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Chaotic magnetic �eld lines play an important role in plasma con�nement by tokamaks. They
can either be generated in the plasma as a result of natural instabilities or arti�cially produced by
external conductors, like resonant helical windings and ergodic magnetic limiters. This is a review
of works carried out at the Universidade de S~ao Paulo and Universidade Federal do Paran�a on
theoretical and experimental aspects of generation and control of chaotic magnetic �eld lines in
tokamaks.

I Introduction

Chaotic behavior is one of the most intensively stud-
ied aspects of nonlinear dynamics, with applications
ranging from physics to neuroscience, including virtu-
ally any branch of science and a great part of modern
technology [1]. One of the areas in which chaotic dy-
namics has received most attention in recent past years
is plasma physics. There are many reasons for this fact
- if we consider a 
uid model of a plasma, there are in-
trinsic nonlinearities in the model equations that may
lead to complex behavior, as soliton propagation, inter-
mittency, and turbulence [2,3]. These phenomena have
been veri�ed both in laboratory [4] and astrophysical
plasmas [5]. In orbit theories, resonant particle-wave
interactions have been considered as a paradigm for
Hamiltonian chaos [6]. Charged particle motion in mag-
netic �eld con�gurations has been proved theoretically
to give rise to chaotic dynamics, and has been related
to ionospheric plasmas [7]. Three and four wave inter-
actions is another subject in which nonlinear dynamics
plays a major role [8], with many astrophysical appli-
cations [9].

In this paper we will focus on a speci�c type of plas-
mas, namely those generated and magnetically con�ned
in fusion machines. For reasons that shall be clari�ed
later on in this paper, chaotic dynamics is one of the
striking properties of the magnetic �eld lines in toka-
maks [10], stellarators [11], reversed �eld pinches [12,13]
and other fusion machines; this has profound implica-
tions on the outcome of experiments. More speci�cally,
we focus on the Lagrangian dynamics of the magnetic
�eld line 
ow in tokamaks [14].

Tokamaks (a russian acronym for toroidal magnetic

chamber) are toroidal pinches in which the plasma is
formed by ohmic heating of a �lling gas, produced by
pulsed electric �elds generated by transformer coils.
The toroidal plasma is con�ned by the superposition
of two basic magnetic �elds: a toroidal �eld produced
by coils mounted around the tokamak vessel, and a
poloidal �eld generated by the plasma itself [15,16].
The superposition of these �elds results in helical mag-
netic �eld lines. It is useful to consider these �eld lines
as lying on nested toroidal surfaces, called magnetic
surfaces, on which the pressure gradient that causes
a plasma expansion is counterbalanced by the Lorentz
force that appears due to the interaction between the
plasma current and the magnetic �eld, in an equilib-
rium con�guration [15,16]

This con�guration is static, so that we describe the
magnetic �eld lines in a Lagrangian fashion [14,17].
We parameterize the �eld lines by using a spatial ig-
norable coordinate (an azimuthal angle for axisymmet-
ric con�gurations, like in tokamaks). This parame-
ter plays the role of time, so that magnetic �eld line
equations can be viewed as canonical equations; the
other variables being �eld line coordinates and/or mag-
netic surface labels as well [18]. One of the advan-
tages of this approach is the possibility of describing
�eld lines by means of Hamiltonian maps, so reducing
the number of degrees of freedom for the system [19].
In this framework, equilibrium con�gurations are inte-
grable systems, whereas symmetry-breaking magnetic
�eld perturbations spoil their integrability. This may
lead to chaotic behavior, that in a Lagrangian sense
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means that two initially nearby �eld lines diverge ex-
ponentially after many turns around a toroidal system
[14,20]. However, if the chaotic �eld lines are trapped
on small plasma regions, most of the lines can still be
approximately described as they were averaged within
the magnetic surface [21].

There are many situations in which the existence of
chaotic magnetic �eld lines has deep implications for
the plasma con�nement in tokamaks. One is the con-
trol of the plasma-wall interactions, resulting from col-
lisions of escaping plasma particles with the tokamak
inner metallic wall [15], which is an important techno-
logical problem in the long-term operation of tokamaks
[22]. The quality of the plasma con�nement is a�ected
by the presence of impurities released from the inner
wall due to sputtering processes caused by localized en-
ergy and particle loadings. Controlling this interaction
may lead to a decrease of the impurity content in the
plasma core and an improvement of the plasma con�ne-
ment. It is believed that chaotic magnetic �eld lines in
the region next to the wall help to enhance heat and
particle di�usion, so reducing localized attacks on the
wall. Thus, to apply this e�ect, a device designed to cre-
ate chaotic �eld lines in the plasma edge and near the
wall, the ergodic magnetic limiter, was proposed to im-
prove plasma con�nement [23,24]. In fact, improvement
of plasma con�nement has been achieved by using er-
godic magnetic limiters in several tokamaks [22,25,26].

Another application of chaotic magnetic �eld lines is
related to the control of disruptive instabilities. Severe
obstructions to the obtention of long lasting plasma
con�nement in tokamaks are due to these instabili-
ties, which are usually preceded by Mirnov oscillations,
or 
uctuations of the poloidal magnetic �eld that can
be detected by magnetic probes [27]. An experimen-
tal method to produce a chaotic region arti�cially uses
conductors externally wound around the vessel wall in
a suitable way, as resonant helical windings (RHW)
[28,30,31]. These helical coils create resonant magnetic
perturbations inside the plasma, in the same way er-
godic limiters do in the plasma edge region. The use of
RHW has been observed to inhibit these oscillations be-
low a threshold value of the perturbation [28,30,31]. A
RHW also creates a magnetic island structure within
the plasma column that can be used to control mag-
netohydrodynamical (MHD) mode interaction. Thus,
some type of disruptive instability can occur within this
island structure, eventually leading to the loss of the
plasma con�nement. In this case, the existence of a
thick layer of chaotic magnetic �eld lines may be con-
sidered the responsible for triggering these disruptions
[28-30].

The localized creation of chaotic magnetic �eld lines
in tokamaks, therefore, can be an important tool to in-
vestigate these instabilities, but care is needed to do
so in a controlled manner, since a large scale chaotic
region would simply destroy the plasma con�nement.

Control of chaotic magnetic �eld lines has been thus a
major issue both of the experimental and theoretical
tokamak research. Since the early 80's a research pro-
gramme has been carried out at the Plasma Laboratory
of the Instituto de F��sica - Universidade de S~ao Paulo,
Brazil, which has been systematically conducted in or-
der to unveil the mechanisms whereby chaotic magnetic
�eld lines in tokamaks may be created and, above all,
controlled in a useful way. This programme has been
pursued in close relation with the experimental group
that built the �rst Brazilian tokamak, the TBR-1, as
early as in 1978 [32]. The experimental and theoretical
results obtained, involving the TBR-1 tokamak until
the end of its operation in 1998, constitute an impor-
tant Brazilian contribution to many areas of plasma
physics. At present, a new machine, the TCABR [33],
has replaced TBR-1 in the Plasma Laboratory of USP,
and the control of chaotic �eld lines could be used in
this machine as well [34].

The main purpose of this paper is to review part of
the research program conducted at TBR-1, with em-
phasis on the mechanisms of generation and control of
chaotic magnetic �eld lines by using ergodic magnetic
limiters (EML) and resonant helical windings (RHW).
We do not aim to review all the work published in the
past twenty years or more by people that has worked
in problems involving the TBR-1 but, instead, we fo-
cus on some contributions to the Hamiltonian descrip-
tion of �eld line 
ow, mentioning also other related
work, whenever appropriate. In this spirit, we review
some relevant experimental work carried out by TBR-
1, mainly related to RHW and EML research, as well
as plasma turbulence observations at the plasma edge.

The rest of this paper is organized as follows: in
the next section we review some experimental results
which we consider of relevance to the generation and
control of chaotic �eld lines in tokamaks. In Section III
a theory of integrable magnetic �elds is presented, and
in the following section the general Hamiltonian theory
for almost-integrable �elds is developed. Finally, Sec-
tions V and VI show the application of the theory to
the cases of resonant helical windings and ergodic mag-
netic limiters, respectively. The last section is devoted
to our conclusions.

II Experimental results

The basic geometry of a tokamak is depicted in Fig.
1, where we denote by b and R0 the minor and major
radius of the toroidal vessel respectively, so that the
corresponding aspect ratio A = R0=b can be de�ned.
The circular plasma column has a radius a < b. The
poloidal and toroidal equilibrium magnetic �elds point
along the minor and the major curvatures along the
torus, respectively. The resulting magnetic �eld line
con�guration is usually described by using some ap-
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propriate coordinate system. The simplest of them is
the cylindrical one: (R;�; Z), R being a radial coordi-
nate with respect to the major axis, along which runs
the Z coordinate [Fig. 1], and � is an azimuthal, or
toroidal angle, usually an ignorable coordinate. The lo-
cal coordinate system, depicted by Fig. 2, uses polar
coordinates (r; �) at a � = const: section of the torus,
with the origin at the minor axis of the torus. The
coordinate � is commonly called the poloidal angle.

Figure 1. Schematic view of a tokamak.
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Figure 2. Cross section of a tokamak showing the relation-
ship between cylindrical and pseudo-toroidal (local) coordi-
nates.

The TBR-1 tokamak has its main parameters listed
in Table I. Its ohmic heating transform and con�ning
�eld coils were powered by capacitor banks. The vac-
uum vessel was made of stainless steel with eighteen ac-
cess ports for diagnostic and pumping purposes. Base
pressures of some microTorrs could be easily attainable
by means of a turbomolecular pump. There were many
standard diagnostics, like Mirnov coils, microwave in-
terferometry, soft and hard X-rays, spectroscopy and
electrostatic probes. Its assembly begun in 1977 and
the �rst plasma, in tokamak mode, was obtained in
1980. Since the e�orts of the Plasma Physics Labora-
tory of Instituto de F��sica were directed to the assembly

of a new machine - the TCABR - the TBR-1 was dis-
abled in 1998, as mentioned before.

Parameter Symbol Value

Major radius R0 0:30 m
Minor radius b 0:11 m
Plasma radius a 0:08 m
Toroidal �eld B0 0:5 T
Plasma current (IP )max 12 kA

Central electron temperature Te0 200 eV
Central electron density ne0 7� 1018m�3

Pulse duration �p 7� 9 ms
Filling pressure p 10�4 Torr

TABLE I: Main parameters of the TBR-1 tokamak
[32].

During these more than twenty years of research, the
TBR-1 machine had helped to develop a strong Brazil-
ian experimental program in fusion plasmas along two
main lines: (i) characterization and control of MHD
activity, and (ii) study of plasma edge phenomena. In
parallel with the experimental activities, a vigorous
theoretical research program was conducted along the
abovementioned lines. The main goal of this paper is to
provide an overview of theoretical achievements in these
areas. Before describing the theoretical framework on
which this research is based, however, we shall present
a brief summary of important experimental results, in
order to give the reader a glimpse of the nature of the
complex problems we usually �nd in fusion plasma the-
ory.

The magnetohydrodynamical (MHD) plasma the-
ory combines the continuum mechanics basic equations
and constitutive relations with Maxwell's equations for
a conducting 
uid subjected to electric and magnetic
�elds [15,17]. While it is desirable to have a situa-
tion of global macroscopic MHD equilibrium to achieve
magnetic plasma con�nement, we have to be aware of
the large number of macroscopic oscillations, or MHD

modes, that may appear. The characterization and con-
trol of such MHD activity is a vital part of modern toka-
mak research. Thus, right from the beginning, the main
MHD modes present in the TBR-1 discharges were ex-
perimentally identi�ed [27].

The most important instabilities in tokamak plas-
mas are the disruptive instabilities. They are usually
classi�ed as internal (saw-teeth) and external, the latter
being further subdivided into minor and major disrup-
tive instabilities. The �ngerprints of the major disrup-
tion, for example, are the presence of negative spikes
in the loop voltage along the plasma, rapid loss of con-
�ned plasma energy, and an intense MHD activity with
an explosive amplitude growth of the poloidal equilib-
rium �eld oscillations, which can be measured by the
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Mirnov coils [28,30] leading, �nally, to the total plasma
collapse.

In the TBR-1 device there were added helical wind-
ings wound around the toroidal vessel whose function
was to generate resonant MHD modes characterized by
a wave vector k = (m=r)ê� � (n=R0)ê� with a toroidal
number n = 1 and the poloidal numbersm = 2; 3; 4; : : :,
depending on the combination chosen for the windings.
The in
uence of these resonant helical currents on the
Mirnov oscillations of TBR-1 discharges was �rst re-
ported in Ref. [31]. Fig. 3 shows, for a typical TBR-1
discharge, the MHD activity represented by the behav-
ior of the poloidal �eld oscillations ~B� when the current
in the helical winding is activated. We see an attenu-
ation of the Mirnov oscillation amplitude due to the
action of the RHW with mode numbers m : n = 2 : 1.
Interestingly, as soon as the external perturbing mag-
netic �eld ends, the MHD activity regains its original
amplitude.

Figure 3. Time evolution of: (a) plasma current; (b) current
in a 2=1 RHW; and (c) poloidal �eld oscillations during a
discharge in TBR-1. Taken from Ref. [31].

The in
uence of RHW on the onset of the disrup-
tive instabilities in the plasma discharges of the TBR-1
tokamak was also investigated in detail [29]. Fig. 4, for
example, depicts the evolution of the plasma current in
a controlled discharge with a series of minor disruptions
before a major disruption takes place at t � 1:5ms. We

show both the loop voltage spikes indicating the pres-
ence of minor disruptions and the consequent decrease
of the MHD activity, as measured by the poloidal �eld
(Mirnov) oscillations.

Figure 4. Time evolution of: (a) plasma current; (b) loop
voltage, and (c) poloidal �eld oscillation during a discharge
in TBR-1. The arrow in (b) indicates the occurence of a
minor disruption. Adapted from Ref. [29].

A Fourier analysis of the oscillations showed that
the dominant MHD modes involved in the precursor
phase of the minor disruption for this discharge were
the m : n = 2 : 1 and 3 : 1 ones. Accordingly, a nu-
merically obtained Poincar�e map of magnetic �eld lines
[Fig. 5], with the same parameters used in the experi-
ment, has shown that the overlap of the corresponding
magnetic islands plays a role in this process due to the
existence of a chaotic magnetic �eld line region between
the islands, which gives rise to a partial relaxation of
the plasma discharge.

Figure 5. Intersections of magnetic �eld lines with a Poincar�e surface of section 50�s (a) and at the instant (b) of the minor
disruption indicated in Fig. 4. Taken from Ref. [29].
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The knowledge of the transport properties of the
plasma in the tokamak edge (i.e., the region compris-
ing the outer portion of the plasma column and the
vacuum region that separates it from the vessel wall) is
essential to the stable operation of the tokamak [35,36].
Field line chaos plays here a major role in the interpre-
tation of the experimental results, since it was long rec-
ognized that turbulent transport is particularly impor-
tant in the plasma edge. A number of probes have been
developed by the TBR-1 team to measure the particle
density and temperature 
uctuations in this region, as
well as the particle con�nement time [37]. The exper-
imental results suggest that the turbulent transport is
mainly of electrostatic nature [38]. These results have
been also observed by analyzing data from other Toka-
maks [39].

In spite of this, there have been performed studies
on the correlation between electrostatic and magnetic

uctuations. It is believed that high-frequency MHD
activity modulates the density and potential 
uctua-
tions in the plasma edge. Furthermore, the connec-
tion between turbulent density 
uctuations and low-
dimensional chaotic dynamics has been quantitatively
veri�ed by using suitable numerical algorithms like the
correlation dimension [40] and the statistical distribu-
tion of recurrence times [41].

The in
uence of resonant magnetic perturbation
caused by helical windings on the plasma edge param-
eters was studied by Caldas et al. [42]. The radial par-
ticle 
ux was found to be proportional to the density
gradient at the plasma edge. In Fig. 6 the particle 
ux
is plotted against the frequency, both with and without
the action of the resonant helical windings. We see that
a signi�cative e�ect was produced due to the external
resonant perturbation, showing not only a reduction of
the particle 
ux throughout the spectrum, but also an
inversion of the 
ux for some low frequencies.

Figure 6. Particle 
ux spectrum at a �xed radial position
r = 0:89a. Full and dashed lines indicate absence and pres-
ence of RHW action, respectively. Taken from Ref. [42].

In the TBR-1 tokamak, afterwards, the helical wind-
ings were replaced by an ergodic magnetic limiter
(EML) composed of four poloidal rings, distributed
along the toroidal directions, with toroidal and poloidal
numbers n = 2 and n = 7, respectively. For several sim-
ilar plasma discharges, both the mean electron density
(Fig. 7) and electron temperature (Fig. 8) pro�les were
measured within the plasma edge with a triple electro-
static probe. As observed in Figs. 7 and 8, the exper-
imental measurements show a decrease in temperature
and density values, when the external perturbation is
applied [43]. This indicates that more peaked pro�les,
and consequently a better con�nement, can be obtained
by means of an ergodic magnetic limiter.

Figure 7. Radial pro�le of the mean electron plasma density
with (2) and without (1) the action of an ergodic magnetic
limiter. Taken from Ref. [43].

Figure 8. Radial pro�le of the electron plasma temperature
with (2) and without (1) the action of an ergodic magnetic
limiter. Taken from Ref. [43].

In relation to the possible use of an EML for control-
ling the disruptive instabilities, Fig. 9 shows the power
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spectrum obtained prior (Fig. 9a) and just after (Fig.
9b) the EML is turned on [43]. As a result of the per-
turbing external �eld, the intensity of the MHD activity
decreases, the MHD mode decomposition broadens up,
and the corresponding mode frequency spectra are con-
siderably enlarged, indicating that the ergodic limiter
can indeed make the plasma con�nement more stable
[28,30].

Figure 9. Power spectral densities versus the frequency and
mode numbers, prior (a) and just after (b) an ergodic mag-
netic limiter is turned on. Taken from Ref. [43].

In summary, the e�ect of chaotic magnetic �eld
lines, both within the plasma and at its edge, can not
be overlooked when considering a variety of experimen-
tal phenomena related to MHD activity and edge trans-
port. Hence, we need theoretical tools for describing the
behavior of chaotic �eld lines in tokamak plasmas. This
knowledge can be crucial for controlling the plasma sta-
bility when chaos is not desired or else for enhancing its
e�ect when it turns out to be useful.

III Theory of integrable mag-

netic �elds

The starting point of our theoretical treatment of
plasma con�nement in tokamaks is the equilibrium con-
�guration, in which the velocity and all time derivatives

vanish. The equilibrium magnetic �eld represents, in
terms of the Hamiltonian description for �eld line 
ow,
an integrable dynamical system. In this section we will
review the basic equations of the MHD static equilib-
rium theory for axisymmetric plasmas and how they
can be used to obtain the magnetic �elds that con�ne
the plasma in terms of the plasma characteristic param-
eters.

In the framework of MHD equilibrium theory, a nec-
essary condition for plasma con�nement is that the ex-
pansion caused by a pressure gradient must be counter-
balanced by the Lorentz force produced by the plasma
current density J0 = (1=�0)r�B0, hence

J0 �B0 = rp0; (1)

where J0, B0 and p0 are the plasma equilibrium elec-
tric current density, magnetic �eld and kinetic pressure,
respectively. Taking the scalar product of (1) with the
magnetic �eld results in

B0:rp0 = 0; (2)

in such a way that the equilibrium magnetic �eld lines
lie on constant pressure surfaces, or magnetic surfaces.

The pressure is an example of a surface quantity,
i.e., some property that is constant on all points of a
magnetic surface. Other important surface quantity is
the poloidal magnetic 
ux 	p, so that the condition (2)
is equivalent to

B0:r	p = 0: (3)

and the magnetic surfaces are also 
ux surfaces charac-
terized by 	p = const: [15,16]. Applying the same def-
inition to the 
ux of current density lines, the poloidal

current 
ux I is another surface quantity of interest.
The condition (1) is not suÆcient for plasma con-

�nement since, in addition to it, we must have closed

magnetic surfaces. Using topological arguments we
conclude that the plasma shall present azimuthal sym-
metry in order to have closed surfaces with the topology
of nested tori. As a consequence, no surface quantity
depends on the toroidal angle �. In the following sub-
sections we shall discuss the equilibrium plasma con�g-
uration by using two coordinate systems.

When the con�ned plasma has some symmetry with
respect to a given coordinate, it is possible to write the
magnetic �eld line equations, B0 � dl = 0, in the form
of Hamilton's equations of motion. We are consider-
ing static equilibrium situations, so the role of time is
now played by the ignorable, or cyclic, coordinate. The
remaining coordinates give the canonical position and
momentum variables. The advantage of this procedure
is that one can use the powerful methods of Hamil-
tonian dynamics, like perturbation theory, KAM the-
ory, adiabatic invariance, etc. to analyze magnetic �eld
topology when a static magnetic perturbation is applied
on a given equilibrium �eld [6,44].
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AHamiltonian description for �eld line 
ow was �rst
proposed by Kerst [46], and later used to describe the
e�ect of non-symmetric perturbations in various plasma
con�nement machines: stellarators [47], levitrons [48]
and tokamaks [10,49]. A Hamiltonian description valid
in an arbitrary curvilinear coordinate system is also
available [18]. and it has been applied for magnetic
�elds with helical symmetry [50] and spherical symme-
try [51,52], the latter being relevant for some compact
tori models (spheromaks and �eld reversed con�gura-
tions).

A. Equilibrium in local coordinates

The local coordinate system (r; �; ') is a kind of
\toroidalized" cylindrical system, in which the variable
z = R0' runs along the symmetry axis of the toka-
mak, where R0 is its major radius and ' = � is the
toroidal angle. This is a very simple and, as we shall
see, sometimes unsatisfactory description, but it is able
to describe situations in which the toroidal curvature
does not play a major role. The 
ux surfaces are cylin-
ders, for which f(r) = const:, where f(r) is any smooth
function of the surface radius. The magnetic axis is a
degenerate surface with r = 0 [15,16].

A magnetic �eld which is consistent with the MHD
equilibrium requirements is B0 = (0; B�(r); B'(r; �)),
where the poloidal �eld is obtained, through an appli-
cation of Amp�ere's law, from a plasma current density
whose radial pro�le is known, like the peaked model [53]

J'(r) =
IpR0(
 + 1)

�a2

�
1�

�r
a

�2�

ê'; (4)

where Ip is the total plasma current, a is the plasma
radius, and 
 is a �tting parameter.

The toroidal �eld B' is either considered to be uni-
form (B0) or, more precisely, a uniform component with
a toroidal correction in the form

B0' =
B0

1 + r
R0

cos �
; (5)

which takes into account that the toroidal �eld is higher
in the inner portion of the torus [54].

The magnetic �eld lines satisfy the di�erential equa-
tions

B0 � dl = 0; (6)

and they wind on the cylindrical 
ux surfaces with
a well-de�ned pitch related to the so-called rotational

transform �, which is the average poloidal angle swept
by a �eld line after one complete toroidal turn. Math-
ematically it is given by [55]

�(r) � 2�
d�

d'
� 2�

q(r)
; (7)

where q is the safety factor of the 
ux surface. The
name safety factor comes due to the requirement that

q � 1 on the magnetic axis to avoid kink instabilities
that are dangerous to the plasma con�nement (Kruskal-
Shafranov criterion) [15]. Fig. 10 shows the radial pro-
�les for the normalized plasma current density J�=J�0
(10 a), poloidal �eld B�=B�a (10 b), and rotational
transform �=�a (10 c). Tokamak parameters were taken
from the TBR-1 machine (see Table I), and we set
q(r = 0) = 1 and qa = q(r = a) = 5 at the magnetic
axis and plasma edge, respectively.
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Figure 10. Radial pro�les of the normalized (a) current den-
sity; (b) poloidal �eld; and (c) rotational transform for the
model in local coordinates. Parameters were taken from
Table I.

The Hamiltonian description of the �eld line 
ow
in this case uses the following action and angle vari-
ables: J = r2=2 and # = �, respectively, whereas the
azimuthal angle t = ' plays the role of time [56]. The
magnetic �eld line equations can be written in a canon-
ical form

dJ

dt
= �@H0

@�
; (8)

d�

dt
=

@H0

@J
; (9)

referring to a Hamiltonian [57]

H0(J) =
1

2�

Z J

0

�(J 0)dJ 0; (10)

In the case for which 
 is an integer it is possible to
write down an explicit form for this Hamiltonian [58]

H0(J) =


+1X
k=1

ck(
)

�
J

Ja

�k
; (11)

in which Ja = a2=2 and the coeÆcients are

ck(
) =
Ja
qa

(�1)k+1

k

(
 + 1)!

k!(
 + 1� k)!
: (12)
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B. Equilibrium in polar toroidal coordinates

It is a common practice in mathematical physics to
choose coordinate systems which re
ects the symmetry
of the system or the boundary conditions. The local
coordinates (r; �; ') have the shortcoming that the co-
ordinate surfaces r = const: hardly coincide with ac-
tual equilibrium 
ux surfaces. This has led to a quest
for more sophisticated systems, like the toroidal coordi-
nates (�; !; '), that have been extensively used in spite
of another drawback: their coordinate surfaces do not
have the right Shafranov shift. The Shafranov shift
is the outward displacement of the magnetic axis (a
degenerate 
ux surface) with respect to the geometric
axis, due to the toroidal geometry.

In order to overcome this problem, Kucinski and
Caldas have introduced a polar toroidal coordinate sys-
tem (rt; �t; 't) [60] which, in the large aspect ratio limit,
reduces to the local coordinate system and has the right
Shafranov shift R00 �R0, where R

0
0 is the major radius

of the magnetic axis. Further details about this coor-
dinate system are found in the Appendix.

A MHD equilibrium theory of an axisymmetric
plasma may be constructed upon the surface quantities
like J, B and p, or equivalently, on the surface quanti-
ties 	p and I . The ideal MHD equations can be used
to derive an elliptic partial di�erential equation for the
poloidal 
uxes, the so-called Grad-Shafranov-Schl�uter
equation [16]. It is written , in the polar toroidal sys-
tem, as [61]

c

1

rt

@

@rt

�
rt
@	p

@rt

�
+

1

r2t

@2	p

@�2t
= �0J30(	p) + �0R

0
0
2 dp0
d	p

 
2
rt
R00

cos �t +
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R00
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rt
R00

�
cos �t
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+ sin �t

�
1

r2t

@	p

@�t
� 2

rt

@2	p

@�t@rt

��
; (13)

d

where J30 is the toroidal component of the equilibrium
plasma current density, given by

J30(	p) = �R002
dp0
d	p

� d

d	p

�
1

2
�0I

2

�
: (14)

The relationships between the magnetic �eld con-
travariant components and the surface quantities 	p

and I are

B0
1 = � 1

R00rt

@	p

@�t
; (15)

B0
2 =

1

R00rt

@	p

@rt
; (16)

B0
3 = ��0I

R2
; (17)

where

R2 = R0
2
0

"
1� 2

�
rt
R00

�
cos �t �

�
rt
R00

�2

sin2 �t

#
:

(18)
Analytical solutions to the Grad-Shafranov-Schl�uter

equation are rare, even for simple coordinate systems.
We thus look for approximate solutions of (13) in the
form 	p = 	p0(rt) + Æ	p(rt; �t), where jÆ	pj � j	p0j,
and expand J30 and dp0=d	p in powers of Æ	p. In the
large aspect ratio limit (R00 � bt), and supposing that

in lowest order the solution 	p0 does not depend on
�t, Eq. (13) reduces to an unidimensional equation,
similar to the one obtained in cylindrical coordinates.
However, in our solution the intersections of the 
ux
surfaces 	p0(rt) = const: with a toroidal plane ' = 0
are not concentric circles and present a Shafranov shift
toward the exterior equatorial region.

To solve the Grad-Shafranov-Schl�uter equation we
need, in addition, to assume spatial pro�les for both the
surface quantities p and I . In lowest order, however, it
suÆces to assume a single pro�le for J30, as given by
Eq. (14) in terms of p and I . So, we choose the peaked
model [Eq. (4)]. We skip the details of the calculation,
which may be found in Ref. [62]. In lowest order, the
equilibrium �eld components are

B0
1 = 0; (19)

B0
2(rt) = Ba

"
1�

�
1� r2t

a2

�
+1
#
; (20)

B0
3(rt; �t) = BT

�
1� 2

rt
R00

cos �t

��1

: (21)

where Ba � B2
0(rt = a) = �0Ip=2�r

2
t , BT � B3

0(rt =

0) = �0Ie=2�R
0
0
2
, and Ie � �I=2� for large aspect

ratio.



988 Brazilian Journal of Physics, vol. 32, no. 4, December, 2002

The poloidally-averaged safety factor of the mag-
netic �eld lines is, in these coordinates, given by

q = qc(rt)

 
1� 4

r2t

R00
2

!�1=2

; (22)

where

qc(rt) =
Ie
Ip

r2t

R00
2

"
1�

�
1� r2t

a2

�
+1
#�1

: (23)

Figure 11 is a cross-section of the 
ux surfaces in
a tokamak whose lengths are normalized to the minor
radius (bt = 1), and parameters are taken from Table I,
such that: a=R00 = 0:26, q � 1 at the magnetic axis and
qa � 5 at plasma edge (rt = a). The zeroth and �rst or-
der results practically coincide. Radial pro�les for the
poloidal B2

0(rt) and toroidal < B3
0(rt) >�t

�eld compo-
nents are depicted in Figs. 12 (a) and (b), respectively.
The poloidal �eld is asymmetric with respect to the ge-
ometric axis, and the toroidal �eld is stronger in the
internal part of the torus, since the coils that generate
it are more densely packed there. Fig. 12 (c) shows the
safety factor q(rt) pro�les, and the di�erence between
zero and �rst order results is noticeable only near the
plasma edge and results in a slight displacement of the
magnetic surfaces.
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Figure 11. Flux surfaces for the MHD equilibrium model
in polar toroidal coordinates. Parameters were taken from
Table I.
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Figure 12. (a) Poloidal and (b) toroidal equilibrium mag-
netic �eld components; (c) safety factor of magnetic sur-
faces. Zeroth and �rst order results are shown by dashed
and full lines, respectively.

In order to obtain a Hamiltonian formulation for
�eld line 
ow in polar toroidal coordinates we shall de-
�ne convenient action and angle variables. The action
is de�ned in terms of the toroidal magnetic 
ux as [62]

J(rt) =
1

2�R020BT

Z
B0:d�3

=
1

4

2
41�

 
1� 4

r2t

R00
2

!1=2
3
5 ; (24)

where d�3 = R00rtdrtd�tê
3. Expanding this action in

powers of the aspect ratio gives, for the lowest order,
the variable r2t =2, as in the previous section. The time-
like variable will be the ignorable coordinate t = 't,
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and the angle variable is a modi�ed poloidal angle [63]

#(rt; �t) =
1

q(rt)

Z �t

0

B3
0(rt; �t)

B2
0(rt; �t)

d�

= 2arctan

�
1


(rt)

�
sin �t

1 + cos �t

��
; (25)

and the �eld line equations become Hamilton equations

dJ

dt
= �@H

@#
; (26)

d#

dt
=

@H

@J
; (27)

with the integrable Hamiltonian

H = H0(J) =
1

BTR00
2	p0(J); (28)

where BT = �0Ie=2�R
0
0 is the toroidal �eld on the

magnetic axis.

IV Theory of almost-integrable

magnetic �elds

Any magnetostatic �eld that breaks the exact ax-
isymmetry of the equilibrium tokamak �eld is a non-
integrable perturbation, from the Hamiltonian point of
view. If the strength of these perturbations is not too
high, it is possible to use standard results of Hamilto-
nian dynamics - like KAM theory, adiabatic and sec-
ular perturbation theory, etc. - to predict the behav-
ior of the �eld lines in the presence of such almost-

integrable magnetic �elds. Two sources of perturbing
�elds shall be dealt with in this paper: resonant he-
lical windings (RHW) and ergodic magnetic limiters
(EML). Both examples can be treated using the same

theoretical framework, that is the canonical perturba-
tion theory, the di�erence being the dependence of the
perturbation strength on the speci�c details of the mag-
netostatic �eld produced by such devices.

Before we consider these applications, in this section
we will outline some basic aspects of the Hamiltonian
theory of almost-integrable systems. We do not intend
to present a complete presentation of this vast subject,
which can be found at excellent available textbooks
[6,44,45,64], but only to focus on the relevant theoret-
ical arguments that justify some of the conclusions we
reach on the magnetic �eld line topology in the presence
of a small perturbation. In addition, we shall not use
here a speci�c coordinate system but rather the usual
formulation in action-angle variables, that may assume
di�erent forms depending if we are dealing with cylin-
drical or polar toroidal coordinates, representing mod-
els for large and moderate aspect ratio, respectively.

Let H1 = H1(J; #; t) be the Hamiltonian corre-
sponding to the non-integrable perturbation. The
explicit dependence on t re
ects the axisymmetry-
breaking nature of the perturbation. Consider � a small
quantity representing the perturbation strength. Com-
bining with the unperturbed HamiltonianH0(J) (which
depends only on J since the system is integrable) we
have as a general almost-integrable Hamiltonian sys-
tem the following expression [64]

H(J; #; t) = H0(J) + �H1(J; #; t); (29)

where �� 1.

We can assume, without loss of generality, that the
perturbation Hamiltonian is doubly periodic in the vari-
ables # and t, since both are either angles or smooth
functions of angles. Thus, we can formally expand H1

in a double Fourier series in these variables and write

c

H(J; #; t) = H0(J) + �

+1X
m=�1

+1X
n=�1

Amn(J)e
i(m#�nt); (30)

d

wherem and n are the poloidal and toroidal mode num-

bers, respectively, assuming positive or negative vari-

ables. The Fourier coeÆcients Amn are related to the
speci�c type of perturbation we deal with.

A. Magnetic islands

The �rst theoretical tool we have at hand for investi-

gating the symmetry-breaking e�ects on the integrable

magnetic �eld line structure is canonical perturbation
theory. Its general idea is to �nd a canonical transfor-

mation from the \old" action-angle variables (J; #) to

the \new" variables (J 0; #0) in such a way that the new

Hamiltonian is integrable, i.e. H 0 = H 0(J 0). The un-

known variable here is the generating function of such
canonical transformation S = S(J 0; #) (of the second

kind), and formally it is a solution of the corresponding

Hamilton-Jacobi equation [64]. We look for approxi-

mate solutions of it as a perturbative series for the un-
known generating function, which is written as a power

series in the small parameter �:

S(J 0; #) = J 0#+ �S1 + �2S2 + : : : ; (31)
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where the lowest order term is simply an identity trans-

formation, and Si(J
0; #) are functions to be determined.

A key question in the perturbation theory is: does

this series converge? Even though � � 1 this does not
warrant automatic convergence for all values of J 0 be-

cause of the resonances which may be present in the

Hamiltonian (29). Resonances occur if the combina-

tion m#�nt is stationary, i.e., if the frequencies _# and
_t = 1 are commensurate, it turns out that there ap-

pear divergent terms in the perturbative series [6]. This

is the celebrated \small denominator problem", which

plagues perturbation theory [44].

From the above discussion it turns out that reso-
nances occur for rational values of the safety factor of

the 
ux surfaces: q(J0) = m=n, where m and n are co-

prime integers. For the integrable magnetic �eld models

studied in the previous section we have monotonically
increasing forms for q(J), from q = 1 at magnetic axis

to q = 5 at the plasma edge. We can thus choose the

most appropriate perturbation in order to excite a par-

ticular resonance at a given radial location r0 = r0(J0)

within the plasma column. This is the basic theoreti-
cal principle underlying the design of resonant helical

windings (RHW) and ergodic magnetic limiters (EML).

Typically, the presence of resonances changes the

topology of 
ux surfaces wherever they occur in the
plasma. Unperturbed 
ux surfaces have the topology

of nested tori, but when a perturbation is switched on,

some of these surfaces will survive while others are de-

stroyed, leaving in their place tubular shaped struc-

tures calledmagnetic islands. The cross-section of these
tubular magnetic islands have the same Hamiltonian

structure of a nonlinear pendulum.

In order to obtain physically sound results using per-

turbation theory we have to remove the resonances, ac-
cording the secular perturbation theory. The outcome

of this calculation is worth the e�ort, however, since

it gives the position and size of the magnetic islands

appearing due to the resonances between the equilib-

rium and perturbing �elds. The resonance located at
the action J = J0 can be removed by going to a rotat-

ing frame through a canonical transformation to new

variables, which we usually call \slow" and \fast", due

to the di�erence in their frequencies. The method pro-
ceeds by averaging over the \fast" variable, in such a

way that we obtain the pendulum Hamiltonian [6]

Hpend � G

2
p2 � F cosq; (32)

where (p;q) are canonically conjugate variables related

to the original action-angle variables of the problem.

The constants

G � m2 d
2H0

dJ2

����
J=J0

; (33)

F � �Amn(J0); (34)

are related to the details of the equilibrium and per-

turbing �elds, respectively.

The Hamiltonian (32) characterizes the orbit struc-

ture near the resonance for which q(J0) = m=n, and it

shall be described from now on simply as being a m : n

magnetic island. Bounded orbits for this Hamiltonian

occur for action values of amplitude equal to the half-
width of this island (�J)m=n. The island width and

frequency at resonance are given, respectively, by

�Jm=n = 2

����FG
����
1=2

; (35)

!0 = jFGj1=2: (36)

Usually, monotonic safety factor radial pro�les are
considered, as those described by Equation (22). In

these cases, each resonance creates only one island

chain. However, for non-monotonic safety factors

a given resonance may create more than one island
chain, whose reconnection gives rise to dimerized is-

lands [65,66].

B. Rational and irrational 
ux surfaces

The fate of the equilibrium 
ux surfaces, after a per-
turbation breaks the system integrability, is basically

determined by their safety factors. KAM theory pre-

dicts that, for those irrational surfaces with safety fac-

tors suÆciently far from a rationalm=n, the topology is
preserved, and the surfaces are only slightly deformed

from the unperturbed tori (KAM surfaces) [6]. On a

rational surface and within its neighborhood the KAM

theorem fails, and we have to resort to the Poincar�e-

Birkho� theorem.

Let us �rst consider the unperturbed Hamiltonian

(� = 0), and a Poincar�e cross section of the equilib-

rium 
ux surfaces, as in Fig. 11, for example. The 
ux
surfaces are invariant circles in the Poincar�e surface of

section, each of them characterized by a safety factor

q(J). If it is a rational surface, then any point on the

invariant circle q(J) = m=n is a period-n �xed point of
the Poincar�e mapping for the magnetic �eld lines. Ac-

cording to the Poincar�e-Birkho� theorem there exists

an even number (2kn, with k = 1; 2; : : :) of �xed points

that remain after the perturbation. Half of them are

elliptic (linearly stable), with closed trajectories encir-
cling them, and the other half are hyperbolic (linearly

unstable). Successive hyperbolic points are connected

by a separatrix, repeating the pendulum Hamiltonian

pattern. In other words, rational surfaces disappear un-
der the perturbation leaving an even number of �xed

points, around which there exists an island chain [67].

The width and frequency related to these islands
can be obtained perturbatively, as described in the pre-

vious subsection. There is a crucial di�erence, however,
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since for a pendulum the separatrices smoothly join ad-

jacent hyperbolic points, and for a near-integrable sys-

tem (small �) this is no longer true. The unstable man-

ifold leaving one hyperbolic point intersects the stable
manifold arriving at the neighboring hyperbolic point

(homoclinic or heteroclinic intersections, depending on

whether the crossing manifolds come from the same

point or from di�erent points, respectively). If a sin-
gle intersection occurs, there are an in�nite number of

such intersections, leading to a sequence of homoclinic

points. Since the areas enclosed by the intersections are

mapped one into another, these areas are preserved and

as successive crossings become closer to a hyperbolic
�xed point, the unstable and stable manifolds have to

oscillate more wildly.

The region near the separatrix, where the homo-

clinic or heteroclinic points are abundant, is character-
ized by the absence of KAM surfaces and consequently

chaotic motion, in the sense that the largest Lyapunov

exponent is positive and the magnetic �eld line is no

longer constrained to a magnetic surface but can �ll

some region of nonzero volume [8]. For suÆciently small
perturbations, however, this chaotic behavior occurs in

regions bounded by KAM surfaces, that act as dikes,

preventing large-scale chaotic di�usion. These regions

of local separatrix chaos grow as the perturbation am-
plitude increases. A barrier transition to global �eld

line chaos is usually expected if this amplitude exceeds

a critical value [6].

The grounds for the onset of global or large-scale

chaos have already been investigated in depth for one-
and-a-half degree of freedom near-integrable systems.

Rather sophisticated methods, as the renormalization

scheme of Escande and Doveil [68], or the Greene's

residue technique [69], can determine with great accu-
racy the threshold for destruction of the last KAM sur-

face between two neighbor resonances. Good results

(within the numerical accuracy) can be obtained by

using more simple methods, as the modi�ed Chirikov

criterion [6]. In its original version, this criterion pre-
scribes the touching of neighbor separatrices in order

to achieve global Hamiltonian chaos [70].

When looking for the onset of large-scale �eld line

chaos in the region between the adjacent island chains
m : n and m0 : n0, it is useful to work with the so-called

stochasticity parameter [70]

� =
(�J)m=n + (�J)m0=n0

jJ0m=n � J0m0=n0 j (37)

where �Jm=n is the half-width of the island around a

m : n resonance, and J0m=n is the location (in the ac-

tion space) of the corresponding rational 
ux surfaces.

The threshold condition for simple island overlap
can be written as �crit = 1. However, this condi-

tion turns out to be an overestimation of the necessary

perturbation strength, since the locally chaotic regions

overlap long before the separatrices themselves. The

reasons for this are basically: (a) the �nite width of

the locally chaotic regions related to each island, taken
separately (the separatrix is no longer de�ned for these

islands); (b) there are a multitude of higher-order satel-

lite islands between the overlapping islands, each with

their own locally chaotic regions, which also contribute
to the process.

Hence, empirical rules, as the \two-thirds" rule

(�crit = 2=3), have been proposed in order to take this

fact into account without modifying the simple form

of the Chirikov criterion [6]. This simple rule comes

from the comparison between the numerically deter-
mined value for the onset of large-scale Hamiltonian

chaos for the standard (or Chirikov-Taylor) map, and

the corresponding prediction, based on the stochastic-

ity parameter (37) [6]. However, it turns out that even
this rule is not always a useful tool, since it holds for

pairs of islands of similar widths (as is indeed the case

for the standard map), which is no longer valid for the

perturbation produced by an ergodic limiter for exam-

ple, that makes islands thinner as we depart from the
tokamak periphery. A \four-�fths" rule has then been

proposed as a description for some situations in which

the overlapping islands are not of comparable widths

[71,72].

There is a universal relation between the critical
value of the Chirikov parameter (37) to the safety factor

qe in the center of an island: �crit = 4=qe. It is univer-

sal in the sense that it holds for resonances of arbitrary

higher order. The critical value for the limiter current

we have just estimated corresponds to the appearance
of a chain of �ve secondary islands, for which qe = 5=1,

in the midst of the primary island.

V Resonant Helical Windings

It has been conjectured that disruptive instabilities may

result from topological changes in the magnetic surface

with safety factor q = m=n = 2=1 [30]. A RHW may be
used to produce a resonant external perturbation with

suitably chosen mode numbers, in order to investigate

the onset of this instability and how it could be con-

trolled. The use of RHW with other mode numbers

has experimentally shown to help controlling topolog-
ical changes on other rational magnetic surfaces, like

those with q = 3=2 [28] and q = 4=1 [29].

After the rather general approach to the almost-

integrable �elds developed in the previous section, we

shall apply these concepts in the analysis of the con�ned
plasma under the in
uence of resonant helical wind-

ings (RHW). Just like we have done for the integrable
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case, the treatment will be separated for local and polar

toroidal coordinates.

A. RHW in local coordinates

Resonant helical windings are m pairs of �lamen-

tary helical conductors, carrying a current IH in op-

posite directions for adjacent wires, and wound around
the tokamak outer wall (r = b) such that the variable

u = m� � n' (38)

has a constant value [see Fig. 13]. This means that the

conductors close on themselves after n turns along the
poloidal direction, and m turns along the toroidal one.

We will choose the integers m and n so as to excite a

main resonance at the desired position of a rational 
ux

surface with q = m=n.
Let us �rst derive the magnetic �eld generated by

such a con�guration of RHW. Neglecting both the

plasma response and the penetration time of the metal-

lic wall we can assume that the magnetic �eld of a RHW
is a vacuum �eld, given by B1 = r�M , where �M is a

magnetic scalar potential satisfying Laplace's equation

r2�M (r; �; ' = 0), with proper boundary conditions at

r = b. Its solution, for r < b, is given by [54]

Figure 13. Schematic view of resonant helical windings with
(m;n) = (4; 1) in a tokamak.

c

�M (r; �; ') = ��0IH
�

1X
p=0

1

2p+ 1

�r
b

�m(2p+1)

sin[(2p+ 1)(m� � n')]; (39)

d

where the magnitude of the terms in this summation
decreases very fast with p, such that it suÆces to re-
tain only the lowest order term in the above expression
(p = 0).

Now we derive the explicit form of the perturbation
Hamiltonian for a RHW in local coordinates. It should
be pointed out, however, that a single RHW does not
break the symmetry of the equilibrium con�guration.
This occurs because, although the time-like variable t
appear explicitly in the perturbing magnetic �eld (39),

it does so through the combination expressed by Eq.
(38). As a result, we pass from azimuthal to helical
symmetry, and a single RHW with cylindrical equilib-
rium is still an integrable system [73,74].

A way to break the system integrability without
adding more RHW is to consider the toroidal correc-
tion on the toroidal equilibrium �eld B0, given by Eq.
(5). This will introduce an additional Fourier series
in the perturbation Hamiltonian (30), such that it is
rewritten as [57]

c

H1(J; �; ') =
X
k;m;n

 
�
p
2J

R0

!jkj
Amnk(J)e

i(m+k)�e�in'; (40)

d

whose Fourier coeÆcients are related to the coeÆcients
of the radial perturbing �eld component brmn(J) by

Amnk(J) = �
p
2JR0brmn(J)

i(m+ k)B0
: (41)

For the magnetic scalar potential in (39), it turns out

that this coeÆcient is given by

brmn(r) = i
�0IH
�b

�r
b

�m�1

: (42)

A RHW with mode numbers (m;n) will excite an
in�nite number of rational surfaces, as result of the
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Poincar�e-Birkho� theorem. However, the dominant res-
onance (in terms of its spectral power) that is excited
by such a RHW is the one with q = m=n. Using the
methods outlined in the previous section we can obtain
the width of the m : n island and the frequency at the
exact resonance by using Eq. (30), where the constants
should be replaced for

G ! 1

2�
(m� 1)

2 d�

dJ

����
J0

; (43)

F !
p
2J0
R0

Amn;�1(J0); (44)

where J0 = r20=2 is given by solving numerically the
equation q(r0) = m=n.

Let us present some results of numerical integration
of the magnetic �eld line equations obtained from the
equilibrium and perturbing �elds in local coordinates
with toroidal correction (5). We choose a RHW with
m = 3; n = 1 because the main resonance to be ex-
cited is to be centered at � 0:06m inside the plasma
(see Fig. 14). The �eld lines are traced through many
turns about the torus from a series of initial conditions.
A Poincar�e surface of section at ' = 0 is used to show
cross-sections of the �eld line 
ow. Fig. 14 shows the
phase portrait for a helical current of IH equal to 0:9%
of the plasma current IP . We see the formation of a
main chain of m = 3 island related to a mode num-
ber 3 : 1. Due to the toroidal correction, the satellite
islands 4 : 1 and 2 : 1 have an enhanced appearance.
The locations and widths of these islands are in good
agreement with the theoretical values [58].

Figure 14. Phase portrait of a Poincar�e surface of sec-
tion map in local coordinates. We consider a RHW with
(m;n) = (3; 1) and IH = 90A. The remaining parameters
are taken from Table I.

Figure 15. Phase portrait of a Poincar�e surface of sec-
tion map in local coordinates. We consider a RHW with
(m;n) = (3; 1) and IH = 160A. The remaining parameters
are taken from Table I.

Notice that the main island has a quite sizeable
stochastic layer, but there are some remaining mag-
netic surfaces isolating it from their satellites. In this
case, we can see that a thick stochastic layer is formed
around the main 3 : 1 island, through interaction of
` = 6 and 7 second-order resonances, since the ` = 5
chain is still visible. Only for higher currents (with IH
equal to 1:6% of IP , see Fig. 15) we can see the onset of
global stochasticity since the 3 : 1 and 4 : 1 island layers
interconnect themselves, i.e., �eld lines wander ergodi-
cally through a region comprising both resonances. We
also see that the helical current needed to obtain global
stochasticity for the 3 : 1-2 : 1 island pair is very large
compared with the pair formed with the other satellite,
so there is little interest in considering this possibility
as the main cause of stochasticity due to this RHW.

For main and satellite islands the amplitude in-

creases with I
1=2
H , but the toroidal correction introduces

a factor proportional to (r0=R0)
m=2 which decreases

substantially the satellite half-widths when compared
with the main island. The onset of magnetic �eld line
stochasticity between the main island and either of its
satellites is described by analyzing the stochasticity pa-
rameter (37). Numerical observations of the islands be-
havior near the transition has pointed that �crit � 4=5
(\four-�fths rule"). It indicates a critical helical cur-
rent of about 1:4% of the plasma current, considering
the overlapping of the 3 : 1-4 : 1 island pair and 2:6%
for the pair containing the 2 : 1 satellite, as we have
mentioned before.
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B. RHW in polar toroidal coordinates

There are many reasons to consider the problem of
a RHW that excites mode numbers m : n using a more
sophisticated coordinate system, like the polar toroidal
(rt; �t; '): (i) the toroidicity e�ects are naturally in-
cluded in the geometry, and there is no need for an ad

hoc toroidal correction, as for local coordinates; (ii) a
realistic design of a RHW needs to take into account
the e�ects of the toroidal geometry. While in a cylin-
drical approximation the helical pitch is constant, with
the e�ect of toroidicity we �nd that the pitch is no
longer uniform due to the behavior of the toroidal �eld
component, which is stronger in the inner part of the
torus.

Hence we use a winding law to best emulate the ac-
tual paths followed by magnetic �eld lines, introducing

a tunable parameter �, such that the variable

ut = m(�t + � sin �t)� n't (45)

is constant along a given helical winding [59]. The pa-
rameter � is chosen according to the canonical angle
variable # de�ned in (25). In this section we consider
a pair of RHW, located at ut = 0 and ut = �, respec-
tively.

We can obtain analytically the magnetic �eld gener-
ated by a RHW in polar toroidal coordinates, by solv-
ing the Laplace equation for the magnetic scalar poten-
tial. The algebraic manipulations, however, are more
involved than the case of local coordinates, and we re-
fer to a previous paper [62] for details of the calcula-
tions. The corresponding vector potentialA1, such that
B1 = r �A1 has the covariant component, in lowest
order, given by

c

A13(rt; �t; ') = ��0IHR
0
0

�

+mX
k=�m

Jk(m�)

�
rt
bt

�m+k

ei[(m+k)�t�n't]; (46)

d

where J is the Bessel function of order k, and from
which the components of the RHW �eld are given by

B1
1 = � 1

R00rt

@A13

@�t
; (47)

B2
1 =

1

R00rt

@A13

@rt
; (48)

B3
1 = 0; (49)

in which we retained �rst order powers of the inverse as-
pect ratio. Notice however that the zeroth order term
already contains toroidal e�ects, since rt depends on
both r and � [see Appendix]. It is useful to compare
this result with that obtained in the limit of cylindrical
geometry. In this case we neglect the Shafranov shift
such that the magnetic axis coincides with the geomet-
ric axis (R00 ! R0); and the RHW has now a uniform
pitch (� = 0), so that the helical variable is simply
ut ! m� � n'.

In Fig. 16 (a) we show a poloidal pro�le of the ra-
dial component of the �eld generated by a RHW with
(m;n) = (4; 1), (IH=IP ) = 0:003, � = 0:4826 and at
a �xed radial position rt=a = 0:911. We note that the
poloidal perturbing �eld B2

1 in the internal region (low
�t) is smaller than in the external region due to the ef-
fect of the toroidal curvature on the RHW pitch. Fig.
16 (b) shows a radial pro�le of the poloidally-averaged
radial component < B1

1 >, for similar parameters. It
falls down rapidly whenever the radius decreases, so
that only the plasma edge region is expected to be no-
ticeably a�ected by the perturbing helical �eld.
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Figure 16. Radial component of the �eld generated by a
(m;n) = (4; 1) RHW with IH=IP = 0:003 and � = 0:4826.
(a) Poloidal pro�le for rt = 0:91a; (b) Radial pro�le for
�t = 5�=4.
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Figure 17. Phase portrait of a Poincar�e surface of section
map due to a (4; 1) RHW in polar toroidal coordinates, with
IH=IP = 0:001 and � = 0:4826. The remaining parameters
are taken from Table I.

In Fig. 17 we present a phase portrait of the �eld
line structure due to a 4 : 1 RHW in which the current
is 0:1% of the total plasma current. The main island
to be excited by the RHW is centered at a former mag-
netic surface with safety factor q = 4=1, consistently
with the mode numbers here chosen. Other noticeable
islands have safety factors 5=1, 3=1 and 2=1, for exam-
ple. In order to see the e�ect of the � parameter on
the �eld line structure, we show in Fig. 18 the same
phase portrait, but with � = 0. It is apparent that the
number of sizeable island chains has been reduced in
this case. In particular, the 2 : 1 and 3 : 1 islands have
their widths dramatically decreased. Hence, the use of
a winding law such as (45) enhances the resonant e�ect
produced by a RHW.
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Figure 18. Phase portrait of a Poincar�e surface of section
map due to a (4; 1) RHW in polar toroidal coordinates, with
IH=IP = 0:001 and � = 0.

The RHW current in Fig. 19 has been increased
to 0:3% of the total plasma current, and Fig. 20 is
the corresponding case for a vanishing �. We still see

many island chains besides the main 4 : 1 islands, but
there are some di�erences: (i) the islands' widths have
increased; (ii) within the region near to the island sepa-
ratrix there are thin area-�lling portions where the �eld
lines are chaotic. In Fig. 20 we may already see such
a region of limited chaotic motion in the neighborhood
of the separatrices of the 4 : 1 island chain. The other
chains have likewise their own chaotic regions, but they
are not so evident, either due to their small widths or
because the initial conditions used in the phase portrait
failed to generate an orbit in the chaotic region.
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Figure 19. Phase portrait of a Poincar�e surface of section
map due to a (4; 1) RHW in polar toroidal coordinates with
IH=IP = 0:003 and � = 0:4826.
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Figure 20. Phase portrait of a Poincar�e surface of section
map due to a (4; 1) RHW in polar toroidal coordinates with
IH=IP = 0:003 and � = 0.

As long as the perturbation is small enough, how-
ever, these locally chaotic regions are separated from
each other by surviving magnetic surfaces, and the
radial excursion of �eld lines is naturally limited by
them. On the other hand, as the perturbation strength
increases, the islands' widths also increase, and the
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surviving magnetic surfaces are progressively engulfed
by locally chaotic regions belonging to adjacent island
chains. Depending on the perturbation strength, the
adjacent island chains over a given region may be so
large that the entire region around them is �lled with
chaotic �eld lines. This eventually leads to a glob-
ally chaotic region where large-scale chaotic excursions
are possible. In the limit of very large perturbation
strength, even the elliptic points in the islands' centers
may lose their stability and bifurcate, generating other
periodic orbits.

VI Ergodic Magnetic Limiters

The non-symmetric character of the magnetic �eld gen-
erated by a RHW is due to the toroidal e�ect on the
helical symmetry. This breaks the integrability (in the
Hamiltonian sense) of the equilibrium con�guration,
thus leading to all the consequences mentioned in the
last section, the most important to us being the gener-
ation of chaotic �eld lines. Note that, from the point of
view of reducing plasma-wall interactions, it would be
useful to create such a chaotic region in the peripheral
region of the plasma column.

In principle this is feasible by using a RHW with
appropriate values of (m0; n0), as the 4 : 1 case already
studied. However, the mounting of such windings on
a tokamak is sometimes a very diÆcult task, because
of the large number of diagnostic windows distributed
along the tokamak wall. This has led to the concept
of an ergodic magnetic limiter (EML) [23,24], which
is composed by one or more grid-shaped current rings
of �nite length, poloidally wound around the torus.
We will consider the EML problem in local and polar
toroidal coordinates, in the same spirit we have treated
the RHW case.

A. EML in local coordinates

The EML model to be considered here is the same
as that originally treated by Martin and Taylor [75,76],
but with a di�erent geometry. One EML ring consists
of a coil of width ` with m pairs of wires oriented in the
toroidal direction and carrying a current IL [Fig. 21].
Adjacent conductors have currents 
owing in opposite
directions, and we ignore the contributions for the mag-
netic �eld from the pieces oriented in the poloidal direc-
tion, since their e�ect on the toroidal �eld is negligible.

With these simpli�cations, the EML consists of a
bird-cage of 2m straight wires equally spaced by an an-
gle �=m. If we were treating wires with \in�nite" length
(i.e., which extend all over the toroidal circumference
2�R0, in the periodic cylinder approximation of large
aspect ratio) the system would be nothing but a heli-
cal winding without a pitch angle. Hence, the magnetic
�eld of such a con�guration can be obtained from the
result derived in the section V.5.

Figure 21. Schematic view of an ergodic magnetic limiter
ring. Below: exploded view of one EML ring.

However the wires have �nite size `, what breaks the
symmetry along the toroidal direction. The absence of
favorable boundary conditions turns diÆcult an ana-
lytical solution for the Laplace's equation r2�M = 0.
An ad hoc and non-rigorous way of circumventing this
problem is to neglect, in a �rst approximation, the bor-
der e�ects and write the magnetic �eld generated by an
EML in the form B1 = ( ~B1r; ~B1�; 0), with the following
decomposition [77]

B1r;�(r; �; ') = ~B1r;�(r; �)f('); (50)

where ~B1r;� are the magnetic �eld components of in-
�nitely long wires [78]

~B1r(r; �) = ��0mIL
�b

�r
b

�m�1

sin(m�); (51)

~B1�(r; �) = ��0mIL
�b

�r
b

�m�1

cos(m�): (52)

The toroidal dependence of the EML �elds is de-
scribed by the function f('). Two kinds of functions
have been used in our previous work on this subject
[77]: (i) square-pulse waveforms

f(') =

�
1; if� `

2R0
� ' � + `

2R0
;

0; otherwise;
(53)

which assumes that the limiter �eld falls down very
sharply out of the ring extension; and (ii) a Dirac comb,
or a periodic sequence of delta-function kicks

f(') =
`

R0

+1X
j=�1

Æ('� 2�j): (54)

The way we can see the magnetic �eld line 
ow due
to an EML depends on what kind of form, from those
exposed above, we intend to use. If we adopt a square-
wave function, a Poincar�e map of �eld lines can only be
obtained by direct numerical integration of the �eld line
equation. However, the use of a periodic sequence of
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delta kicks enables us to derive an analytical mapping.
The basic idea is that a �eld line twists freely, according
to its rotational transform, until it reaches the limiter at
' = 0; 2�; : : : n� (for one ring) or ' = 0; 2�=p; 4�=p; : : :
for p rings, when it receives a kick. We de�ne dis-
cretized variables rn and �n as the values of the �eld
line coordinates just after the n-th kick.

The map so de�ned is given by

rn+1 = rn � �

b

�rn
b

�m�1

sin(m��n); (55)

�n+1 = ��n �
�

b2

�rn
b

�m�2

cos(m��n); (56)

where � = �0mI`=B0� measures the strength of the
perturbation caused by the EML ring, and

��n = �n +
2�B�(rn)R0

B0
; (57)

in the cylindrical case, and

��n = 2arctan[�(rn) tan(
(rn)+arctan�(rn; �n))]+2�;
(58)

with the toroidal correction. The poloidal �eld in (57)
is given in terms of the current pro�le (4) by apply-
ing Amp�ere's law, and the following auxiliary quantities
have been de�ned:


(rn) =
�R0B�(rn)

B0rn�(rn)

�
1� rn

R0

�
; (59)

�(rn) =

�
1� rn

R0

��
1� r2n

R2
0

�1=2

; (60)

�(rn) =
1

�(rn)
tan

�
�n
2

�
: (61)

This map was �rst derived by Viana and Cal-
das [79,80], but it is not exactly symplectic (area-
preserving) due to the approximations employed in its
derivation. This problem, however, was formally over-
came by Ullmann and Caldas [81], who have applied a
canonical transformation to the variables (rn; �n) with
the help of a generating function of the second kind. In
this way they have arrived to a radial map which has
to be numerically inverted (using Newton's method) to
give rn+1 in terms of rn and �n.

Numerical results of Poincar�e maps have been ob-
tained through the use of the numerical integration (in
the square-wave case) and the above analytical map
(in the Dirac comb case) [76,77]. In Fig. 22, which was
generated using the impulsive excitation map, we show
phase portraits for four (p = 4) EML rings, each of
them with m = 6 pairs of wires with length ` = 0:08m.
The remaining parameters are taken from Table I, and
we present only those results with toroidal correction,
and for di�erent limiter currents. We observe many
primary island chains, the larger ones corresponding to
the 6 : 1 resonance, located at r � 0:085m, followed

by 6 : 2 islands at 0:060m, and a series of satellite is-
lands due to the toroidal e�ect. All these features are
in accordance with the theory of quasi-integrable �elds
developed in the previous section.
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Figure 22. Phase portrait of a Poincar�e surface of section
map due to a EML with p = 4 rings, each of them with
m = 6 pairs of wires, in the rectangular local coordinates
x = b� and y = b� r. (a) IL=IP = 0:01; (b) IL=IP = 0:04.

Figure 23. Maximal Lyapunov exponent for a set of initial
conditions at x0 = 0:60m and varying EML current IL, for
the same parameters as in Fig. 22. The Lyapunov expo-
nents are depicted in gray-scale.

An interesting way to analyze the growth of the res-
onant magnetic island chain and the onset of chaos due
to its overlapping with the adjacent ones, as we increase
the limiter current, is to compute the maximal Lya-
punov exponent for di�erent orbits. In Fig. 23 we plot
the leading Lyapunov exponent for various orbits in the
Poincar�e section, from di�erent initial conditions at dif-
ferent radial positions y0 and a �xed poloidal angle x0,
and for a varying limiter current IL. The Lyapunov ex-
ponent is represented in gray-scale, and black regions
indicate positive values for it. We observe the appear-
ance of the �rst thin chaotic layers at IL about 1:0% of
IP , which eventually grow for higher IL and join other
layers to form a large chaotic region [81].

The boundary between chaotic and regular regions
in Fig. 23 is quite irregular and actually of a frac-
tal nature. There are light gray tongues entering the
borders of the darker chaotic regions corresponding to



998 Brazilian Journal of Physics, vol. 32, no. 4, December, 2002

secondary island chains which move as we increase IL.
These higher-order islands are eventually destroyed and
large-scale chaotic �eld line 
ow prevails for large IL.

B. EML in polar-toroidal coordinates

The analysis outlined in the previous section can
be alternatively carried out in polar-toroidal coordi-
nates. The EML consists of Na slices with length `
of a RHW with adequate mode numbers (m0; n0), lo-
cated symmetrically along the toroidal circumference
of the tokamak, following a winding law given by (45)
(Fig. 21). We shall consider the EML action as a se-

quence of delta functions at the ring positions. This
enables us to obtain a �eld line mapping, that is de-
rived from a Hamiltonian formulation for the �eld line

ow. Hence the obtained Poincar�e map is rigorously
area-preserving. The canonical action and angle vari-
ables are the same pair (J ; #) already studied for the
RHW case.

The �eld line Hamiltonian is [62]

H(J; #; t) = H0(J) +H1(J; #; t); (62)

where H0(J) is given by Eq. (24), and

c

H1(J; #; t) =
1

BTR00
2AL3(J; #; t)

+1X
k=�1

Æ

�
t� k

2�

Na

�
: (63)

The discretized action-angle variables (Jn; #n) are de�ned at a n-crossing of a �eld line with the planes 'k =
tk = 2�k=Na, with k = 0; 1; 2; : : :Na � 1 [77]. Integrating the Hamilton equations corresponding to (62) gives the
following mapping for the resulting quasi-integrable system

Jn+1 = Jn � �

�
@H1

@#

�
(Jn+1; #n); (64)

#n+1 = #n +
2�

Naq(Jn+1)
+ �

�
@H1

@J

�
(Jn+1; #n); (65)

d

where the dimensionless perturbation parameter is de-
�ned as

� =
1

�

�
`

2�R00

��
IL
Ie

�
; (66)

and the safety factor q(J(rt)) is given by Eqs. (19) and
(20).

Figure 24 shows a phase portrait of the map (64)-
(65) for a CML with Na = 4 current rings, each of
them being a slice of a RHW with (m0; n0) = (4; 1)
and � = 0:4827, carrying a current of 1:0% of the
plasma current Ip. We see a main 4 : 1 island chain at
J � 0:027, which corresponds to a normalized radius
of rt=a � 0:9, such that this chain and its local chaotic
region are located near the plasma edge. The CML cur-
rent has been raised to 1:5% of plasma current in Fig.
25, showing that, for this higher limiter current, the
4 : 1 and 5 : 1 chains have already partially overlapped,
fusing their chaotic regions into a large-scale chaotic
layer that extends over a larger peripheral portion of
the plasma column. In both cases the chaotic region,
although comprising the plasma edge region, does not
reach the tokamak wall, due to the existence of many
surviving magnetic surfaces in between. If we increase
further the limiter current, the chaotic region will be-
come even more pronounced, but it still does not reach
the wall. The positive feature of choosing an appro-
priate � 6= 0 is to obtain a chaotic region that is con-

centrated around a main resonance (the 4 : 1 one, in
our case), but we observed that for a wide peripheric
chaotic region it would be preferable to use � = 0 due
to the weaker limiter currents required.
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Figure 24. Phase portrait of a Poincar�e surface of section
map due to a (4; 1) EML in action-angle coordinates with
� = 0:4826 and IL=IP = 0:010. The remaining parameters
are taken from Table I.
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Figure 25. Phase portrait of a Poincar�e surface of section
map due to a (4; 1) EML in action-angle coordinates with
� = 0:4826 and IL=IP = 0:015.

Increasing further the limiter current IL, it may
happen that even the centers of the islands - that are
stable elliptic �xed points of the limiter mapping - be-
come unstable, and a new set of stable periodic orbits
appear. This con�gures a period-doubling bifurcation,
and it is physically related to the creation of new mag-
netic axes [72].

C. Field line di�usion and loss

One of the advantages of obtaining an analytical
mapping is the possibility of tracking many of mag-
netic �eld lines by spending a modest computer time,
with comparison to the time-consuming task of solv-
ing systems of ordinary di�erential equations for long
times. There are numerical studies in which this econ-
omy of time makes all the di�erence. One of them is
the computation of the �eld line di�usion through the
peripheral chaotic region generated by a EML.

The quantity of interest here is the average square
deviation of the action variable (related to the radial
di�usion)

< (J � J0)
2
n >=

1

N#

N#X
i=1

(Jni � J0i)
2
; (67)

where J0i are di�erent initial conditions, i =
1; 2; : : :N#, chosen inside a chaotic region.

This deviation goes asymptotically as n� for un-
bounded di�usion. Anomalous transport is character-
ized by � 6= 1, which we name sub-di�usive if � < 1,
and super-di�usive if � > 1. Gaussian transport is
characterized by � = 1, for which a di�usion coeÆcient
is de�ned as [82]

DLF = lim
n!1

1

2n
< (J � J0)

2
n > : (68)

If the peripheral region were uniformly chaotic we
would expect a Gaussian transport. However, since

there are many remnants of periodic islands embedded
in the chaotic region, the anomalous regime is more
likely to be found.

In fact, Fig. 26 shows the results for < (J � J0)
2
n >

due to a EML for two di�erent limiter currents [83]. We
used N# = 4000 initial conditions picked up from the
existent chaotic region and uniformly spread out along
the poloidal direction. For the �rst dozen iterations the
transport is super-di�usive due to the strong e�ect of
the positive Lyapunov exponents related to these orbits,
and becomes sub-di�usive due to the e�ect of the peri-
odic islands, that have a trapping e�ect on the wander-
ing of the �eld line along the chaotic region. The same
features were observed for the Martin-Taylor model for
a EML [84].
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Figure 26. Average square displacement of �eld lines in the
chaotic region due to a (5; 1) EML with � = 0:54 for two
di�erent limiter currents, and n is the number of toroidal
turns. The dashed lines correspond to a power law scaling,
with the exponents indicated. For comparison, the slope
corresponding to the di�usive regime is also shown.

There is a physical limitation for the �eld line dif-
fusion, however, that is the possibility of a collision be-
tween a �eld line and the wall, after which the �eld line
is considered as lost. This situation is directly related
with the problem of heat and particle deposition on
the vessel wall. Localized loadings generate high-energy
particle impacts that may release impurities adsorbed
in the metallic wall, contaminating the plasma. Field
line loss leads to a slow decrease of the square deviation
for larger times. We found that the decay process is ex-
ponential, which can be seen in Fig. 27, where we show
the number of lost �eld lines after n map iterations [83]

NLF (n) = NT exp

�
�n� n0

�n

�
; (69)

in which NT = 4000, n0 = 69 and �n = 2:39. This expo-
nential decay possesses actually a staircase �ne struc-
ture with plateaus with di�erent lengths (see the inset
in Fig. 27).
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Figure 27. Fraction of �eld lines that have not collided with
the tokamak wall in n map iterations, due to the action of
a a (5; 1) EML with � = 0:54 for I = 0:045IP . The inset
shows the staircase behavior of the exponential decay.

Similarly to a radioactive decay, the statistical pro-
cess of �eld line loss is described by two events: a �eld
line hits or does not hit the tokamak wall, and the prob-
ability p�(m) of hitting the wall is much lower than the
probability 1�p�(m) of not doing so. This suggests the
use of a Poisson probability distribution for the num-
ber of observations (each observation corresponds to
two toroidal turns) in which m �eld lines are lost [85].
The validity of this distribution was also con�rmed by
numerical experiments using our �eld line map [83].

It is worth mentioning that the chaotic di�usion of
�eld lines is related, but in a rather complicated way,
to the particle dynamics within the plasma edge, that
we know to be highly turbulent. In the lowest order of
approximation, charged plasma particles would be sim-
ply advected by the guiding centers of the �eld lines,
but there are many e�ects related to the �nite Lar-
mor radius. For example, the toroidal and poloidal
curvatures of �eld lines lead to curvature drifts, that
turn the picture complicated to follow [86]. In spite
of these problems, it is possible to estimate the escape
time of a charged particle as �c = 2�R0 < nc > =vT ,
where < nc > is the average number of turns a �eld line
takes to collide with the wall, and vt =

p
2kT=m is the

thermal velocity of impurities with charge eZeff , where
Zeff is the e�ective atomic number. Our estimates for
�c suggest that it is less than the total duration of the
discharge, making possible for a EML to be used in the
impurity control [87]. This estimate, however, does not
include the interaction between fast particles (in the tail
of the respective velocity distribution) and the wall.

We conclude this section by mentioning that we
can regard the action of a EML from a Hamiltonian
chaotic scattering point of view. The stable and un-
stable manifolds of unstable periodic orbits embedded
in the peripheral chaotic region play a key role in the
non-uniform character of the �eld line escape process.

These manifolds intersect in a very complicated man-
ner, forming a homoclinic tangle which is the underly-
ing dynamical (fractal) structure present in the chaotic
�eld line region [88].

VII Conclusions

Field line chaos, if properly handled, can be of much
help in understanding many relevant phenomena in
tokamak research, as well as it can help improving the
plasma con�nement. In this review we have made a
comprehensive review of the basic theory underlying
chaotic �eld line formation due to magnetostatic per-
turbations that breaks system symmetry in tokamaks.
We have focused on two speci�c examples: resonant
helical limiters (RHW) and ergodic magnetic limiters
(EML). There are many points of contact between the
Hamiltonian theory developed for each of them, and
some of the experimental �ndings obtained in toka-
maks, with emphasis on the Brazilian TBR-1 tokamak
results.

We have seen in Section II that TBR-1 experiments
have shown a decrease of MHD activity, i.e., Mirnov os-
cillations can be damped due to the action of a RHW.
Also, a 2 : 1 RHW was able to reduce the ampli-
tude of a Mirnov oscillation with the same mode num-
bers. The theoretical explanation for this fact is that a
RHW creates a magnetic island within the plasma that
changes the plasma current acting on the rational 
ux
surfaces with safety factor 2=1 [89]. The Hamiltonian
description of �eld lines and secular perturbation the-
ory reviewed in this paper explain the formation and
properties of such an island. We have used two co-
ordinate systems: local and polar-toroidal, which de-
scribe situations in which the tokamak aspect ratio is
large and moderately large respectively. The positions
of such magnetic islands are predicted on the basis of a
pre-determined plasma current pro�le, and it is found
that their widths increase with the square-root of the
perturbing electric current, what enables us to predict
when the resonant 2 : 1 chain produced by a RHW will
interact with adjacent modes, as the 3 : 1 or 4 : 1 ones,
producing �eld line chaos. The theoretical results agree
with the estimates made on numerical simulations.

Another important experimental result is the cause-
e�ect relationship between minor disruptions and par-
tial island overlap of primary islands. This was veri�ed
to occur in TBR-1 for the 2 : 1 and 3 : 1 islands, and
the Poincar�e maps for �eld lines con�rm the order of
magnitude of the perturbation strength needed for the
onset of chaos between these resonances. On the other
hand, major disruptions were experimentally shown to
be connected with the coupling between the 1 : 1 and
2 : 1 modes, as detected by soft X-ray analyses. These
modes lock their frequencies just before the major dis-
ruption occurs.
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The physics at the plasma edge seems to be dom-
inated by turbulent particle di�usion, as measured in
TBR-1 by means of electrostatic probes. This turbu-
lent di�usion is related, in a non-obvious way, to the
chaotic di�usion of �eld lines in the plasma edge due to
an ergodic magnetic limiter (EML). While plasma par-
ticles tend to follow magnetic �eld lines, it turns out
that several drifts are also observed which in
uence the
particle 
ux. Accordingly, the direction of the particle

ux is a�ected by the phase di�erence between the den-
sity and electric potential 
uctuations of the drift waves
in plasma edge turbulence. This explains the observed

ux inversion for some frequency ranges observed in
tokamaks.

The expected uniformity of heat and particle load-
ings on the tokamak wall would be possible only if
the chaotic region were uniformly spread out over the
poloidal curvature. However, it was experimentally ob-
served a poloidal modulation of these loadings, which
is consistent with the anomalous di�usion we have ob-
served numerically, due to the trapping e�ect of the
island remnants. Hence, our di�usion and loss results
are more compatible with the actual experimental �nd-
ings on EML.

From the Hamiltonian point of view, our theoreti-
cal framework is essentially based on the KAM theory.
Although our description was applied to plasma con-
�nement in tokamaks, we have obtained similar results
for other fusion machines, as the reversed �eld pinch
[90]. Further improvements would have to follow other
routes, namely to consider the e�ect of particle di�u-
sion, what needs a drift Hamiltonian formulation [91].
Another technique which could be used to enlighten the
relation between �eld line and particle chaos is the di-
rect numerical integration of particle motion, what is
nowadays feasible thanks to many eÆcient and reliable
\particle-in-cell" codes [92]. Kinetic theory treatments
are also nowadays being intensively pursued by many
research groups for toroidal geometries, due to the de-
mands of neo-classical transport theories [93], and they
may shed some new lights on these subjects. As for tur-
bulence theories themselves, there are many attempts
to apply the existing theoretical approaches to tokamak
situations [40,41,94]. Finally, the model �elds treated
in this paper were based on realistic geometries and
equilibrium pro�les, but they are still far from �rst-
principles treatments. However, as far as our investi-
gation was concerned, there is little space to improve
further this method in a straightforward way. Future
research should be based on techniques of greater so-
phistication than those here treated.

VIII Appendix

Coordinate systems used in this paper

We brie
y describe here the coordinate systems used

throughout this paper. A comprehensive source of in-
formation about the various existent systems is found
in Ref. [95]. A cylindrical system (R;�; Z) may be
used to describe the tokamak, in which the symmetry
(Z-) axis is the major axis of the torus, R is the radial
distance from this axis, and � is the azimuthal angle
(see Fig. 1). The local coordinates (r; �; ') are related
to these variables by

R = R0 � r cos �; (70)

Z = sin �; (71)

� = ': (72)

The toroidal coordinates (�; !; ') are de�ned as [96]

R =
R00 sinh �

cosh � � cos!
; (73)

Z =
R00 sin!

cosh � � cos!
; (74)

� = '; (75)

in such a way that the coordinate surfaces on which
� = const: are tori with minor radii a = R00= sinh �,
and major radii R00 coth �.

The polar toroidal coordinates (rt; �t; 't) may be
de�ned in terms of the toroidal coordinates by the fol-
lowing relations [60]

rt =
R00

cosh � � cos!
; (76)

�t = � � !; (77)

't = ': (78)

The rt = const: curves have a pronounced curvature
in the interior region of the torus, from where we start
counting poloidal (�t) angles. In Fig. 28 we depict some
coordinate surfaces of this system.

0.00 0.10 0.20 0.30 0.40 0.50
R (m)

−0.25

−0.15

−0.05

0.05

0.15

0.25

Z (m)
θt=0,00

rt=0,14

rt=0,10

θt=π/2

Figure 28. Some coordinate surfaces in the polar toroidal
system.
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The contravariant basis vectors are

ê1 = � rt
R00

(sinh �ê� + sin �tê!) ; (79)

ê2 = � 1

rt
ê!; (80)

ê3 = � 1

rt sinh �
ê�; (81)

where

R2 = R0
2
0

"
1� 2

�
rt
R00

�
cos �t �

�
rt
R00

�2

sin2 �t

#
;

(82)
The relations between local and polar toroidal co-

ordinates are:

rt = r

"
1�

�
r

R00

�
cos � �

�
r

2R00

�2
#1=2

(83)

sin �t = sin �

"
1�

�
r

R00

�
cos � �

�
r

2R00

�2
#�1=2

(84)

showing that the polar toroidal coordinates tend to the
local ones in the large aspect ratio limit (r � R00).
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