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Abstract

In this work, we show experimental evidences, confirmed by numerical results, from type-II intermittency in the driven
Double Scroll Circuit. Numerically, we found a new scaling power law dependence on the critical parameter. This result is a
consequence of the new global bifurcation scenario for theT 2 torus breakdown observed in this system: a homoclinic saddle
connection is the nonlinear mechanism responsible for the reinjection of the trajectory around a repelling focus. In fact, in
this global scenario the total laminar phase is the spiraling laminar period (usually considered) plus the time the trajectory
spends in the vicinity of the saddle points. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Double Scroll Circuit [1] has been studied for its electronic simplicity and variety of non-linear phenomena.
The driven versions of this circuit have been extensively investigated by many authors [2–5] who have found
many bifurcation phenomena not observed in the non-perturbed circuit. In this work, although the perturbed circuit
version is not the same as those used in the previous cited references, we found all phenomena observed in the other
driven circuits as Hopf bifurcation, type-I and chaos–chaos intermittency, hysteresis, inverse cascades, regularity
of periodic windows, quasi-periodicity, devil’s staircase structures, crisis, frequency entrainment of chaos, period-
adding sequence, and phase-locking. Moreover, in this work, for the first time type-II intermittency was observed
in the driven Double Scroll Circuit.

Intermittency is a phenomenon related to the onset of chaotic motion. Intermittent systems behave regularly,
during the laminar phase, and irregularly, during the chaotic burst, alternately. Besides, the time the system spends
in the laminar phase depends on the differenceε = |p − pc|, wherep is a parameter, in this work the amplitude or
the frequency of the driven force, andpc is the critical parameter for which intermittency appears.
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In a classical theoretical work about intermittencies, Pomeau and Manneville identified three possible manners
the periodic motion loses its stability [6,7]. So, depending on the way the eigenvalues of the monodromy matrix cross
the unit circle, we can have type-I (a real eigenvalue,+1), type-II (conjugate complex eigenvalues), and type-III (a
real eigenvalue,−1). After this pioneer work, other types of intermittencies were found [8].

We give especial attention to the type-II intermittency that shows up after a limit cycle loses its stability by
a sub-critical Hopf bifurcation, which generates an unstable focus in the origin. From a mathematical point of
view a periodic motion loses its stability if the conjugate complex eigenvalues of the monodromy matrix cross the
unit circle. Pomeau and Manneville conjecture that there must exist a global nonlinear mechanism that reinjects
the trajectory in the vicinity of the limit cycle. To simulate this nonlinear behavior, they consider the trajectory
randomly reinjected around the focus. However, they do not specify this global nonlinear bifurcation scenario.

For the determination of the laminar length for the usual type-II intermittency they supposed a random reinjection
distribution in a bi-dimensional disk. If this assumption is correct, the predicted length of the laminar phase should
have a scaling law〈n〉 ∝ ln (1/ε) [7]. Also, in this article, the authors numerically obtained the Lyapunov exponent
σ asσ ∼= εµ, with µ ≈ 0.04, from which laminar length is supposed to behave scaling asε−µ.

However, another analytical result [9] indicates that the laminar length scales as the power law〈n〉 ∝ ε−β , with
β given depending on the value ofε, in specific, whetherε is smaller or bigger than some critical value,β = 0.5
(like the type-I intermittency [10]), orβ = 1.0, respectively. This theoretical result is derived by the integration
over the space, where the laminar oscillation happens, of the reinjection probability density [11].

Once different values ofε leads to different scaling coefficients,β, we say that the type-II intermittency regime
is a non-general bifurcation. In fact, numerical results have confirmed that type-II intermittency can have a laminar
length phase described by either of the two values forβ.

In [12], where Richetti et al. study a periodically driven third-order nonlinear oscillator, they find a scaling law
for the laminar (spiraling) episodes that fits〈n〉 ∝ ε−0.5. Furthermore, they show that this result agrees with the
theoretical scaling law obtained assuming a one-dimensional reinjection process. In addition, in that work they
argue the possibility of the existence of a homoclinic bifurcation, the global bifurcation scenario that could explain
the reinjection process. However, the existence of a Shil’nikov type homoclinic trajectory [13] can only be proved
if the drive is turned off, and the appearance of type-II intermittency in such system is only possible if the drive is
turned on. Thus, the reinjection process, responsible for the laminar (spiraling) length, is yet an open question, as
also pointed out in [14]. In [11,15], it is verified that the scaling coefficientβ is 1.0.

The type-II intermittency was experimentally verified to occur in an electronic oscillator [16]. In [17], there is
an inverted version of the type-II intermittency corresponding to a spiraling behavior asymptotic to the origin. In
[8], a type-II intermittency coexisting with a type-I intermittency is described. In [14], a double reinjection channel
that directs the trajectory to one of the two foci is presented.

In order to better characterize the type-II intermittency, we study how the average length of the laminar episodes
(regular behavior) scale with the distance from the parameterV to the critical parameterVC. As we shall see,
the non-generic characteristic of the type-II intermittency, as theoretically reported in [9], is not only non-generic
concerning the existence of more than one scaling coefficient that depend onε, but also is non-generic concerning
the existence of different types of laminar phases, which leads to the existence of different scaling laws for each
one of these phases.

So, we first have to redefine what we call laminar phase.
Usually, the laminar phase is considered the spiraling evolution of the trajectory from the time when the reinjection

process happens up to the chaotic burst. This spiraling behavior is caused by the existence of a stable repelling
focus.

In the driven Double Scroll Circuit, there is a stable repelling focus inside a stable two-frequency torus. We can
only obtain a intermittent regime when this torus is destroyed. Before that happens the two-frequency torus grows
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Fig. 1. The sinusoidally perturbed Double Scroll Circuit and the apparatus for the data acquisition.

in size, leading to the appearance of folds, and a homoclinic saddle connection among the saddle points [18], which
is also called a homoclinic contour.

In our case, type-II intermittency is found after the homoclinic saddle connection is created, which happens after
the stable two-frequency torus become unstable by a subcritical Hopf bifurcation. Thus, this global bifurcation
scenario explains how the trajectory is reinjected, from the unstable manifolds of the saddle points to the unstable
focus. Moreover, in addition to the regular spiraling behavior there is also a regular saddle permanence identified
by the time the system spends in the vicinity of the saddle points. So, in this work, we consider as laminar phase
the spiraling length, usually treated as the laminar phase of the type-II intermittency, plus the saddle permanence.

We have also found evidences that the global bifurcation scenario has a typically heteroclinic trajectory that
connects the saddle points with the unstable focus.

This paper is organized as follows. In Section 2, we present the driven Double Scroll Circuit and the system of
equations that simulates its dynamic. In Section 3, we show experimental observations of the type-II intermittency
in this electronic circuit. For a better understanding of the experimental results, we show in Section 4, numerical
results confirming the existence of the type-II intermittency transition to chaos. In this section, we also show, by
analyzing the Lyapunov exponent, that the onset of chaos in this case is abrupt. Finally, in Section 5, we study the
laminar phase length as a function ofε. Conclusions are given in Section 6.

2. The driven Double Scroll Circuit

The circuit is schematically shown in Fig. 1. It is composed by two capacitors,C1 andC2, two resistors,R and
r, one inductor,L, and the non-linear resistor,RNL.

The electronic value components used in our experiment are

C1 = 0.0052mF, C2 = 0.056mF, R = 1470�, L = 9.2 mH, r = 10� (1)

and the driven force applied to the circuit can be represented by

q(t) = V sin(2πf t) (2)

whereV is the amplitude andf is the frequency. TheRNL characteristic curve can be seen in Fig. 2 and is
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Fig. 2. The characteristic curve of the non-linear resistorRNL .

mathematically represented by

iNR(VC1) = m0VC1 + 0.5(m1 − m0)|VC1 + Bp| + 0.5(m0 − m1)|VC1 − Bp|. (3)

We can simulate the circuit of Fig. 1 by applying Kirchhoff’s laws. So, the resulting state equations are

C1
dVC1

dt
= 1

R
(VC2 − VC1) − iNR(VC1), C2

dVC2

dt
= 1

R
(VC1 − VC2) + iL, L

diL

dt
= −VC2 − q(t) (4)

whereVC1 andVC2 are the voltage across the capacitorsC1 andC2, respectively, andiL is the electric current across
the inductorL. To avoid numerical problems we do not use the real component values in Eqs. (4) but a rescaled set
of parameters given in terms of the real values. Thus, the parameters used in Eqs. (4) for doing numerical simulation
of the circuit in Fig. 1 are

1

C1
= 10.0,

1

C2
= 1.0,

1

L
= 6.0,

1

R
= 0.6, m0 = −0.5, m1 = −0.8, Bp = 1.0. (5)

For the electronic components in Eq. (1), or the parameter simulation values in Eq. (5), and for a null perturbing
amplitudeV = 0, the circuit behaves chaotically. As the circuit is dissipative its dynamic variables (VC1, VC2, and
iL) evolve on a chaotic attractor named Double Scroll.

3. The experimental two-frequency torus breakdown

When the driven force is turned on, that meansV 6= 0, a new frequency is introduced in the characteristic
oscillations of the Double Scroll Circuit. This new frequency is responsible for the appearance of a quasi-periodic
movement on a two-frequency torus (T 2).

In Fig. 3, the oscillations in (A) correspond to a limit cycle just after a Hopf bifurcation. In (B) we identify a
second Hopf bifurcation of this limit cycle creating a torusT 2. Increasing further the driven frequency, we show in
(C) a two-frequency torus breaking through type-II intermittency as confirmed by numerical simulations.
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Fig. 3. Time evolution of the variableVC1 for a fixed amplitudeV = 0.700 V and frequencies (A)f = 1.852 kHz, (B)f = 1.923 kHz and (C)
f ' 1.923 kHz.

Fig. 4. Projection of the attractor on the variable space plane (VC1 × VC2) for (A) f = 1.923 kHz, and (B)f ' 1.923 kHz.

The bi-dimensional projection of the Double Scroll attractor on the plane (VC1 ×VC2) for the parameters of Figs.
3(B,C) is shown in Fig. 4. In this figure, we see the torusT 2 (A) and its breakdown (B). After the breakdown the
attractor grows in size and its trajectory evolves erratically all over this plane, eventually returning to the region
where it was located the torusT 2 (the reinjection process), behaving regularly for a while, until it starts to evolve
erratically again (the chaotic phase). This behavior is only observed in a two-frequency torus breakdown through
the type-II intermittency.

To obtain the image of the torusT 2, one must analyze the crossings of the three-dimensional trajectory on a
two-dimensional Poincaré section. However, as indicated in Fig. 1, we can only collect data from two channels.
Therefore, only two dynamical variables are considered,VC1(t)andVC2(t). To obtain the three-dimensional attractor
needed to visualize the torusT 2, we reconstruct the 3D chaotic attractor by using the time-delay method [19].
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Fig. 5. (A) Poincaŕe section of the reconstructed quasi-periodic torusT 2 of the three-dimensional attractor obtained forV = 0.700 V and
f = 1.923 kHz. (B) The torusT 2 breaks generating chaotic behavior forV = 0.700 V andf ' 1.923 kHz. (A) and (B) have different axis
scalings.

The considered dynamic variable isVC1(t) and the time-delay (time shift) rate isp = 24ms (with the acquisition
time δ = 2ms). Thus, for a time seriesVC1(t), we construct a three-dimensional trajectory. The first point of this
trajectory is (VC1(t), VC1(t + p), VC1(t + 2p)), the second is (VC1(t + δ), VC1(t + δ + p), VC1(t + δ + 2p)),
and so on. In this notation, the reconstructed trajectory has three coordinates represented by(X, Y, Z). Thus, the
intersection of a reconstructed torusT 2 with the sectionX = 0 is shown in Fig. 5(A). The way chaos appears by
torus breakdown is shown in Fig. 5(B). In the last figure, the characteristic chaotic bursts due to trajectory ejections
(as analyzed in Section 4) can be already identified.

4. The simulated two-frequency torus breakdown

In the previous section, we describe the experimental onset of chaos through a two-frequency torus breakdown
by analyzing the time evolution of the variablesVC1 andVC2, and also, by reconstructing the attractor. However,
the data collected is not accurate enough to describe these transitions geometrically or more quantitatively. So,
afterwards, the numerical experiment we show next has the purpose of establishing a scaling law for the laminar
phase observed just after the appearance of chaos, and therefore a quantitative analysis for the transition observed
in the experiment described before. In addition, even though the results shown experimentally were obtained by
varying the driving frequencyf , the same transition is also observed by varying the amplitudeV .

Thus, in order to quantify the experimental results better, numerical work is presented by integrating Eqs. (4)
with the parameters given by Eq. (5), for a fixed driven frequencyf = 0.18. Thus, Fig. 6(A) shows a bifurcation
diagram of the variableVC2, when the trajectory crosses a Poincaré section atVC1 = −1.5, as a function ofV . The
abrupt appearance of chaos, seen in this figure, is confirmed by the first Lyapunov exponentλ (Fig. 6(B)). We have
numerically determined that chaos first appears forVC = 0.2328691 leading toλ > 0.

Comparing Fig. 7 with Fig. 4, one can realize similarities between the break of the torus, we see experimentally
and the same phenomenon we see numerically. In Fig. 7(A), we see a projection of the attractor in theVC1 × VC2

space for a parameter smaller than the one when the torus breakdown occurs, forV = 0.23285, and in Fig. 7(B),
we see the attractor when there is no torusT 2 any more, and type-II intermittency is present, forV = 0.23290.
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Fig. 6. (A) A bifurcation diagram showing the two-frequency torus creation (via Hopf bifurcation) and then its destruction, generating chaotic
behavior, by a rising amplitudeV and a fixed driving frequencyf = 0.18. (B) The first Lyapunov exponentλ, for the same parameters of (A).
That means chaos forλ > 0. VC1 = −1.5.

Fig. 7. Projection of the attractor on the variable space plane (VC1 × VC2) for f = 0.18 and (A)V = 0.23285, and (B)V = 0.23290.

In Fig. 8, we see a sequence of three figures showing the attractor through the Poincaré section positioned at
VC1 = −1.5. So, in this figure, we see the attractor through the variablesVC2 andiL.

The torusT 2 is created after a supercritical Hopf bifurcation. In this situation, before the onset of chaos, the
torus is a deformed circle with no folds or cuspids, as shown in Fig. 8(A)(V = 0.2280000). However, on rising
the amplitude (V = 0.2328690), the torusT 2 folds in five parts resembling a five-sided polygon (Fig. 8(B)). The
torus breaks as in Fig. 8(C)(V = 0.2328691) leading to the appearance of type-II intermittency, that causes the
trajectory to evolve spirally around the previously existing repelling focus point, indicated in figure by o. So, we
can say that the critical parameter isVC = 0.2328690.
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Fig. 8. (A) A quasi-periodic torusT 2 forV = 0.2300000. (B) The five-sided quasi-periodic folded torus for the critical parameterV = 0.2328690.
(C) The destruction of the torus leading to a type-II intermittency.VC1 = −1.5.

Along the torus, not yet destroyed, a quasi-periodic trajectory is non-clockwise oriented with a winding number
near the rational fractionw = 3/5. Three is the number of the trajectory rotations along the torus to return back to
the same point, taking five complete cycles. It means that, after passing nearby a saddle point of Fig. 8, the trajectory
crosses this Poincaré section five times before returning to the same saddle point. We can consider the flow on this
section as a mappingG. So if cn with n = 1, . . . , 5, are the saddle points, thenG5(cn) = cn andG(cn) = cn+1.

As a matter of fact, the laminar spiral trajectory is a five-spiral trajectory, which means that the trajectory visits
one of the five spirals each time. These spirals evolve approaching asymptotically the previous stable five-sided
polygon torus. In fact, each spiral tends to one of the five corners of the polygon. These corners, indicated bycn, are
saddle points with two different unstable manifolds. Along one unstable manifold, the trajectory is ejected outside
the polygon causing the chaotic burst. Along the other, the trajectory is directed to the nearest saddle point in the
non-clockwise direction (sampling each five steps in the Poincaré section). That means thatG.G5(cn) tends tocn+1.

In Fig. 8(C), some points along the unstable manifolds responsible for the chaotic burst are indicated byW1
u , and

those responsible for the homoclinic saddle connection (an orbit inG5 that connects the five saddle points) byW2
u .

So, we see that the unstable manifold of the saddle pointc1, W
2
u (c1) is the stable manifold of thec3, W

2
s (c3).

We will not go into details about the chaotic burst. It is enough, for now, to say that the trajectory approaches the
saddle points spiraling, is expelled from the broken torus alongW1

u , and then is reinjected back inside the broken
torus (into the focus) leading again to the spiral laminar phase.

5. Analysis of the laminar length

We consider as laminar phase the regular behavior. However, as mentioned before, the trajectories shown in Fig.
8(C) stay for a while in the saddle points before they are ejected out of the broken torus. So, the laminar phase is due
to the spiraling behavior caused by the repelling focus, located at the origin, plus the permanency of the trajectory
in the vicinity of the saddle points.
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Fig. 9. Evolution of the variableVC2 through the sectionVC1 = −1.5 showing the laminar length composed by the spiraling behavior plus the
permanency in the saddle point.

Fig. 10. The destroyed torus obtained forf = 0.18 andV = 0.2328750, where we can identify the first points to re-enter the focus (filled
squares), and the saddle points (filled circles).VC1 = −1.5, and the number of stepsn = 200 000.

In Fig. 9, we show the evolution of the variableV n
C2 through the Poincaré sectionVC1 = −1.5, where the index

n represents thenth time the trajectory crosses this section. In this figure, we see typical spiraling phases and
permanency in the saddle points, followed by chaotic bursts, with the trajectory ejected along the unstable manifold
of the saddle points.

In Fig. 9, we see that the permanency in the saddle point is shorter than the spiraling behavior. In fact, for a rising
amplitude close to the critical value, both the spiraling length and the saddle permanency decrease. As we shall see,
there is a competition behavior between these two regular phases.

For numerical analysis, we consider that a point on the Poincaré section belongs to a laminar trajectory if it is
within a polygon encompassed by a closed curve that contains the five saddle points (plotted with a filled closed
line in Fig. 10), or within circumferences of radiusρ = 0.005 centered in the saddle points. Naturally, the saddle
permanence(SP) is the number of steps the trajectory spends inside these circumferences. Therefore, if we call the
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Fig. 11. Probability distributionP(n) for the laminar length (the spiraling length plus the saddle permanence). The number of stepsn = 200 000.
For the main peakP(n) ≈ 7000.

length of the laminar phase asLP, and the spiraling length asSL,

SL = LP − SP. (6)

Pomeau and Manneville [6] considered a randomly and spatial uniform reinjection in the repelling focus to derive
their logarithmic scaling law for the laminar (spiraling) phase. Richetti et al. [12] obtained a power scaling law
for the laminar (spiraling) behavior for a unidimensional spatial reinjection. In the driven Double Scroll Circuit
we find that the reinjection process due to the homoclinic saddle connection puts the trajectory in any part near
the two-dimensional focus. However, the reinjection placement is not uniform as we can see in Fig. 10, where the
squares indicating the first iterations around the focus (the re-entrance location) are mainly distributed along two
main directions.

The two main directions on the re-entrance distribution (Fig. 10) cause the two-peaks observed in the laminar
phase distributionP(n) shown in Fig. 11 (wheren is the number of times the trajectory crosses the Poincaré section
during the laminar behavior). Each peak decays exponentially,P(n) ∝ exp(−2εn), as determined by Pomeau and
Manneville [6]. Here,ε = |V − Vc| andVc = 0.2328690 is the critical amplitude for the torus breakdown. The
main peak for smalln represents the trajectories reinjected in the neighborhood of the saddle points and therefore
quickly ejected. This is an evidence that there may exist a homoclinic trajectory through a saddle point, since the
trajectory is biasymptotic to the basic cycle responsible for the saddle points, as we see on the Poincaré section [20].

We now show a new scaling law (distinct from the laminar (spiraling) length predicted by Pomeau and Manneville)
considering the two regular phase lengths:SP andLP. Thus, Fig. 12 shows the saddle permanence,SP, and the laminar
phase length,LP, indicated respectively by squares and circles, as a function ofε. We fitted these points and obtained
thatSP ∝ ε−α, with α = 0.542± 0.019 (this function is represented by curve (3) in Fig. 12). The laminar phase
behaves asLP = 1/(A + βε), with β = 0.075± 0.002 andA = 6 × 10−5, for ε ≥ 0.000011 (curve (2)), and
LP ∝ ε−γ , with γ = 0.151± 0.009, forε < 0.000011 (curve (1) in Fig. 12).

Using Eq. (6), we calculated the spiraling length,SL, from the numerical values obtained forSP andLP, as a
function ofε. Thus, the spiraling average length,SL, as a function ofε is shown in Fig. 13. We see thatSL increases
for ε < 0.000011, and decreases forε ≥ 0.000011.

The fast variation of the spiraling length forε < 0.000011, therefore in a small neighborhood of the critical
parameter, is due to the homoclinic saddle connection associated to the reinjection process.
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Fig. 12. Saddle permanence (squares) and the laminar phase length (circles) with respect toε. The number of stepsn = 30 000. Curve (1)
represents the laminar phase,LP ∝ εγ , for ε < 0.000011, and curve (2) the laminar phase,LP = 1/(A + βε), for ε ≥ 0.000011. Curve (3)
represents the spiraling permanenceSP ∝ εα . The vertical axis is in a logarithmic scale.ε = |V − Vc|.

Fig. 13. Spiraling length,SL , obtained through Eq. (6). The number of stepsn = 30 000.ε = |V − Vc|.

Table 1
In this tableSL represents the spiraling length,LP, the laminar phase, andSP, the saddle permanence. The scaling coefficients are:α =
0.542± 0.019, γ = 0.151± 0.009, A = 6 × 10−5, β = 0.075± 0.002.

ε < 0.000011 0.000011≤ ε < 0.0019 ε ≥ 0.0019

SL – ln(1/ε) –
LP ε−γ 1/(A + βε) 1/(A + βε)

SP ε−α ε−α ε−α

For 0.000011< ε < 0.001900 (region indicated in the box of Fig. 13), the spiraling length,SL, behaves as
predicted theoretically by Pomeau and Manneville [6]. So, we also find a logarithmic scaling law,SL ∝ ln(1/ε) as
one can see in Fig. 14. Therefore, our results show that depending on what type of regular behavior (SL , LP, orSP)
we want to analyze, its length scales depend also onε as shown in Table 1. In this table, we display the scaling laws
for the three regular phase length,SL , LP, andSP, with their respective scaling coefficients, as we changeε.
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Fig. 14. The functionSL , obtained through Eq. (6). The abscissa axis is in a logarithmic scale and represents the inverse ofε. ε = |V − Vc|.

Fig. 15. The spatial relative distanceδ between a sequence of pointsP of an ejected trajectory (in the neighborhood of the pointc2) and the
saddle pointc2. The vertical axis is in a logarithmic scale.

For ε > 0.2340000, there is a saddle disconnection bifurcation [18] and the spiraling behavior loses its original
shape. Before the saddle disconnection, each of the five spirals would go spirally, around the origin, approaching
the saddle points. After the saddle disconnection, this spiraling behavior becomes oriented and a point falling down
in the previous stable focus is directed to the saddle point, without the present spiraling behavior.

The power scaling law for the saddle permanence (withα = −0.542) may give us the wrong impression that
this permanence would be due to a type-I intermittency. However, the saddle permanence can not be associated
to such a phenomenon since, as pointed out in [20], as a consequence of the marginality of the basic cycle in the
intermittent systems, the trajectories leave the cycle as 1/tµ for t → −∞ (with µ = 1 for type-I intermittency)
while the escape from the cycle in systems with a homoclinic tangency behaves like eαt for t → −∞ (with α > 0).

What we found in the neighborhood of the saddle points is that the trajectory is ejected from these points
exponentially as we can see in Fig. 15. In this figure, we choose the saddle pointc2 in Fig. 8 and consider a
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trajectory passing through a neighborhoodδ of this saddle point. After the trajectory crosses the Poincaré section
VC1 = −1.5 at the pointP = (VC2, iL), we analyze howδ grows up aftern steps. So, forn = 1, we see the spatial
displacementδ = G5(P ) − c2, and forn = 2, we seeδ = G5.G5(P ) − c2, and so on.

This result assures that the trajectory leaves the unstable manifoldW2
u (c2)with an exponentially spatial divergence.

Furthermore, the unstable manifoldW1
u has also an exponential divergence. We know that the junction of the

manifoldsW2
u form the homoclinic saddle connection. Following the same thought, it is natural to believe that from

the unstable manifoldsW1
u there may exist an orbit that leaves the basic cycle alongW1

u (cn) and returns to this cycle
through the stable manifoldWs(cm) (note thatn 6= m). If such an orbit exists, it is an orbit that is biasymptotic to a
saddle point fort → ∞ along theW2

s (cm), and fort → −∞ along theW1
u (cn). And this would be an homoclinic

orbit that connects a saddle point with another (or the same) saddle point.
Following the same reasoning, it is also natural to believe that there might exist a heteroclinic orbit connecting

the saddle points with the unstable focus, which is responsible for the reinjection process.
We numerically found at least two orbits that seem to behave like the homoclinic orbit, that connects the saddle

points, and the heteroclinic orbit, that connects the saddle points with the unstable focus. They might be localized
in the two extremes inside the basic cycle, and, due to their existence, the area inside the attractor of Fig. 4 is filled
by trajectories.

The possible existence of these two main homoclinic and heteroclinic orbits could explain the two main directions
for the trajectory reinjection in the focus.

A recent result obtained by doing several amplifications of Fig. 10 near the saddle points, shows that in the
neighborhood of the saddle points there exists a Smale Horseshoe process [18], due to a transversal crossing of the
manifolds evolved in the homoclinic saddle connection, around the saddle points.

6. Conclusions

In this work, we identify for the driven Double Scroll Circuit, the first global non-linear mechanism responsible for
trajectory reinjections around a repelling focus, leading to the type-II intermittency. This mechanism is a homoclinic
saddle connection that surrounds the repelling focus. Because of such a scenario, the considered laminar phase is the
time the trajectory spends in the vicinity of the saddle points plus the spiraling length (the laminar phase considered
by Pomeau and Manneville [6]) around the focus.

We have found that this new considered laminar phase,LP, scales asLP ∝ εγ , with −γ = 0.151±0.009, forε <

0.000011, andLP = 1/(A+βε), with β = 0.075±0.002 andA = 6×10−5, for ε ≥ 0.000011, (ε = |V −Vc|). If
we consider a region forε > 0.000011, we found a logarithmic scale law for the spiraling length,SL, as theoretically
proposed by Pomeau and Manneville. The saddle permanence scales asSP ∝ ε−α, with α = 0.542± 0.019.

Therefore, we see that depending on the way we analyze the regular phase, and the range ofε, different scaling
laws are obtained. A result that confirms theoretical assumptions that the type-II intermittency is a non-generic
bifurcation is in [9].

Although the trajectory reinjection is typically two-dimensional, the set of re-entry points is mainly distributed
along two directions. This re-entrance causes the appearance of two peaks in the probability distribution for the
laminar length. Each peak decays exponentiallyP(n) ∝ exp(−2εn), as predicted by Pomeau and Manneville for a
re-entrance model with a random uniform two-dimensional distribution. Besides these two peaks, there is one main
peak that represents a trajectory reinjected along the stable manifold of a saddle point and quickly expelled along
the unstable manifold. The existence of this peak is a strong evidence of the presence of a heteroclinic trajectory
connecting the saddle points with the unstable focus.

The saddle permanence may be erroneously interpreted as the regular phase of a type-I intermittency because of
its observed scaling power law. However, we have shown that the spatial escape along the unstable manifold of the
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saddle points is exponential, typical of homoclinic tangencies, one more evidence of the existence of a homoclinic
trajectory to the saddle points.

We have numerically found two orbits that seems to behave as a homoclinic orbit to the saddle points. If such
orbits exist in its neighborhood there is a Smale Horseshoe process that would be the reason for the reinjection
process. Naturally, the neighborhood of this orbit belongs to the vicinity of the repelling focus and so the reinjection
process is explained.
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