois-
son takes place. Considering our previous discussions, the
convergence of the numerical results to the Poissonian sta-
tistics occurs only when the short time memory effect be-
comes negligible.

V. CONCLUSIONS

Based on a simple Bernoulli trials problem, we obtain a
binomial-like distribution for ther-th recurrence time statis-
tics of a generic interval. This distribution depends only on
the measure of the recurrence intervalsmsIdd that, when it is
sufficiently small, turns out the statistic to the usual Poisso-
nian distribution for the first Poincaré recurrence time.

The information related to the dynamical properties ap-
pears in the deviation from these distributions as, for ex-
ample, the power-law behavior for large recurrence times
studied in Refs. 10 and 13. In this article, we discuss a de-
viation that appears for finite size intervals. In this case the
short recurrence times are affected by a kind of memory of
the chaotic systems. We show that the origin of this short
time memory effect is due to the existence of unstable peri-
odic orbits inside of the finite size recurrence interval. The
analytical method of calculating the recurrence probabilities,
described in Sec. IV A, shows how these periodic orbits
change the distribution of short recurrence times. Further-
more, our observed deviations for the specific systems stud-
ied in this work are in agreement with bounds predicted for
general classes of systems in previous works.18–21

The exponential growth of the number of periodic un-
stable orbits in chaotic dynamical systems restates the con-
dition of independence between recurrences for large times,
resulting in an exponential-like behavior of the recurrence
time distribution after the decay of memory. Imposing the
normalization condition and Kac’s lemma, we are able to
make an analytical fitting to the memoryless part of the dis-
tribution. This fitting illustrates how the short recurrence
times, which are affected by the memory, modify the whole
distribution. Since just a few points deviate from an expo-

nential, a histogram bin larger than one may lead to the
wrong conclusion that the distribution is Poissonian. What
results in a contradiction: The inverse of the false Poissonian
exponent is different from the mean recurrence time obtained
from the recurrence series. For example, for the data of Fig.
6 this difference is of 9.3%. We believe that this alert has to
be taken into account when the RT statistics is calculated. We
would like to stress that our results indicate that the correct
normalization of a series of recurrence times should consider
an extra factor, besides the mean recurrence time, in order to
properly obtain the asymptotic exponential-one law.

We emphasize that the memory effect, discussed in this
article, applies for any recurrence interval of a general cha-
otic dynamical system. For small intervals it may not be
relevant because it turns smaller than the numeric precision.
When one is calculating RT numerically, it must be checked
that the interval is sufficiently small that this regime is al-
ready achieved.
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