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Recurrence time statistics for finite size intervals
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We investigate the statistics of recurrences to finite size intervals for chaotic dynamical systems. We
find that the typical distribution presents an exponential decay for almost all recurrence times
except for a few short times affected by a kind of memory effect. We interpret this effect as being
related to the unstable periodic orbits inside the interval. Although it is restricted to a few short
times it changes the whole distribution of recurrences. We show that for systems with strong mixing
properties the exponential decay converges to the Poissonian statistics when the width of the
interval goes to zero. However, we alert that special attention to the size of the interval is required
in order to guarantee that the short time memory effect is negligible when one is interested in
numerically or experimentally calculated Poincaré recurrence time statisti@0@® American
Institute of Physics[DOI: 10.1063/1.1795491

The recurrence of trajectories to a neighborhood of a processeé3.'14 The series of recurrence times itself has also
region in the phase space can be used to analyze impor- been the subject of fractal analy$%*’ All these aspects
tant properties of dynamical systems. When this tool is have brought a renewed interest in the study of recurrence
applied to experimental or numerical generated data the tjme statistics.
limit of infinitely small recurrence interval (the Poincaré General results have shown that the exponential-one law
limit) is never achieved. In this article, we present an o~ 4 for the cumulative probability of first recurrence
gffect that appears due to the f|n|te.5|ze of the recurrence times(scaled by the mean first recurrence tymétransitive
mte_rval and changes f[he exponential decay of the distri- Markov chaing® hyperbolic dynamical systems such as
bution of recurrence times. The results are analyzed for axiom A diffeomorphism¥ and for systems verifying a
the logistic and Hénon maps but are expected to apply to Xl a P I§° her i y v r'] ing q
a large class of chaotic dynamical systems. strong mixing property. Fu_rt er improvement to the study
of recurrences to finite size intervals has been given by
Galves and Schmift: They have computed an upper bound
. INTRODUCTION for the difference between the cumulative probability of first

Since it was settled, the Poincaré recurrence theorem hgcurrence times and the exponential-one law. Moreover,
been the source of a number of paradoxes relating reversibf8€y have shown that the right scaling of the first recurrence
microscopic dynamics on the one hand and irreversible madimes should include an extra factor besides the mean first
roscopic behavior on the other hand. An answer to theskecurrence time. This factor lies between two strictly positive
paradoxes was given by Boltzmann, who adopted the law ofonstants independent of the recurrence interval. Recently
big numbers(N— o, whereN is the number of degrees of these results have been extended to unimodal ﬁ?aps.
freedom of the system under stydynd the recognition that The Poissonian statistics, or its cumulative equivalent
the Poincaré recurrence tinfPRT) to a highly improbable exponential-one law for scaled recurrence times, is deduced
initial condition is too large to be observed in times normallyin the limit of an infinitely small recurrence interval. How-
available. Boltzmann's point of view was recently restatedever, in many of the recent applications mentioned previ-
by LebowitZ in contrast with a point of view based on non- ously the recurrence times are obtained either from numeri-
linear dynamics. In this approach, rather than the lidit cal simulations or experimental data. In these cases it is
—oo, the central role is played by the sensitivity to initial unavoidable to use a recurrence interval with a finite size.
conditions added to the idea that the Poincaré recurrencthe size of the interval is chosen in order to obtain a suffi-
time do not need to be very large to lie beyond the observeient number of recurrences to build the recurrence time
able range limit?> (RT) statistics. In this article we are interested in the RT

Besides its fundamental importance for classical statististatistics to finite size intervals of chaotic dynamical systems.
cal mechanicé® PRT statistics have been used, in recent  We begin using simple basic concepts of combinatorial
years, as a tool for time series analysis in a variety of areagnalysis to deduce the statistics of recurrences to a given
ranging from economics to plasma physicsand as a way finite size interval for random processes and chaotic systems
of studying trapping properties in Hamiltonian systefis”  with strong mixing. This statistics applies not only for the
which is an important feature for anomalous transportirst recurrence timéRT) but for all ther-th recurrence time.

We obtain these statistics, which we call binomial-like dis-
¥Author to whom correspondence should be addressed. Electronic maiF.ribution of RT, as a result of a simple combinatorial analysis
altmann@if.usp.br problem. This distribution is valid for every size of the return
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region. When the probability of coming back to the return 0.8 ' '
region is very small, the binomial-like RT statistics reduces !
to the Poissonian statistics, commonly observed for PRT
problems in the literatur&'®*Since we adopt a combinato-
rial approach to deduce these statistics, almost no informa
tion about the dynamics of the system, but its strong chaotic
mixing property, can be obtained from it. Therefore, dynami-
cal properties show their signature when the recurrence times 0
statistics deviates from the former ones. One of these devia
tions is particularly important for Hamiltonian systems and
concerns with a power law tail for long recurrence tirfies.
In this article, we study a type of deviation which is related
with the presence of unstable periodic orbits inside of the
recurrence interval. We call it short time memory effect. This
deviation originates the extra factor, which should multiply  _o.8 w : w :
the mean recurrence time in order to give the right scaling of 20 40 60 80 100

the series of recurrence times as considered by Galves and

Schmitt?! It appears when a finite recurrence interval is con-FIG. 1. Firs't recurrence time to the interdafor a random time series with
sidered. Although this deviation is restricted to a few shor{2ussian distribution.

recurrence times, it changes the whole statistics. Moreover,

we would like to emphasize that our deviation is in agree-,mpinatorial analysis as Bernoulli trialérepeated inde-

ment with the bounds estimated in the previous works. pendent trials for which there are only two possible out-

The article is structured as follows: in Sec. Il, we presenty, e with probabilities that remain the same throughout the
the deduction of the binomial-like statistics, which is exem-tria|s,,26)

plified by a Gaussian stochastic process. The statistics for The answer for this problem is the following: The prob-
chaotic dynam.ical systenﬁk)gistic and Hénon me?pare cal- ability of havingr eventse, and (T,-r) eventse, is x'(1
cuIatet_j numerically in Sec. Ill, where the short time mer_nc_)ry_M)Ti—r_ The last event must be of the typg then there are
effect is clearly observed. In Sec. IV, we explore the origins

of this effect and how it changes the RT statistics. Finally, in (T =
Sec. V we summarize our conclusions of this article. (T,=r) ! (r=1)!

0.4

1 X+

-0.4

ways of having(r—1) eventse; in the previouqT;-1) trials.
II. BINOMIAL-LIKE DISTRIBUTION Combining these results and suppressing the indsixceT;

. . ] ) is just one of an infinite sequence Bth recurrence times,
Let f:M—M be a homeomorphism with an invariant \ye have

measureu(M)=1. Given a regiol C M with w(l)>0, the

Poincaré recurrence theorem asserts that a trajectory, having P(T:r i) = (T-1)! (L= )T 0
started insidd, returns tol infinitely many times. The time Y (T-n)!(r=-21 '

interval T, between tha-th and the(i +r)-th return is what
we refer to as the-th recurrence time. This time interval is
just one of an infinite sequendd;:i=1,2, ...}, and we
are interested in the statistics of this sequence.

For convenience, most of the calculations are made fo
unidimensional systems. In this case, the intehialdefined
as 1(X;, 8)=[X.—8,X:+46], as illustrated in Fig. 1 with a
Gaussian random time series. When we have small values
8, and thus a small probability(l), we are dealing with the
Poincaré recurrence time. (X, ) (eventey). - . i .

This article concerns the discrete time case, where the _Usually one 1S interested in tl'_1e first recurrence time sta-
system is observed at a constant sample taté. A few ustics (r=1). In this case, Eq(1) gives
adjustments are needed for the continuous time E&Se. P(T; 1) = m(l—p) ™2, (2)

In order to obtain the statistics for the recurrence time, )
consider the following simple problem: Let ande, be two ~ that can be rewritten as
mutually exclusive events. The evemtoccurs with the con- w

- . - . =7 An(-w)T
stant probability x and e, with the constant probability P(T;1,u) = 1- n=wT,
(1-w). Consider now a sequence Of; trials {S:k K
=1,2,...T;} whereS.=e, or S.=e,. What is the probability ~which, by its turn, reduces to the Poissonian statistics
of havingr events of typee; and (T;—r) events of types, . T
with the constraint that the last trial results is an event of the PT1.p) = pe ™, ©
type e;? This kind of problem is known in the literature of whenu— 0.

For a dynamical system with an invariant ergodic measure
and for which each step is independent from the previous
ones, it is easy to see that Ed) gives the probability of-th
fecurrence time if we consider the following analogy: Be-
tween thei-th and the(i +r)-th return to the interval(X., )

the trajectory spend3; steps, each stefone tria) has a
probability u=u[l(X;, )] of being in the intervall (X, )
(evente;) and a probability{1 —u[I(X., 8)]} of being outside
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FIG. 3. Ther-th RT statistics for a Gaussian random walk. We chose arbi-

FIG. 2. Gaussian density of probability wit)=0 ande=0.2. The prob-  trary values of and the two intervals illustrated in Fig. 2. The solid lines are
abilities of returning to the regiorls and|, is given by, and u,, respec-  given by Eq.(1).
tively.

Xc+8

This statistic is the one commonly encountered for HlI(Xe,8)] = s pe(x)dx, (8)
Poincaré recurrences in chaotic dynamical systttfighe ¢
small u[1(X., 8] condition is, usually, satisfied when we take in particular, for the interval$, andl,, shown in Fig. 2, we
small values ofs. have (X;=0.3,6,=0.02 and (X,=-0.2,5;,=0.06, respec-
For anyr, in the usual limi2® uw—0 and T>1, the tively. Their corresponding probabilities agel;)=0.025 96
binomial-like distribution[Eq. (1)] reduces to the Poisson- and u(l,)=0.096 79.
like distribution Figure 3 shows the statistics of recurrences to the inter-
valsl, andl, for the Gaussian random time series. The solid
_ M(MT)r_le_MT 4) lines correspond to the analytical results given by @gand

P(Tr.m) (r=1)! ) they are in a good agreement with the numerical results.

Equations(2) and (3), as well as any other distribution of

first RT, must satisfy two conditions: The first one is, obvi- lll. CHAOTIC DYNAMICAL SYSTEMS

ously, the normalization, Let us see now what happens when we consider the sta-
tistics of first recurrence of two deterministic dynamical sys-
- _ _ tems.
gl P(T;L,p) =1, (5) The first system we analyze is the logistic map
and the second one is Kac's lemha®’ Xne1 = D Xo(1 =), 9

in the completely chaotic regim@arameteb=4). Its invari-

©

1 ant probability density,
M=2TPTlu=". 6) P ’ ’
T=1 K 1
, . : : LX) = —F——, (10
Although Kac’s lemma is usually applied to closed Hamil- mVX(1 = Xx)

tonian systems, its original derivatidrwas based in general . h in Fia. 4. In this fi | th i
assumptions that cover a large class of dynamical systerﬂg shown in F1g. 2. In this figure, we also see the return

including those we shall discuss in this work. Tterval 1 (%1=0.9,6,=0.01  with  measure u(ly)
The above conditions will be used in Sec. IV to take into_0'021_ 24. . .

account dynamical effects on the recurrence time statistics. Usmg the logistic map, we create a traject(_)ry whih
To finalize this section we shall exemplify the binomial- =10° points and quk for recurrences to the mtequ

like distribution obtaining the RT statistics of a stochastic:[xdzo'g’51:0'01]’ indicated in Fig. 4. The statistics of

process whose variable, is governed by a Gaussian density first recurrence times to this interval is shovyn in Fig. 5.
of probability: As our second example of a dynamical system we

choose the Hénon map,

po(X) = ,1—026“*‘ V202, 7) Xe1=1 =8 %= Yn, Y1 =0 X, (11
‘ with the parametera=1.4 andb=0.3.
with (x)=0 ando=0.2 (see Fig. 2 The distribution of first recurrence to a finite size inter-
The probability, u[1(X., )], of returning to an interval val for the Hénon map is shown in Fig. 6. In order to obtain
[(X¢, d) is given by this result, we eliminate the transient by iterating the Hénon
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X X.=(0.304,0.210 and §=102 The total of 18 recurrence events were

considered. Dashed line is the binomial-like distribution foil)=(T)™*

FIG. 4. Invariant probability density for the logistic map. The marked area=0.007 85. The inset is an amplification of the short recurrence times region.
uq represents the measure of the inteiy@K,;=0.9,5,=0.01).

besides the mean recurrence time, should be considered in

map 10 times and take the final poikc=(x;,¥o) as the  orger 1o obtain the right scaling of the series of recurrence
center of the phase space intervawith radiuss=1072. An times2!

initial condition inside the intervdlis chosen and the Hénon The reason for this deviation is the following: In the

map is iterated until we obtain 1(D_ecurrence events. previous section, we showed that the complete independence
‘Both maps present distributions of recurrence timesy jteration and the existence of an invariant measure were

which fall exponentially(a straight line for a linear-log pecessary to obtain the binomial-like statistics of recurrence

graphig after someT=n" (n =10 for the logistic map and {4 an interval of finite size. However, deterministic dynami-

n ~40 for the Hénon map What is indicated through the ¢4 systems hardly fulfill the condition that an iteration is

solid lines in Figs. 5 and 6 for the logistic map and Hénongompletely independent from the previous ones. Therefore,

map, respectively. Nevertheless, these solid lines do not CQjynamical systems have a kind of memory which affects the

incide with the onegdashed linesgiven by the binomial-  istribution of short recurrence times as we shall show in the
like statistics, Eq(2), which is indistinguishable from what oxt section.

would be the correct Poissonian statistics wilh=1/u(l)

for the particular size of the intervals used. In particular, the
difference between the right mean recurrence time and th&/- MEMORY EFFECTS ON THE RT DISTRIBUTION

inverse of the slope of the solid line in Fig. 6 is approxi- | this section, we show how the memory effect changes

mately 9.3%. This difference indicates that an extra factoryne probability of short recurrence times, and how the latests
are responsible for the deviation of the whole distribution.

. We take the advantage of working with a simple dynami-

- cal system, the logistic map, which gives us the possibility of

‘ calculating analytically the probability of short recurrence

2 NS times.

0 10 20 A. Short recurrences and lack of memory
-3

=
g S The procedure to obtain the probability of short recur-
rence times, illustrated in Fig. 7, consists in identifying the
region R,CI of initial points whose trajectories return to
after n iterations of the mag(x), what is equivalent to the
first recurrence of the maff(x). Since we are specially in-
h s P terested in the first _return time, we notg that:H,m R
T # @ for m<n, the points from the intersection will return to

' S o | in m, notn, iterations. To avoid this error, we define a new

000 andN=10 poin trsjectory:. The dashed e i the biromial e IMErVal Ry=Ry=(RyNRy) for everym<n. The probability

distribution for u(1,)=0.021 24(which coincides with the corresponding Of @ first recurrence tim&=n is, then, given by
Poissonian distribution The full line is the curve calculated to satisfy Egs.

(5) and(6) after T=n"=10. The inset is an amplification of the small return (En)
times region and the squares are the analytic calculation of the return time P, (T =n) = ,u_. (12
probability as explained in Fig. 7. u(l)
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)

o (14)

\ (R,

1 The probability of having a recurrence tan the time
T=nis

: p(T=n) = 4R (15)

p()

Putting Eqs(13) and(14) in Eq. (15), we obtain the recur-
rence probabilityP(T=n) = w(l), independent oh for large

n, which is the same hypothesis assumed for the Bernoulli
trials problem in Sec. II. This argument justifies the exponen-
tial decay of the recurrence time statistics after the short
X eX 4e] times. It must be emphasized, however, tR&T) given by

oo . . . \ Eq. (15) is not the probability of first recurrence toin the

0.0 0.2 0.4 06 08 1.0 time T=n. This one is given by Ec{.lZ),_whereEn, instead

of R, is used. It is in the calculations &, that the memory
\ effect appears, since the approximatibir=2"u(l) is not

b ; .
© valid for n<n'. The same arguments hold for a general hy-

perbolic chaotic system, since the number of recurrence sub-
| regions is equal to the number of periodic orbits, and the
latest grows a€"", whereh is the topological entropy.

B. Fitting of the memoryless exponential

Let us see how the deviation of the shortest recurrence

| times affects the whole distribution. As it was shown in Fig.

R, | 5, for greater values of (after the decay of the memory,

X & X +€ T>n") the recurrence time distribution approaches a straight
line in a linear-log graphics, what can be generally repre-

FIG. 7. Analytic calculation for the return time probability fé=2 in the sented by an exponential
logistic map. The regiorR, represents the points insidethat return tol
after two iterations of the map. We also see tRat @. Pexp(T) = goe‘VT_ (16)

Since we know the mean recurrence titoe the measure of
the recurrence intervglthe above two parametegg and y
This method provides the probability of any first recur- can be analytically obtained by using the two conditions pre-

rence time. Nevertheless, the determination of the regians Sented in Sec. Il, namely, the normalization
becomes a cumbersome tasknagrows. no1 o
. Although thg.above.procedure is not useful for calcqlat- Sem+S PexdT) =1, 17
ing the probabilities of first return whembecomes large, it T=1

is useful for showing how the chaotic dynamics simulates a

T=n"

random process for large recurrence times. and Kac's lemma
When n grows, the regiorR, becomes the union of a n-1 o 1
!arge numberN, of disjoint subregions in the interval that m=> TP(T) + > TPedT) = ——, (18)
IS T=1 T:n* lu’(l)
N N where P4(T) is given by Eq.(12) or obtained directly from
_ i . _ i the data. The agreement of the exponenfizd. (16)] ob-
Rn= iL:Jan, with - u(Ro) = z Ry (13 tained by this procedure with the linear pért the linear-log

representationof the RT distribution for the logistic map, as
shown by the solid lines in Figs. 5 and 6, was verified for

The more subregions we have, the smaller they are. . .
different recurrence intervals.

In particular, as the maff(x) is a polynomial of order 2
there are 2 unstable periodic orbits, each one with its a:sso-C Dependence of the memory effect on the interval
ciated subregion. The"2subregions are distributed in the ™ P y
interval[0, 1] according to the invariant density, (x), given In this subsection, we explore the dependence of the
by Eq.(10). The subregiong;, are just the ones which are memory effect on the positioX. and size of the interval

inside the interval. with a special interest in small intervals. As we argued be-

For largen, there ardN=2"u(l) subregions in the inter- fore, only a few number of short recurrence times diverge

val I, each one with the same measure from a straight line in the linear-log representation, but their
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effects on the whole distribution is considerable. So we can In Fig. 8, it is shown the dependence of the memory
take the deviation of the asymptotic exponential from theeffect with the position of the interval. We note that the effect
binomial (Poissoniandistribution as a quantifier of the short occurs for virtually all recurrence intervals. Most of the in-
time memory effect. Let tervals deviate from the exponential positively but for recur-
T rence intervals that contain periodic orbits of small periods
9(T) = goe the asymptotic exponential is negatively deviated when com-
be the exponential adjusted to the asymptotic part of thared to the binomial distribution.
distribution. As shown in Sec. Il, the binomial distribution To explore the dependence of the memory effect on the
results iny=-In(1-w), that reduces teay=u in the Poisso- size of the interval we took, by chance, an arbitrary position
nian case. Since we are specially interested in small interX;=0.582 and we vary its semiwidtf The results obtained
vals, we will use the relative deviation from the Poissonnumerically are illustrated in Fig. 9. For the logistic map, the
statisticsy/ u(l)—1=4T) -1 as the quantifier of the memory relation between the measugel) and the semiwidths is

effect. easily found out integrating the distributighO)
(a)
- I I
11— —
4—¢ logistic map
— | — Poisson
[A = Binomial
Vo5
?_
R R . FIG. 9. Dependence of the memory
Ot—t—0¢ . DTN YT ol effect (XT)-1) on the size of the re-
10 10X- 102 T currence interval §). The position of
8 the interval was chosen randomly as
(b) % () X.=0.582. The dashed and solid lines
0.015 T 0.0 are the expected results for the Poisson
and binomial distribution, respec-
i T 0.06 tively. (b) and(c) are amplifications of
0.01 ’ (a) for small values ofs and show the
T ] convergence to the binomial statistics
| 1 o004 for §5<107 in the fitting precision.
0.005 |—
— 0.02
0 ==t 0
i 7 002
-0.005 |
10% 10° 10° 102
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Xcto 1 nential, a histogram bin larger than one may lead to the

TR wrong conclusion that the distribution is Poissonian. What
xes TV(X(1=X)) results in a contradiction: The inverse of the false Poissonian
= arcsinX; + ) — arcsinX; - 9). (19 exponent is different from the mean recurrence time obtained
from the recurrence series. For example, for the data of Fig.
6 this difference is of 9.3%. We believe that this alert has to
be taken into account when the RT statistics is calculated. We
would like to stress that our results indicate that the correct
normalization of a series of recurrence times should consider
an extra factor, besides the mean recurrence time, in order to
?)roperly obtain the asymptotic exponential-one law.

We emphasize that the memory effect, discussed in this

o . article, applies for any recurrence interval of a general cha-
4 )
only for §<10™*. Considering the error bars obtained by theOtiC dynamical system. For small intervals it may not be

numerical fitting, these are much smaller intervals than th(T*elevant because it turns smaller than the numeric precision.

ones for which the convergence of the binomial-like to Pois—When one is calculating RT numerically, it must be checked
son takes place. Considering our previous discussions, tr} ’

. . . fiat the interval is sufficiently small that this regime is al-
convergence of the numerical results to the Poissonian St?éady achieved
tistics occurs only when the short time memory effect be- '

comes negligible.

M(Xo o) =

With the relation(19) and remembering that for the bi-
nomial distributiony=-In(1-w) we obtain the solid line in
Fig. 9. From Fig. 9, we see that for great valueséothe
results deviate from both the Poissoni@ashed ling and
binomial-like distributions. The convergence of the numeri-
cal results of the logistic map to the Poissonian statistic
occurs in the limit of small interval, coherently with what is
found in the literaturé® This convergence occurs clearly
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