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ABSTRACT

In this work, we investigate the dynamics of a discrete-time prey–predator model considering a prey reproductive response as a function of
the predation risk, with the prey population growth factor governed by two parameters. The system can evolve toward scenarios of mutual or
only of predators extinction, or species coexistence. We analytically show all different types of equilibrium points depending on the ranges of
growth parameters. By numerical study, we find the occurrence of quasiperiodic, chaotic, and hyperchaotic behaviors. Our analytical results
are corroborated by the numerical ones. We highlight Arnold tongue-like periodic structures organized according to the Farey sequence, as
well as pairs of twin shrimps connected by two links. The mathematical model captures two possible prey responsive strategies, decreasing
or increasing the reproduction rate under predatory threat. Our results support that both strategies are compatible with the populations
coexistence and present rich dynamics.
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Models of interspecific interactions are widely studied in the

context of dynamical systems, with special interest in under-

standing the influence of control parameters on ecological rela-

tionships. Simplified descriptions, involving two species, are

among the paradigmatic systems, such as the continuous time

Lotka–Volterra model of two interacting populations. Discrete-

time versions appear as a good simplification of these mod-

els, focusing the study of dynamics. Proposed variations include

adaptations of species to environmental conditions, addition of

variables, and analytical simplifications, from which discrete-

time systems can be derived. In this study, we consider a

non-linear discrete-time prey–predator model with a prey repro-

ductive response to the predatory risk. We include a reproduction

factor depending on the predator population, which can simu-

late both the increase or decrease in prey reproduction in the face

of a greater threat of predation. Such a responsive function adds

another non-linearity to the system and enriches the dynamics.

I. INTRODUCTION

Since Malthus proposal on the mismatch between human
population growth and food resources,1 several mathematical for-
mulations have been considered to describe population dynam-
ics. The Malthusian model assumes a demographic growth rate
proportional to the population itself,2,3 i.e., follows a geometric
progression. Such behavior had already been proposed by Euler
in a previous publication.4 Verhulst conceived a variation on the
exponential model, considering that a given population cannot
grow indefinitely,5,6 as there must be natural inhibitions to its
increase. In these studies, Verhulst expresses the logistic growth
equation.3 Both models deal with isolated population dynam-
ics, without interspecific interaction. However, in nature, there
is competition for resources between different species in a given
environment, as well as predation relationships.7–9 Studying pop-
ulation dynamics taking into account interspecific interactions
is fundamental to understanding coexistence and preservation10
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scenarios, distinguishing them from those that could lead to species
extinction.

To address the problem of interaction between two species,
Lotka11,12 and Volterra13,14 independently proposed a differential
equation system to describe competition (Lotka) and predation
(Volterra). Then, known as the Lotka–Volterra15,16 model (LV), this
two variable system is given by

ẋ = Ax − Bxy,

ẏ = Dxy − Cy,
(1)

where A and C are the exponential growth (decrease) parameters,
while B and D are the interaction ones. The variables x and y rep-
resent each species population or the corresponding densities. In
a prey–predator approach, the first variable refers to the prey and
the second to the predator population, with real positive parame-
ters. As a paradigmatic model, the original LV and its variations are
widely studied, even extended to more interacting species increasing
the system’s dimension.

One can consider a slightly different approach than the clas-
sical LV, in which the intrinsic population dynamics is given by
a logistical function.9 Such kind of model includes species inter-
nal competition. An example is a three-variable system, using the
logistic term for prey only and with predator dominance, which
show chaotic behavior in widebands of the parameter space.17 These
competition models go beyond ecological relationships, being used
with additional terms in studies about tumor growth.18,19 In this
context, Gallas et al.20 show that a model of three-cell cancer popu-
lation presents chaotic dynamics, finds shrimp spirals, and demon-
strates an intricate isospike counting formation rule within periodic
domains.

Another approach to modeling population dynamics is to
describe it by means of difference equations. Similar to Verhulst’s
expression, the logistic map21

xn+1 = axn(1 − xn) (2)

includes a quadratic decrement term, providing an inhabitant upper
limit. Variable xn ∈ [0, 1] represents the population density, or the
normalized size, at nth iteration, while the growth parameter is
a ∈ [0, 4]. After May’s review,21 quadratic maps–specially, the logis-
tic family–has been deeply investigated, and its rich dynamics and
characteristic universalities are known.22–25 This system had been
considered in other contexts,26 e.g., the Ulam and Von Neumann’s
proposal27 of a pseudorandom number generator in the form xn+1

= 4xn(1 − xn).
Two-population models can be obtained by coupling logis-

tic maps, representing species interactions in many scenarios.28–30

In these systems, for certain parametric configurations, there is
multistability of periodic solutions, as well as the coexistence
of chaotic and periodic attractors. Furthermore, Neimark–Sacker
bifurcations31 are shown to occur, leading to quasiperiodic
regimes.32,33 Arnold tongues and shrimp-shaped domains are also
found.33 Discrete-time versions of LV are other types of simplified
models for some contexts,34–36 which may include logistical terms.37

A diversity of such systems results from different discretization
methods.

A prominent topic in ecological systems is the response of a
given species depending on the density (or size) of another, as in
cases of predator’s reproduction rate and behavior affected by prey
density.38,39 In this regard, numerical and functional responses40,41

are used to model changes in predator’s population growth and
consumption rate as a function of prey density. It is evidenced in
the recent literature that the presence of predators can also lead to
population responses in prey, reducing reproduction and increas-
ing mortality from other factors.42 Anti-predation behavior has a
cost for the prey population,43 which can even affect reproductive
aspects. This type of behavior includes diverse prey activities, which
can range from avoiding the predator through group vigilance and
alertness, to escape and fighting for survival. The predator–induced
breeding suppression significantly impacts the prey–predator sys-
tem dynamics, as observed in small mammal populations under
such effect.44,45

In this work, we study a discrete-time prey–predator model
with the prey population growth depending on the density of preda-
tors. Based on a discrete-time LV model,34,46 we modify the prey
logistic parameter, inserting a functional variation in response to
the predator presence in the environment. In Sec. II, we discuss the
modified model, followed by an analysis of its equilibrium point sta-
bility, covered in Sec III. Numerical results are presented in Sec. IV,
where we investigate the dynamics of the proposed prey–predator
system as a function of base and responsive growth parameters.
In Sec. V, we summarize the main results and present our con-
siderations about the influence of prey growth responsiveness on
prey–predator dynamics.

II. MODEL

Based on recent research studies about prey reproductive
responses to predation risk42,45 and inspired by a discrete-time
prey–predator model studied by Danca et al.,46 we propose a change
in the prey population growth. In this system, a logistic term is
assumed for the prey density evolution, while for predators, there
is direct dependence on predatory interaction, as follows:

xn+1 = axn(1 − xn) − bxnyn,

yn+1 = dxnyn.
(3)

Variables xn and yn are relative to the prey and predator, respec-
tively. The interaction parameters b and d are similar to those
in LV.

Our approach is to replace the growth parameter a with the
factor

α(yn; a0, ar) := a0 + (ar − a0)
y2

n

1 + y2
n

, (4)

including a dependency on yn. The original model (3) is recov-
ered by making a0 = ar = a, where the parameter a0 is the base
growth and ar the responsive one. Small amounts of predators in
the environment bring the prey growth factor close to the base
value, while larger predator numbers accentuate responsive behav-
ior. With ar < a0, we model the prey reproduction decrease given
a greater risk of predation, as observed in nature.45 However, with
ar > a0, we consider an alternative strategy, whereby prey increases
the reproduction rate in response to greater threats. The nonlinear
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part of the growth factor is in the form of a Holling type III func-
tional response.47,48 Although it is not a functional response, which
is defined to ecological models as the rate of prey consumption by
predators dependent on prey density.40,41

The modified model is given by

xn+1 = α(yn; a0, ar)xn(1 − xn) − bxnyn,

yn+1 = dxnyn,
(5)

where all parameters are positive real numbers and a0, ar ∈ (0, 4].
The variables fall within the validity domains xn ∈ [0, 1] and
0 ≤ yn. Throughout this text, we refer to system (5) as the responsive
prey–predator or simply as the responsive model.

Figure 1 shows a chaotic attractor of the responsive model with
interaction parameters b = 0.2 and d = 3.5, being the growth ones
a0 = 1.5 and ar = 4.0. This is an example of dynamics arising from
the strategy of increasing reproduction when the threat of predation
enlarges. We adopt the initial condition (x0, y0) = (0.1, 0.01) and
discard a transient of 105 interactions. The same values of the inter-
action parameters and the initial condition, but with another growth
pair (a0, ar), result in different dynamics as illustrated in Fig. 2.
The hyperchaotic attractor shown in panel Fig. 2(a) is obtained for
a0 = ar = 3.9, reducing the model to non-responsive. This attrac-
tor is reproduced from Danca’s work.46 The other three panels
depict dynamics with ar < a0, being the prey’s behavior of reducing
population growth in the face of a predator’s greater number.

We kept the base growth a0 = 3.9 and chose three values for
ar, from which we obtain the orbits portrayed in Figs. 2(b)–2(d).

FIG. 1. Chaotic attractor of the responsive model (5) with the parame-
ters (a0, ar , b, d) = (1.5, 4.0, 0.2, 3.5). Lyapunov spectrum (λ1, λ2) = (0.077,
−0.201). Adopted the initial condition (x0, y0) = (0.1, 0.01) and discarded the
first 105 iterations as transient.

FIG. 2. Attractors of the responsive model (5) with the parameters (a0, b, d)
= (3.9, 0.2, 3.5). Adopted the initial condition (x0, y0) = (0.1, 0.01) and
discarded the first 105 iterations as transient. Hyperchaotic attractors for
(a) ar = 3.9, with Lyapunov spectrum (λ1, λ2) = (0.189, 0.119); and
(b) ar = 1.7, with (λ1, λ2) = (0.081, 0.031). (c) Quasiperiodic for ar = 1.9.
(d) Period-20 for ar = 2.755.

Panel (b) illustrates a hyperchaotic attractor, given ar = 1.7. Note
that the dynamics shown in panels (a) and (b) differ only by the
inclusion of the responsive term. For panel (c), we adopted ar = 1.9
and, with such a configuration, the system presents quasiperiodic
behavior. This attractor arises from a Neimark–Sacker bifurcation
of a period-7 orbit. The occurrence of these bifurcations is discussed
in Sec. IV. The last panel, Fig. 2(d), shows a period-20 attractive orbit
obtained with ar = 2.755. The different regimes achieved according
to the responsive parameter are also subject of Sec. IV.

III. ANALYTICAL RESULTS

Prey–predator systems, such as models (3) and (5), can evolve
to one of three scenarios, namely, (i) mutual extinction, (ii) extinc-
tion of predators only, and (iii) coexistence. Mutual extinction
is the equilibrium point Eext(0, 0), whose stability is analyzed in
Subsection III B. Note that if prey vanishes, predators become
extinct in the next iteration (generation).

Scenario (ii) presents the logistic map dynamics, in which the
prey population survives alone. In this circumstance, the factor (4) is
reduced to the base growth. It is trivial that d ≤ 1 is sufficient to the
asymptotic extinction of predators. However, a necessary and suffi-
cient condition to lead to this scenario is more general and involves
growth parameters. Finally, considering any trajectory in scenario
(iii), by writing yn+2 in terms of xn and yn in Eqs. (5), we obtain
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an upper population quota for predators. This is done by analyz-
ing the first and second partial derivatives of yn+2 with respect to
both variables. Assuming a transient evolution of m ≥ 0 iterations,
we found

yn>m ≤
(

damax

)2

64b
, with amax = max{a0, ar}. (6)

Such a result presumes that the prey population remains in the
unitary domain.

A. Equilibrium points

From the fixed-point assumption for discrete-time systems
E(x∗, y∗) = (xn+1, yn+1) = (xn, yn), we obtain the period-1 orbits for
all three scenarios listed previously. Mutual extinction is the trivial
equilibrium Eext(0, 0), as mentioned earlier. Another type of fixed
point is found in scenario (ii), for which the first equation of system
(5) reduces to the logistic map, thus the solutions depending on the
base growth parameter in the same way as that. This equilibrium is
denoted by Elog(1 − 1/a0, 0).

Scenario (iii) is characterized by the predator species survival,
i.e., the corresponding equilibrium coordinate y∗ 6= 0. Such a fact
results in x∗ = 1/d. Given the restricted interval x∗ ∈ [0, 1), solu-
tions found in this scenario are only valid when d > 1. As for the
predator population, from the first equation of system (5), we obtain

P(y) = y3 + Ry2 + y + B, (7)

whose coefficients are described by the function

F(a, b, d) =
1

b

[

1 − a

(

1 −
1

d

)]

, (8)

with R = F(ar, b, d) and B = F(a0, b, d). In the fixed point, it is ver-
ified as P(y∗) = 0. The number of solutions with a physical sense
depends on the R and B range. If both R, B ≥ 0, equivalent to
a0, ar ≤ d/(d − 1), no equilibrium points are found with the preda-
tor survival, given that for this configuration, the polynomial (7) has
no positive real roots. Next, we only discuss parameter intervals in
which valid solutions y∗ ∈ R+ exist.

The simplest case is B = 0, which corresponds to the model
parameters a0 = d/(d − 1), resulting in only two equilibrium
points,

E±
B=0

(

1

d
,
−R ±

√
R2 − 4

2

)

. (9)

These solutions are valid for (1 + 2b)a0 ≤ ar, into the prey strat-
egy of increasing reproduction as response to a high predation
risk. In particular, when (1 + 2b)a0 = ar, there is a single point
EB=0

(

1/d, 1
)

= E−
B=0 = E+

B=0.
The second case is B > 0, whose base growth parameter

a0 < d/(d − 1). It follows that R < 0 is a necessary condition for
the existence of period-1 orbits with non-zero predator population.
This configuration figures in the same reproductive strategy as the
previous case. Therefore, the polynomial (7) has positive real roots

iff P(ymin) ≤ 0, where the abscissa

ymin =
−R +

√
R2 − 3

3
(10)

corresponds to the curve local minimum. In order to simplify the
resolution, we define the upper boundary B+ := B − P(ymin) of B,
or explicitly,

B+ :=
9R − 2R3 + (2R2 − 6)

√
R2 − 3

27
. (11)

Using the above value, it is shown that valid fixed-point solutions
are only obtained in the interval

max

{

0,
[

1 − bB+
] d

d − 1

}

≤ a0 <
d

d − 1
. (12)

Note that the range in (12) relates the two growth parameters.
From 0 < B ≤ B+, we also obtain the corresponding relation to the
responsive parameter,

(1 + 2b)
d

d − 1
< ar. (13)

See that R = −2 results in B+ = 0, returning to the particular
solution EB=0 of the case B = 0.

Mutually respecting the intervals (12) and (13), the case B > 0
presents the following two equilibrium points:

E±
B>0

(

1

d
, ymin ± δ±

)

, (14)

which are described in terms of the local minimum coordi-
nate shown in Eq. (10). It is important to note that, in general,
δ+ 6= δ−, and equality is verified iff B = B+, with both δ± = 0. Thus,
the solutions reduce to the single one fixed point EB>0(1/d, ymin).
To determine exactly y∗ for 0 < B < B+, the Cardano–Tartaglia
method49 for general cubic equations is used.

The last case is B < 0, with a0 > d/(d − 1). For a large domain
in parameter space, there is always one solution. Three valid equilib-
rium points only occur in the range

[

1 − min(0, B+)b
] d

(d − 1)
< a0 < (1 − bB−)

d

(d − 1)

and (1 +
√

3b)
d

(d − 1)
< ar. (15)

The B− edge is given by

B− :=
9R − 2R3 − (2R2 − 6)

√
R2 − 3

27
, (16)

obtained in the same way of B+, but from the ymax coordinate of the
polynomial’s local maximum. Within the region (15), B+ < 0 solely
in the narrow interval −2 < R < −

√
3. In particular, when B = B−

(or B = B+), there are just two fixed points. We obtain y∗ of EB<0

through the general expression for the roots of cubic polynomials.
This case presents configurations in both responsive reproduction
strategies.

We classify the single solution subcases according to
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(a) Ea
B<0 when ar < (1 +

√
3b) d

(d−1) ,

(b) Eb
B<0 when (1 +

√
3b) d

(d−1) < ar and (1 − bB−) d
(d−1) < a0, and

(c) Ec
B<0 when (1 +

√
3b) d

(d−1) < ar < (1 + 2b) d
(d−1) and d

(d−1) < a0

< (1 − bB+) d
(d−1) .

The triple solution points consists of a pair E±
B<0, presenting the same

form of (14), and E0
B<0, with y∗ < ymax.

B. Stability of equilibrium points

In the following, we analyze the asymptotic stability of the equi-
librium points found in scenarios (i) and (ii). To this end, we obtain
the eigenvalues ξi of the Jacobian matrix of system (5) calculated at
each point studied. For discrete-time systems, if |ξi| < 1 ∀ i, then the
fixed point is attractive.50

The Jacobian evaluated at any E(x∗, y∗) is given by

J

∣

∣

∣

E
=
[

α|y∗(1 − 2x∗) − by∗ α′|y∗x∗(1 − x∗) − bx∗
dy∗ dx∗

]

,

where α ≡ α(yn; a0, ar), as defined in Eq. (4), and its derivative is
with respect to yn,

α′|y∗ =
∂α

∂yn

∣

∣

∣

∣

y∗

=
2(ar − a0)y∗

(1 + y2
∗)

2 . (17)

The characteristic polynomial P(ξ) = ξ 2 − Tξ + D of a J matrix can
be written in a general form, explicitly specifying the fixed-point
coordinates, as

P(ξ) = ξ 2 −
[

α|y∗(1 − 2x∗) − by∗ + dx∗)
]

ξ

+ dx∗
[

α|y∗(1 − 2x∗) − α′|y∗y∗(1 − x∗)
]

. (18)

For the mutual extinction scenario Eext(0, 0), one eigenvalue
is null and the other ξext,2 = a0. Therefore, the extinction of both
species is determined solely by the base growth parameter. Thus,
Eext is an attractive equilibrium point in the interval 0 ≤ a0 < 1.
For the second scenario, in which only the prey population survives,
the stability of point Elog(1 − 1/a0, 0) is also determined exclusively
by the base growth parameter. Given the eigenvalues ξlog,1 = 2 −
a0 and ξlog,2 = d(1 − 1/a0), Elog is attractive in the range 1 < a0

< min[d/(d − 1), 3].
In scenario (iii), the coefficients of the characteristic polyno-

mial take the form

T =
(2 − a0/d) + (2 − ar/d)y2

∗

1 + y2
∗

,

D =
(1 − 2/d)

[

ary
4
∗ + (a0 − ar)y

2
∗ + a0

]

(

1 + y2
∗
)2 +

2a0(1 − 1/d)y2
∗

(

1 + y2
∗
)2 .

Given these terms, ξ− < 1 and ξ+ > −1 are verified since both
eigenvalues are real numbers, regardless of the fixed-point coor-
dinates in this scenario. Thus, an equilibrium E(1/d, y∗) is sta-
ble iff T − D < 1 and −1 < T + D, for 0 ≤ T2 − 4D. While, case
T2 − 4D < 0, a fixed point is stable iff D < 1. A complete analysis
of the fixed-point stability is extensive and is not the focus of this
work. We chose to omit a detailed description, and in Sec. IV, we
explore the numerical results.

IV. NUMERICAL RESULTS

In this section, we numerically investigate the system’s dynam-
ics as a function of the population growth parameters. The other two
constants were set at b = 0.2 and d = 3.5. For all simulations, we
adopt the initial condition (x0, y0) = (0.1, 0.01) and discard 2 × 105

iterations as transient, after which we consider 106 iterations to com-
pute the Lyapunov spectrum,51–53 constituted by the ordered expo-
nents λ1 ≥ λ2. The orbit periodicity was verified by simultaneously
checking the largest Lyapunov exponent and the period-p count of
each solution obtained. We also distinguish chaotic behavior, with
λ1 > 0 and λ2 < 0, from the hyperchaotic54 kind characterized by
both λ1,2 > 0.

Figure 3 exhibits the parameter plane ar × a0 in the intervals
ar, a0 ∈ (0, 4]. The color scheme discriminates periodic domains
from the quasiperiodic (gray), chaotic (black), and hyperchaotic
ones (dark-purple). From a0 ≈ 3.25 with small values of ar (left bot-
tom corner), the system evolves to xn < 0, loses ecological meaning,
and leads to divergence (white). Between the vast period-1 (blue
color) and the chaotic region, there is a broad band of quasiperi-
odicity in which Arnold tongue-like periodic structures are inserted.
Following the ar decrease direction, a sequence of periods is given by
incrementing the values of primary tongues by one unit, e.g., from

FIG. 3. Parameter plane ar × a0 discretized in a uniform grid of 1200 × 1200
points, with ar, a0 ∈ (0, 4]. The color scheme distinguishes regions of periodic
behavior, whose periods are numbered, from quasiperiodic (Q), chaos (C), hyper-
chaos (H), and divergency (D). Other periods (OP) greater than 14 are all in cyan.
Intermediate counts, between 1 and 6, are not observed. Note the periodic areas,
such as Arnold tongue shapes, inserted in the quasiperiodic band. Along the
dashed lines, s1 and s2 are the bifurcation diagrams shown in Fig. 8. The boxes
α and β are magnified in Figs. 4 and 5, respectively.
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FIG. 4. Parameter plane discretized on a uniform grid of 1600 × 1600 points, with
the axis intervals open to the left. In both panels, periods according to a numbered
color code, where the unlistedmultiple of 7 (P7) are represented in cyan, and other
periods (OP) in salmon color. Quasiperiodic (Q), chaotic (C), and hyperchaotic (H)
behaviors are also distinguished. (a) Magnification of region α in Fig. 3. Periods
multiple of 7 are predominant. (b) Enlargement of the highlighted box in the top
panel. Pairs of same periods shrimp appear symmetrically connected by two links.

period-7 (red) to 8 (green), 9 (pink), 10 (violet color), and onward.
As typical of similar formations, the general period’s rule is accord-
ing to the denominators in Farey sequences,55–57 this covers all
tongues found in a quasiperiodic zone. Thus, the period of an

FIG. 5. Parameter plane discretized on a uniform grid of 1600 × 1600 points,
with the axis intervals open to the left. Both panels present results across the
regionβ in Fig. 3. (a) Largest Lyapunov exponent on color gradient, withλ1 = 0 in
black color. This quantity was obtained with an accuracy of 1 × 10−4. (b) Periods
according to a numbered color code, where the other periods (OP) are repre-
sented in cyan. Quasiperiodic (Q), chaotic (C), and hyperchaotic (H) behaviors
are also distinguished. Note the Arnold tongue-like periodic structures, inserted
in the quasiperiodic band, and advancing toward chaotic ones. The highlighted
box is enlarged in Fig. 6.
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intermediate structure is the sum of adjacent lower-order ones. The
highlighted box β is enlarged in Fig. 5, where details of the region
are shown. Seeing the period-13 tongue (light green) between the
p = 7 one and the p = 6 area (orange color), we infer that this last
strip is part of the sequence. Above the large quasiperiodic zone is a
period-7 structure, which folds to period-14 (yellow) and engulfs a
chaos area, where only period-7k shrimps58,59 appear. The region α is
detailed in Fig. 4. A hyperchaotic domain is beyond the chaos band,
in which periodic structures advance and other immersed ones are
found, such as periods 8 and 9 in the upper right corner of Fig. 3.

Figure 4(a) magnifies the area α highlighted in Fig. 3. The
inner contour of the period-14 strip delimits a region where all non-
chaotic orbits are of period multiples of 7. This is fully integrated
into the prey’s alternative strategy of increasing reproduction due to
the greater risk of predation. Following the period-doubling cascade
from 7 (red) → 14 (yellow) → 28 (dark blue) → 56 (dark green)
→ etc., there is a chaotic region in which connected shrimps are
immersed. In addition to the approximately parabolic curve around
this area of chaos, it is closed by a periodic band near ar = 3.86, with
doubling from p = 21 (light blue). Periods greater than 70 and mul-
tiples of 7 are in cyan (P7). Points of other periods (OP), vestigial on
the outside of the p = 7k region, are in salmon color. The period-
doubling cascade band from p = 21 overlaps with the cascade from
p = 7 for 3.82 < ar and 1.7 < a0 < 2.2. The rarefied aspect at this
intersection is associated with multistability.

Figure 4(b) panel enlarges the outlined box in Fig. 4(a), where
the links between the twin shrimps are seen. Both the internal
chaotic region and the periodic domains immersed in it originate
from the opening of a period-7 structure, a phenomenon that occurs
with the variation of the parameter d. In the literature, shrimps
connected by alternating “antennas” are also found.60,61 Here, we

FIG. 6. Parameter plane discretized on a uniform grid of 1600 × 1600 points, with the axis intervals open to the left. The region in panels (a) and (b) corresponds to the
highlighted box in Fig. 5(b). (a) Largest Lyapunov exponent on color gradient, with λ1 = 0 in black color. This quantity was obtained with an accuracy of 1 × 10−4. (b) Periods
according to a numbered color code, where the unlisted p = 8k (P8) are represented in cyan. For simplicity, we group chaos and hyperchaos under the same label (c).
Quasiperiodic (Q) behaviors are distinguished. In this range, there are only periods multiples of 8. (c) Enlargement of the region delimited in the lower left corner of panel (b).
Connected Arnold tongue pairs are observed, whose links pass through the central chaotic region. The highlighted box near the right margin is enlarged in Fig. 7(a).

present an example of these symmetrically connected forms, i.e.,
sharing the boundary bifurcation curve between chaos and the main
body (“head” or anterior part) of the same period shrimps pairs,
establishing a link between the twins. There is a second connection
established by the saddle-node bifurcation curve that delimits the
posterior “antennas,” as seen in the period-49 twin shrimps (vio-
let color). The fused structure of period-35 (pink) provides an idea
about how the twin shrimp formation process works: As the main
bodies separate, connections remain through common bifurcation
curves.

Shapes similar to Arnold tongues are displayed in Fig. 5, which
magnifies the region β highlighted in Fig. 3. Panel (a) represents
in colors the largest Lyapunov exponent calculated along the orbits
obtained for each point on the parameter plane grid. Periodic solu-
tions are in shades of blue (λ1 < 0), and chaotic and hyperchaotic
ones are in the warm color gradient (λ1 > 0). Distinction between
chaos and hyperchaos is made in panel (b). The case λ1 = 0 (black)
was obtained with high accuracy, corroborating a precise distinc-
tion of the quasiperiodic behavior. Tongues appear in the broad
quasiperiodic band, and the periodic structure enters the chaotic
region. In several of these, a bifurcation creates a new quasiperiodic
band with smaller tongues inserted, which follow the same pattern,
generating a cascade. As an example, see the structure in the lower
left corner, in the approximate range 1.20 < ar < 1.37 advancing in
such a cascade from a0 = 3 to a0 ≈ 3.22.

Figure 5(b) depicts the period count in a color code, also
distinguishing between the non-periodic solutions. The Arnold
tongue-like structures are organized according to the denominators
of fractions in a Farey sequence, a well-known period formation
rule. In this way, the period of an intermediate tongue is given by
the sum of the adjacent ones, respecting the succession of Farey
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sequences, as follows:

F1 =
{

0

1
,

1

1

}

,

F2 =
{

0

1
,

1

2
,

1

1

}

,

F3 =
{

0

1
,

1

3
,

1

2
,

2

3
,

1

1

}

,

F4 =
{

0

1
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

1

1

}

,

...

Fk =
{

0

1
,

1

k
, . . . ,

1

2
, . . . ,

k − 1

k
,

1

1

}

.

Each Fk above is a Farey sequence,55 formed by all reduced fractions
i/j, with i, j ≤ k. Taking three successive fractions pn−1/qn−1, pn/qn,
and pn+1/qn+1 within the k-th sequence, in the minimal form, it is
verified that

pn

qn

=
pn−1 + pn+1

qn−1 + qn+1
. (19)

As seen in Fig. 3, in the direction of decreasing the respon-
sive parameter, the primary tongues succeed in increments of one
unit. In panel (b), we present the interval between the structures of
period-7 (red) and 8 (green), where the period-15 one (dark blue)
is located. From p = 7 and p = 15, we get the tongue of period-(7
+ 15) = 22 (magenta). Subsequently, in the direction of increasing
a0 and ar, there are the structures of period p = 7 + 22 = 29 (light
blue) and p = 7 + 29 = 36 (light green), similarly in the decreas-
ing direction of parameters. Note that rule is universal, covering all
tongues, even those of periods not discriminated in the figure (OP
in cyan). We observe that the tongues of periods-8 and 15 do not
end only with the bifurcation to quasiperiodic behavior, also pre-
senting period-doubling directions. As examples, the two p = 30
regions (light brown) that arise near a0 = 3.4 from the p = 15 struc-
ture. Furthermore, the small insertion of period-14 advancing over
the period-7 band and passing through the quasiperiodic one, near
a0 = 3.75 and ar = 1.71, indicates multistability both between p = 7
and p = 14, as well as periodic and aperiodic behaviors. Finally, we
see that the hyperchaos area (purple) advances into the chaotic strip
with irregular boundaries.

The box highlighted in Fig. 5(b) is explored in detail in Fig. 6.
For simplicity, we chose not to distinguish hyperchaos from chaos in
the next magnification. Panel (a) depicts the largest Lyapunov expo-
nent in colors according to the legend. The meaning of the colors is
the same as that adopted in Fig. 5(a) with due scale adjustment. We
obtain λ1 ≈ 0 (black) with high accuracy, but the period-doubling
bifurcation curves appear broadened given the small values of |λ1|.
For example, at ar ≈ 1.275 and around a0 = 3.225. The broad black
color regions in (a) are confirmed quasiperiodic (gray) in panel
(b), where the color code distinguishes the periodic and aperiodic
regions. In the selected range 1.245 < ar ≤ 1.285 and 3.21 < a0

≤ 3.28, all periodic orbits are of the form p = 8k. This is related
to the cascade p = 8 → Q → p = 48 → Q →, etc., which starts in

FIG. 7. Parameter plane discretized on a uniform grid of 1600 × 1600 points, with
the axis intervals open to the left. In both panels, periods according to a num-
bered color code, where the unlisted multiples of 56 (P56) are all represented
in cyan. Quasiperiodic (Q) and chaotic (C) behaviors are also distinguished.
(a) Magnification of the region highlighted in Fig. 6(c). The megastructure, similar
to a fishing net, is here called a “shrimp fisher.” (b) Enlargement of the bottom
central box in the top panel. Shrimps immersed in the chaotic domains, enclosed
by the periodic grid, follow a rule of period addition in two directions, as indicated
by arrows.

the period-8 tongue present in the left bottom corner of Fig. 5(b).
Such a structure partially contours the chaotic region subsequent
to the cascade. We observe that this type of sequence constitutes a
route to chaos. The structures of periods in the hundreds are notable,
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FIG. 8. Bifurcation diagrams along the dashed lines in Fig. 3, accompanied by the respective Lyapunov spectra (on bottom panels). Left panels correspond to s1 : ar = 0.5
and right ones to s2 : ar = 3.3. The interval 0 < a0 ≤ 4 is uniformly discretized by 2000 points. Plotted up to 50 orbit points, after the transient, for each control parameter
value. Vertical stripes in the background correspond to the different attractive fixed point intervals: Eext in gray, Elog in light green, and Ea

B<0 in pink. The occurrence of
hyperchaos is highlighted by the purple background. (a.1-2) A quasiperiodic orbit emerges, in a0 ≈ 1.85, from the point in scenario (iii) via a Neimark–Sacker bifurcation.
(a.3) Hyperchaos arises from chaos with the slow growth of the second Lyapunov exponent. (b.1-2) Sudden change from a fixed point to a quasiperiodic orbit. The region
highlighted by the blue box is enlarged in Fig. 9, where the existence of a scenario (iii) equilibrium point is verified. (b.3) Hyperchaos emerges abruptly with the rapid growth
of both Lyapunov exponents. The range 2 < a0 ≤ 4 is expanded in the inset, allowing a better distinction of the exponent values.

such as p = 192 (blue) bifurcating to 384 (light green). Also, p = 104
(yellow) bifurcating to 208 (light blue), and others, such as p = 224
(brown) in the doubling cascade from p = 56 (green). As in Fig. 5,
there are tongues starting from the quasiperiodic region and advanc-
ing toward the chaotic one, continuing the alternation between the
periodic and quasiperiodic regimes.

Panel (c) enlarges the highlighted box in the lower right cor-
ner of (b). We focus on the structures inserted in the quasiperiodic
strip internal to the period-56 region. We observe an area of chaos
partially outlined by the quasiperiodic band and below delimited by

the p = 56 band. There are pairs of connected Arnold tongues of the
same period, whose link crosses the chaotic region, with the struc-
tures on the left (around a0 = 3.264) highly distorted. What can be
seen in the cases p = 336 (pink) and p = 392 (dark blue). The period
along these Arnold tongues sequence is incremented with accumu-
lation at p = 56. To describe the rule of periods corresponding to
this formation, it is necessary to multiply the denominators in the
Farey sequence by the accumulation factor 56. We selected a region
on the right of Fig. 6(c) to investigate the presence of periodic struc-
tures immersed in small chaotic domains, which are delimited by
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the narrow periodic stripes from the Arnold tongues. This region is
studied in Fig. 7(a).

Unlike the similar structures shown in Fig. 5, in the panel of
Fig. 7, it can be seen that all tongues, from the quasiperiodic region,
advance to the chaotic one where a period-doubling bifurcation
occurs. There are no bifurcations of these periodic structures for
quasiperiodic behavior in the direction to chaos. As examples, the
doubling from p = 448 (violet color) to 896 (light brown) in the
upper left corner and from p = 504 (magenta) to 1008 (light blue) in
the central region of the picture. Note that unlisted periods multiple
of 56 are represented in cyan (P56). In this enlargement, it is clear
that the periods of the main part of primary structures add 56 units
following the direction of decreasing ar and increasing a0. As well, a
general rule for period formation is obtained from the denominators
in the Farey sequence multiplied by 56. We leave the example of the
period 952 tongue (petrol blue), intermediate between p = 448 and
p = 504.

All periodic stripes prolonging from the tongues to the chaotic
regions intersect forming a net, which subdivides the plane into
small chaotic domains.60,62 Each part of this megastructure resem-
bles a quadrilateral, whose vertices are located at the intersections
of the periodic stripes. In the grid formed, multistability occurs,
with different pairs of attractive orbits coexisting at each inter-
section. Immersed in every chaotic subdomain, there is a main
shrimp accompanied by periodic satellite structures.63 Given that
this megastructure has a net shape and encloses areas with immersed
shrimp, we suggestively refer to it by the term “shrimp fisher.” The
box highlighted in panel (a) is enlarged in (b), where the “fished”
shrimps can be seen more clearly. The rule for increasing the peri-
ods of these main shrimps occurs in two directions,62 as indicated by
the arrows in the illustration. Starting from the period-1008 shrimp
(blue), located around ar = 3.268 65 and ar = 1.250 92, and advanc-
ing in the direction of both parameters increase, we find the shrimp
of p = 1064 (pink). A structure of the same period is found in the
direction of ar decrease. Following this rule, we get the periods of all
shrimps in the “shrimp fisher.”

Attractive equilibrium points occur in different scenarios
within the large period-1 region, subject discussed in Sec. III. The
change of a fixed-point type can be seen in Fig. 8, which presents
bifurcation diagrams along two parallel to axis a0, namely, the lines
s1 : ar = 0.5 and s2 : ar = 3.3 (both dashed lines in Fig. 3). We also
observe the transition from chaos to hyperchaos, as well as the
quasiperiodic behavior emergency via a Neimark–Sacker bifurca-
tion. Figures 8(a.1) and 8(a.2) consist of the bifurcation diagrams
along s1 for the system’s variables x and y, respectively. The panel
(a.3) displays the corresponding Lyapunov spectrum. By the back-
ground colors, we draw attention to the domain of each stable fixed
point. Logistic map solutions are verified for the base growth param-
eter interval 0 < a0 < d/(d − 1) = 1.4, where predator’s popula-
tion goes to zero. Mutual extinction occurs for 0 < a0 < 1 (gray
background), and after a transcritical bifurcation at a = 1, a sta-
ble prey-only scenario emerges (light-green background). The point
Elog becomes unstable from a0 = 1.4, arising a constant popula-
tion balance between prey and predator (pink background). This
equilibrium is of the first type (a) for B < 0, i.e., a unique solu-
tion with a0 > 1.4. Finally, Ea

B<0 is unstable from a0 ≈ 1.85, where a
Neimark–Sacker bifurcation occurs giving rise to the quasiperiodic

region. The largest Lyapunov exponent λ1 [red curve in Fig. 8(a.3)]
corroborates the bifurcation diagram, reaching zero level in the sta-
bility changes, and remaining null within the quasiperiodic band.
The periodic windows amid the aperiodic behavior correspond to
the intersection of the line s1 with the tongues seen in Fig. 3, such as
the wide period-11 interval around a0 = 3. We highlight the hyper-
chaotic band (purple background), which starts approximately at
a0 = 3.35 from chaos and presents high density of points between
yn = 0 and yn = 0.4.

The right panels of Figure 8 show the attractive solutions along
the line s2. For a0 < 1.4, the behavior is indistinct from that seen
over s1 in the left panels. At a0 ≈ 1.4, an abrupt transition from
a fixed point to a quasiperiodic orbit is observed. This happens
because the Neimark–Sacker bifurcation is in another direction,
from the point Ea

B<0. We highlight the intermediate interval (blue
border box) between the stable Elog and the aperiodic orbit. In this
narrow range, there is a stable equilibrium point of species coexis-
tence, best seen in Fig. 9. Notable is the period-13 window around
a0 ≈ 2.25, corresponding to the intersection of s2 with the light-
green area in Fig. 3. The inset on the panel (b.3) shows a chaos
region from a0 ≈ 2.8 to a0 ≈ 3.6 and the hyperchaos band starting
at a0 ≈ 3.9 (purple background). In this, there are small exponents
λ1,2 > 0 occurring after a periodic window subsequent to a little
quasiperiodic range. Unlike the gradual emergence of hyperchaos
over s1, which occurs in the sequence of fixed point → quasiperiod-
icity → chaos → hyperchaos, in s2, such dynamics suddenly arise

FIG. 9. Magnifications inside the highlighted boxes in Fig. 8(a.1-2), focusing on
the narrow range of the stable fixed point E0

B<0 (pink background). (a) The change
in the fixed point type is observed at a0 = 1.4. (b) The small predator population
values are best seen in the inset.
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with the simultaneous growth of both Lyapunov exponents. The
line ar = 3.3 intersects the period-6 strip (orange in Fig. 3) from
a0 ≈ 3.4 to a0 ≈ 3.75, where the periodic orbit becomes unstable
via a Neimark–Sacker bifurcation. After the quasiperiodic region,
there is a high-period window and the subsequent sudden growth of
both λ1,2.

An intermediate band between the logistic equilibrium and the
quasiperiodic region is identified along the line s2 by means of the
magnifications shown in Fig. 9. This enlargement considers an inter-
nal segment to the highlighted box in Fig. 8(b.1-2). The stable fixed
point E0

B<0 (pink background) arises from a0 = 1.4, when the logis-
tic solution becomes unstable, remaining until a0 ≈ 1.4104, where
a region of attractive quasiperiodic orbits abruptly occurs. In panel
(a), we draw attention to the fact that x∗ = 1/d in the domain of
E0

B<0, corroborating that it is a fixed point in scenario (iii). The inset
in panel (b) confirms y∗ 6= 0 on an upward-sloping curve in the
same interval.

V. CONCLUSIONS

By analytical and numerical investigations, we show that the
prey–predator model with reproductive responsiveness of prey can
evolve into three different scenarios: mutual extinction, extinction
of predators only, and coexistence of species. The stability of equi-
librium points for which the predator population vanishes does not
depend on the responsive growth parameter, as well as the mutual
extinction is determined solely by the base growth parameter. The
dynamics in the coexistence scenario are strongly dependent on the
responsive parameter.

Quasiperiodic, chaotic, and hyperchaotic behaviors were found
as a function of both prey population growth parameters. We iden-
tified Arnold tongue-like periodic structures inserted in stripes of
quasiperiodicity and organized in the well-known period formation
rule according to the denominators of the Farey sequence. Periodic
connected structures have also been studied, such as pairs of twin
shrimps and linked Arnold tongues. We highlight the net-shaped
megastructure formed by the successive crossings of periodic bands
extended from the Arnold tongues, which is associated with the
occurrence of shrimps in a period formation rule in two directions in
the parameter plane. Thus, we found that the prey–predator model
with a responsive prey reproduction factor presents rich dynamics
in both prey reproductive strategies, either increasing or decreasing
the population growth rate in response to predation risk.
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