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Abstract. We discuss the creation of transport barriers in magnetically confined plasmas with
non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless
region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an
equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves,
we show that a nontwist transport barrier can be created in the plasma by modifying the electric
field radial profile. We also show non twist barriers in chaotic magnetic field line transport in
the plasma near to the tokamak wall with resonant modes due to electric currents in external
coils.

1. Introduction
Recently there is a growing interest in non monotonic systems [1, 2, 3], for which the twist
condition is not fulfilled for all points in the domain of interest [4]. The non twist condition
have been found in many dynamical systems of physical interest, like fluids and plasmas
[5, 6,7, 8,9, 10].

Nontwist systems present internal transport barriers that play a major role in the study of
diffusion in fluids and plasmas [11]. In particular, internal transport barriers are important
to separate regions with qualitatively different dynamical behavior. Even after the internal
barriers are broken the remaining dimerized islands created by nontwist systems may present
high stickness configurations that decreases the transport in the nontwist region [1].

In this work, initially, we introduce the barriers in the standard nontwist map and then
we analyze two kinds of problems in plasmas with non-monotonic field profiles: the first is
the chaotic particle drift motion caused by electrostatic drift waves; the second problem is the
chaotic magnetic field line transport in plasmas with external resonant perturbations.

2. Nontwist standard map

Initially, we present the nontwist transport barrier in the most used symplectic nontwist map,
namely, the standard nontwist map (SNTM) introduced in Ref. [6]. The winding number of
this map is not monotonic with a twistless surface surrounded by two chain of dimerized islands.
This map is given by

Tpy1 = wp+a(l— y’?),+1)7 (1)
Yntl = Yn + bsin(27x,) (mod 1), (2)
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where z € [-1/2,41/2),y € R, a € (0,1), and b > 0.

The function a(1 — 2 +1) is the winding number of the unperturbed phase-space trajectories
lying on nested tori, its derivative being the so-called shear function. If the shear function is
monotonically increasing or decreasing for all values of interest, the shear does not change sign
and the twist condition is satisfied. The lines where winding number changes sign define the
shearless curves in phase space.

Recently there is a growing interest in nontwist maps, some of whose properties are quite
different from those known for twist maps, such as the KAM and Aubry-Mather theory [2].
For example, certain periodic islands can interact without overlapping as the perturbation is
increased, rather experiencing either a separatrix reconnection process or mutual annihilation
after they collide [2,3]. One of the conspicuous features of nontwist maps is the robustness of
shearless curves against increasing perturbations, which leads to transport barriers not present
in twist maps [1]. In the latter there is a well-known transition from local (separatrix) to global
chaos, whereas in nontwist maps separatrix reconnection may or may not lead to global transport
depending on the map parameters [1]. The transport barriers of nontwist maps are examples of
structures which affect in a global way the transport over a phase space region.

The mathematical properties of SNTM have been extensively investigated over the past two
decades [1, 2, 3, 11]. In the following we outline some of these properties, referring to the
literature for a more complete coverage of them. In the unperturbed case (b = 0) the twist
condition is violated at the point y = 0, what defines a shearless curve. The quadratic term in
(1) leads to two invariant curves with the same winding number at both sides of the shearless
curve.

As the perturbation becomes nonzero (b # 0) two periodic island chains appear at the two
invariant curve locations, and the former shearless curve becomes a shearless invariant tori
separating these two island chains [1, 2]. There are also chaotic layers attached to both island
chains, as expected from the presence of homoclinic crossings therein. These chaotic layers are
not connected, though, as far as there are invariant curves near the shearless invariant tori acting
as dikes, preventing global transport [1, 2, 11].

In figure 1, where a Poincaré section of the SNTM is depicted for ¢ = 0.52 and b = 0.32, we
observe two island chains with two islands each. The local maxima of the perturbed winding
number profile define a shearless invariant curve, whose existence can be inferred between the two
island chains. The island chains bordering the shearless invariant curve are transport barriers,
since chaotic trajectories above and below do not mix at all [11].

If the parameters are further modified another noteworthy feature of nontwist maps can
emerge, depending on the parameter space region. In one scenario (generic reconnection) the
island chains with the same winding number approach each other and their unstable and stable
invariant manifolds suffer reconnection. In the region between the chains, there appear new
invariant tori called meandering curves (which are not KAM tori, though, since the latter must
be a graph over z, while meanders are not). The periodic orbits remaining eventually coalesce
and disappear, leaving only meanders and the shearless torus.

Further growth of the a-parameter causes the breakup of the transport barrier and the
consequent mixing of the chaotic orbits formerly segregated on both sides of the shearless
invariant torus.

3. Transport barrier at tokamak plasma edge
In tokamaks the plasma confinement can be improved when the radial electric field profile is
modified by a bias electrode [12, 13].

We use a Hamiltonian model to show that the reported transport reduction is caused by
displacement of a transport barrier from the scrape-off layer to the plasma edge. For that we
consider a large aspect ratio tokamak with B = Bye, , and the particle guiding center drift in
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Figure 1. Nontwist map. Phase space with transport barrier for ¢ = 0.52 and b = 0.32.

poloidal direction given by

ExB F

VET T T B

where x and y stand for the radial and poloidal coordinates respectively. We consider that the
observed particle transport at the plasma edge is manly caused by E x B drift [14, 15].

Due to the particle density gradient in the radial direction, a perturbed electric field appears
changing the electric field configuration to E = E(x)ex + Eey , and consequently giving rise to
the electrostatic waves, which are responsible to the radial drifts of the particles. We assume an
electrostatic potential of the form [16]:

€z, (3)

oz, y,t) = dolz) + Z A;sin (ky,x) cos (ky,y — wt), (4)

7

which is composed of a background equilibrium electrostatic potential, ¢o(z), with the
superposition of a collection of waves propagating in the poloidal direction. By the (3)
with E = —V¢(z,y,t), we describe the system by the Hamiltonian formalism defining the
Hamiltonian by H(z,y,t) = B% . In this model we use only two waves since this is the minimum

to ensure the chaos in the phase space,

H(z,y,t) = ¢o(x) — urx + Ay sin (kg x) cos (ky,y) + Az sin (kg ) cos (ky, (y — ut)),  (5)

with u, = ]% being the phase velocity of the first wave and wu is the phase velocity difference
1

between the two waves. For equilibrium electric field profiles that are not monotonic, the
Hamiltonian system violates the twist condition and it possesses robust invariant tori or barriers
that inhibit transport [1]. From the Hamiltonian formalism, we introduce in (6) the trapping
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profile U(x) [17]. This function is used to describe the regions with high chaos activity in the
phase space where we associate it with high radial particle transport

Uz) = [ - ulBo] . (6)

The resonant condition occurs at U(z) = 0. Around this value the particle transport is
effective, which implies from (6) that the wave phase velocity matches the background drift
velocity, vg = u.

In figure 2 we depict the phase space for a bias discharge. The U(x) &~ 0 regions are marked
with horizontal sequences of dots, and following those dots to the phase space, we see the chain
islands near to the limiter (z = 1). Another important issue to notice is the trapping profile
maximum point that states the nontwist barrier and it is located inside the plasma (x = 1). The
dominant wave parameters are the following: A; = 0.084, wy = 7.5, ky1 = 5.4, ky1 = 28.3. The
U(z) = 0 regions are marked with horizontal sequences of dots, and following those dots to the
phase space, we see the chain islands near to the limiter (x = 1). Another important issue to
notice is the trapping profile maximum point that states the nontwist barrier and it is located
inside the plasma (x = 1).
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Figure 2. Phase spaces with the trapping profile U(z) aside. The nontwist barrier can be seen
where the trapping profile is maximum.

4. Magnetic field line transport

Chaotic field lines at the plasma edge play a key role on plasma-wall interaction in tokamaks
[18, 19]. Since charged plasma particles follow magnetic field lines to leading order, one of the
undesirable effects of chaotic field lines is the concentration of heat and particle loadings on the
tokamak wall that deteriorates the overall plasma confinement quality [20]. Here, we show how
the magnetic field line escape to the tokamak wall is affected by the action of a resonant helical
perturbation on a tokamak plasma in MHD equilibrium.

In MHD equilibrium the field lines lie on magnetic surfaces, with topology of nested tori. The
magnetic surfaces are characterized by a surface quantity which is an approximated analytical
solution of the Grad-Shafranov equation in terms of the toroidal non-orthogonal coordinates
r¢ and 6, such that U ~ W(r;) [21]. The intersections of the flux surfaces ¥ = constant
with a toroidal plane are not concentric circles but rather present a Shafranov shift toward the
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exterior equatorial region [21]. For the considered coordinate system, W(r;) is obtained for a
monotonical toroidal current density profile, commonly observed in tokamaks discharges, given

5 2\
by Js(r:) = %%ﬁgl) (1 + ﬁ%) ( — 2—5) , where I, and a are the total plasma current

and plasma radius, respectively, Ry is the major tokamak radius, and « is a positive constant.

We introduce a Hamiltonian formalism, with action and angle variables, to describe the
considered integrable equilibrium. However, for a small helical magnetic perturbation the
Hamiltonian system becomes almost-integrable [22]. In this work we use an ergodic magnetic
limiter (EML) to generate a small localized perturbation, where the explicit dependence on ¢
reflects the break of symmetry [22, 23]. The EML creates resonances in the plasma and it can be
designed to excite resonances closer or farther from the tokamak wall, depending on the mode
numbers chosen for the limiter winding. To show the perturbed field lines distribution in space,
we present a Poincaré map that represents the field line intersections with the toroidal plane
¢ =0.

For the present numerical simulations we choose an equilibrium characterized by the following
parameters: a/Rp = 0.26 and b/ Ry = 0.35, where b is the minor tokamak radius. We also choose
q(a) = 5 and ¢(0) = 1, corresponding to the safety factors at the plasma edge and magnetic
axis, respectively, for which v = 0.78 and 8 = 3.0. Figure 3 shows the safety factor profile for
the considered MHD equilibrium.

Next, we present an example of a transport barrier created by the resonant perturbation
considered in this work. We consider that the poloidal and toroidal mode numbers are,
respectively, mg = 4 and ny = 1. We also normalize lengths to the minor radius (b = 1).
The results are presented in terms of r and 6 variables, more adequate to the comparisons with
experimental results. Figure 4 shows a Poincaré map for the limiter currents I, /I, = 2.73. The
island chains due to these resonances although partially destroyed, can be recognized. In the
external part of the plasma there are mixed regions with islands and chaotic lines, while more
inside the plasma a transport barrier (in red in figure 4) can be identified.

Recent experiments have shown that the radial structure of the electron temperature and
density at different times of the discharge reveals a correlation between the field line connection
lengths (the number of toroidal turns it takes for a field line to reach the tokamak wall) and
the heat flux [20]. There has been observed that most of the heat content is brought from the
plasma core wall by the field lines with relatively large connection lengths. The regions with
short and long connection lengths are also called laminar and ergodic, respectively [20].
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Figure 3. Safety factor profile for the equilibrium considered in this work.
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Figure 4. Poincaré section of magnetic field lines inside a tokamak plasma in MHD equilibrium
perturbed by an EML.

5. Conclusions

Several applications of the theory of chaos have been reported in the last years to interpret
different phenomena observed in tokamak plasmas [24]. Here, we apply the Hamiltonian theory
of nontwist dynamical systems to predict the existence of nontwist transport barriers in plasma
physics. In [11] we presented examples of such barriers described by plasma models described
by symplectic maps. In this article, initially, we give an example of such barriers present in the
non Twist Standard Map, a well known paradigm that can be used to investigate qualitatively
the onset of transport barriers and their break-up in several systems. Next, we introduce two
dynamical systems describing transport in tokamak plasmas with non-monotonic profiles [25].
One system describes the chaotic particle drift motion caused by electrostatic waves; the other
system describes the chaotic magnetic field line distribution in plasmas with external resonant
perturbations. For these two systems we show how non-monotonic field profiles give rise to
transport barriers.
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