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Abstract

In toroidal devices known as tokamaks, high-temperature plasmas are confined by intense
magnetic fields. Nevertheless, this confinement is deteriorated by turbulence at the edge
of the devices. This turbulence has an intermittent behavior with the presence of high-
amplitude bursts. To describe local measurements of density with bursts, a stochastic pulse
train model (SPTM) has been developed since the last decade. For such a model, different
categories of background signals have been considered in the literature, namely, backgrounds
with Gaussian noises (correlated and uncorrelated) or with small-amplitude pulses. However,
until now these models with different background signals weren’t simultaneously compared to
an experiment. Moreover, there isn’t a fitting method for the SPTM that can evaluate all its
parameters in a unified and objective way. The present dissertation aims to fulfill these two
gaps. Having created the SPTM fit, we applied it to the TCABR tokamak. For this analysis,
we utilized measurements of ion saturation current, a signal proportional to the local plasma
density. In addition, we introduced to the context of the SPTM two non-linear tools: the
complexity-entropy diagram and the determinism from recurrence quantification analysis.
With them and the frequency spectrum, we concluded that, for the analyzed experiment, the
model with a pulse background described the structure of plasma density fluctuations better
than the models with Gaussian noise.

Keywords: plasma physics. Tokamaks. Electrostatic turbulence. Ion saturation current.
Stochastic modeling.



Resumo

Em dispositivos toroidais conhecidos como tokamaks, plasmas com temperaturas solares sao
confinados por intensos campos magnéticos. Esse confinamento, todavia, é deteriorado pela
turbuléncia na borda dos dispositivos. Essa turbuléncia possui um comportamento intermi-
tente marcado pela presenca de rajadas de alta amplitude, denominadas como bursts. Para
descrever medidas locais de densidade com bursts, um modelo estocéastico de trem de pulsos
(METP) vem sendo desenvolvido desde a ultima década. Para tal modelo, foram considerados
na literatura diferentes categorias de sinais de fundo, a saber, fundos com diferentes ruidos
gaussianos (descorrelacionados e correlacionados) ou com pulsos de pequena amplitude. En-
tretanto, até o momento esses sinais de fundo nao foram comparados simultaneamente a um
sinal experimental. Além disso, ainda nao h4 um método de ajuste para o METP que obtenha
todos os seus parametros de forma unificada e objetiva. A presente dissertacao almeja pre-
encher essas duas lacunas. Criado o ajuste do METP, o aplicamos para o tokamak TCABR.
Para tal analise, utilizamos medidas de corrente de saturacao idnica, um sinal proporcional
a densidade local do plasma. Adicionalmente, introduzimos para o contexto do METP duas
ferramentas nao lineares: o diagrama de complexidade-entropia e o determinismo da anélise
de recorréncia. Com elas e com o espectro de poténcia, concluimos que, para o experimento
analisado, o modelo com fundo de pulsos descreveu a estrutura de flutuagoes de densidade
melhor do que os modelos com ruido gaussiano.

Palavras-chave: Fisica de Plasmas. Tokamaks. Turbuléncia eletrostatica. Corrente de
saturagao idnica. Modelagem estocéastica.
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Chapter 1

Introduction

Chapter 1 begins by explaining the main motivation to study magnetically confined plasmas—
fusion energy. Later, it briefly describes what plasmas are and how they are confined in
tokamaks. The TCABR tokamak is then presented. Later, the concept of plasma bursts,
central for this work, is introduced and, subsequently, the stochastic model used for the
dissertation is rapidly contextualized. At the end, the dissertation chapters and objectives
are summarized.

1.1 Fusion Energy

Today, around 80% of the world’s energy matrix comes from fossil fuels [1]. In 2019, natural
gas, coal and oil were responsible respectively for 22%, 26% and 31% of the global energy
consumption, as seen in Fig. 1.1. Nevertheless, a recent prediction [2| estimates that, if
consumed with the annual production levels of 2015, coal reserves won'’t last more than 120
years, while the reserves of natural gas and oil won’t last more than 60 years.

For this reason, alternative energy sources urge to be sought, and fusion is one promising
option [3]. Nuclear fusion is how stars produce energy. On Earth, researchers aim to replicate
this procedure with controlled thermonuclear fusion. It promises to be clean and safe, with
resources that could last more than a thousand years [4, 5].

Fusion nuclear reactions occur by merging lighter nuclei into heavier ones, releasing energy
within the process. On reactors, the least difficult way to achieve this is by converting
deuterium and tritium into helium (Chapter 4 of Ref. 6). Deuterium (D or H?) and tritium
(T or H?) are both hydrogen isotopes. The first contains one proton and one neutron in its
nucleus, while the second, one proton and two neutrons. The reaction can be represented as
below.

D+T — a+n+17.6 MeV

An « particle is a helium nucleus (it has two protons and two neutrons), while n stands
for neutron. A portion of the reaction mass is converted to kinetic energy as predicted by
Einstein’s mass-energy equivalence, 2 = mc? (where c is the light-speed). This energy sums
up to about 17.6 MeV and is mostly driven to the neutron (about 14.1 MeV). In envisioned
fusion reactors, it is mainly the neutrons’ energy that must be transformed into electrical
energy to power cities (Section 2 of Ref. 7). In its turn, the principal role of the helium
nuclei would be to heat the plasma (Section 1.5 of Ref. 7). A scheme of the fusion reaction

19



1. Introduction

is depicted in Fig. 1.2.

Global primary energy consumption by source
Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil

fuel production by converting non-fossil energy into the energy inputs required if they had the same conversion

losses as fossil fuels.

| Other
renewables

Modern biofuels
Wind
Hydropower

Nuclear
Gas

160,000 TWh
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Source: Vaclav Smil (2017) & BP Statistical Review of World Energy OurWorldInData.org/energy « CC BY

Figure 1.1: Global energy consumption by time, retrieved from Our World in Data [1].
See the original interative graph.

Deuterium Helium (3.5 MeV)

% b

Tritium vaﬁ

Q / \ Neutron (14.1 MeV)
(712) (»)

Figure 1.2: Scheme of a fusion reaction with deuterium and tritium resulting in a helium
nucleus (with kinetic energy of 3.5 MeV) and a neutron (with kinetic energy of 14.1 MeV).

Achieving controlled thermonuclear fusion is among the greatest challenges of the century
(introduction of Part I of Ref. 6). For this, a collaboration between the USA, Europe, Russia,
China, India, South Korea and Japan is being made to develop the International Thermonu-
clear Experimental Reactor, or ITER, which is being built in the south of France [4]. ITER
intends to be the first reactor with sufficient temperature to produce more energy than it

20
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consumes. Also, in the second half of the 21st century, this partnership expects to build
DEMO, which promises to be the first prototype fusion power plant to fuel an electrical net-
work. There are also companies and public-private partnerships aiming to achieve controlled
fusion. Some examples are Tri Alpha Energy, General Fusion and SPARC [8,9].

1.2 Magnetically confined plasmas

This dissertation is inserted into the field of magnetically confined plasmas. Obtaining con-
trolled thermonuclear fusion is the main motivation of this research area, as fusion reactions
occur inside of plasmas. In this section, it will be presented the concept of plasmas and how
they can be confined.

1.2.1 Plasmas

If a gas is heated enough, its electrons will have the energy to escape the electric attraction
from their nuclei, ionizing the gas and transforming it into a plasma. However, not every
ionized gas can be called a plasma, since in general any gas has at least a small degree of
ionization.

To formalize the concept, a plasma is defined as quasi-neutral gas of ionized and neutral
particles which exhibits electromagnetic collective behavior (Chapter 1 of Ref. 10). The
meaning of “collective behavior” is what follows. In a gas of neutral particles, the main
interactions are due to collisions, as external electromagnetic fields do not exert influence.
In plasmas, on the other hand, free ions and electrons create electromagnetic fields that can
influence other ionized particles, inducing a collective behavior in the system.

However, this influence decays with a characteristic distance, called the Debye length,
Ap. In a plasma, the potential of a particle with charge ¢ can be written as (Eq. (2.18) of

Chapter 11 of Ref. 11),
1 ¢ 2r
Vi(r) = = - 1.1
(r) Ameg T P ( AD ) (1.1)

EOkaT
Ap =/ 1.2
b nee2 (1.2)

€o is the vacuum permittivity, kg is the Boltzmann constant, 7" is the plasma temperature
(supposed approximately equal to electrons and ions), n. is the electron density and e is
its charge. From Eq. (1.1), one notes that the electric potential of a charge in a plasma
decays faster than the Coulomb potential, V(r) = ¢/ (4meor). For r > Ap, the potential is
negligible. Consequently, plasmas act to shield charge fluctuations for » > A\p, and particles
interact mainly at a distance of r < Ap. This is what is meant by quasi-neutral (quasi comes
from Latin and means “as if”): for scales bigger than \p, the plasma acts as a neutral gas.

where the Debye length is
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Figure 1.3: Temperature and density for various plasmas. Source: CPEP physics.

Formally, a plasma is defined by three conditions (Chapter 1 of Refs. 10 and 11):

1. The characteristic scale of the plasma system, L, has to be much larger than the Debye
length, L > Ap, so that the plasma can shield local electromagnetic fluctuations.

2. Since the shielding effect results from the collective behavior of various particles, the
number of particles in a Debye sphere, Np = %A%ne, has to be much bigger than one,
Np > 1.

3. The characteristic interval of collisions between electrons and neutral particles, 7.,
needs to be much larger than the characteristic oscillation time 7, that the electrons
take to respond to electromagnetic oscillations: 7., > 7,.. Otherwise, collisions could
ruin the process of shielding.

The three above conditions for the existence of a plasma can be summarized as L > \p,
Np > 1 and 7., > 7. These parameters are functions of temperature and density. So
plasmas can be characterized by T and n, as seen in Fig. 1.3.

1.2.2 Tokamaks and the TCABR

To achieve fusion on Earth, plasmas must be heated at temperatures of the order of 10% K,
hotter than the solar core, Ty, ~ 107 K (as seen in Fig. 1.3). It is a Herculean task to
confine such hot fluids, and the most used solution is by powerful magnetic fields (e.g., pp.
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191-195 of Refs. 6). Due to the Lorentz magnetic force F = gv x B, ionized particles in the
plasma follow a helical path along the magnetic field lines. This is illustrated in Fig. 1.4(a).
However, this wouldn’t prevent particles from reaching a wall at the end of a linear device.
The key, then, is to connect the end of the machine to its beginning, constructing a toroid.
A picture of a toroid can be seen in Fig. 1.4(b).

(b)

Figure 1.4: (a) A positive charge ¢ following a helical path along the magnetic field B.
Source: Physics Exams. (b) A simple toroid for plasma confinement. A current I in the
poloidal direction of the toroid creates a magnetic field in the toroidal direction, around
which the charged particles circulate. Source: Chegg Study.

With this toroidal configuration, used in tokamaks, plasma particles are trapped in he-
licoidal motions around the magnetic field line, making loops in the toroidal direction.!
Tokamak is a transliteration of the Russian word "rokamax", and can be understood as a
toroidal chamber with magnetic coils. These devices are widely used to confine plasmas (see
for example cap. 4-6 of Ref. 6) and are seen as the leading candidates for a practical fusion
reactor [4,9].

The Institute of Physics of the University of Sao Paulo (USP) has a tokamak called
TCABR [12,13]. It was originally designed and built at the Ecole Polytechnique Fédérale de
Lausanne (EPFL), in Switzerland, and operated there from 1980 until 1992, under the name
of TCA—a French acronym for Tokamak Chauffage Alfvén. The main objective of TCA was
to investigate and enhance plasma heating with Alfvén waves [14]. A few years later, the
device was transferred to USP, passing through an upgrade and adding Brésilien to its name.
Its operation began in 1999. Fig. 1.5 shows a photograph of TCABR.

'Due to the existence of drifts and instabilities, corrections on the magnetic field must be made to maximize
the confinement time in tokamaks. This includes using the own plasma current and poloidal coils to create
desirable poloidal magnetic fields. Further information can be found for example in pp. 195-201 of Ref. 6,
and a detailed description of tokamaks is given in Chapters 4-6 of the same reference.
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Figure 1.5: Photograph of the TCABR. Source: imagens.usp.br/7p=10222.
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Figure 1.6: (a) Illustration of the TCABR tokamak. Coil A produces the toroidal electric
field that ohmically heats the plasma. The D coils generate the toroidal magnetic field that
confines the fluid. The plasma is kept inside the toroidal vacuum camera E. Source: adapted
from Ref. 14. (b) Scheme of the TCABR poloidal cross-section, showing the major radius
Ry = 61.5 cm and the minor radius ¢ = 18.0 cm.

The current purpose of the TCABR tokamak is not restricted to Alfvén heating. New
objectives include (i) the characterization of magneto-hydro-dynamics (MHD) instabilities
and (ii) the study of an improved confinement regime by edge bias polarization [12]. In the
TCABR it is also possible to study the behavior of plasma turbulence at the edge and the
scrape-off layer regions, which is the focus of this dissertation.
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The TCABR plasma is made of hydrogen and has a circular poloidal section. It is
in general ohmically heated, meaning that the plasma is heated by collisions due to the
generalized Ohm’s law (pp. 214-216 of Ref. 6, or Section 5.7 of Ref. 10). An external coil
with varying current ipgr(t) induces an electric field in the toroidal direction, making a loop
around the tokamak. This electric field then induces a plasma current I, in the chamber
and, due to the fluid collisional resistance, the current dissipates heat in the plasma. The
plasma current in TCABR reaches up to I, < 100 kA. Fig. 1.6 displays a scheme of the
tokamak with its components, while Fig. 1.7 shows time series of the plasma current I,, the
loop voltage Voo (associated with the toroidal electric field) and the current ipgr in the coil
for ohmic heating.

TCABR #29805
g i (a) Current in the primary (ohmic) coil I
E 3
2
©1]
0
15 1 L
< (b) Induced electromotive force
5 101 (loop voltage)
o
S 5
>

__100 :
< 754 (c) Plasma current |
g 50
[7]
& 254
a

0 ‘ T T T ‘
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Figure 1.7: The first panel shows the current igyr of the TCABR ohmic-heating coil (A in
Fig. 1.6). The temporal variation of ipgr is responsible for the loop voltage arising around

the tokamak (panel (b)), which in its turn causes the plasma current I, shown in the panel
(c). I, then heats the plasma. Author of the figure: Z. O. Guimaraes-Filho.

The TCABR central electron temperature is around kgT,o ~ 0.5 keV (i.e., Too ~ 6x10° K)
and its mean electron density is 0.9 < f,o < 3, in units of 10’ m=3 [12]. Using Eq. (1.2),
this electron temperature and the density n. = 2 x 10! m=3, the Debye length results to be
Ap =~ 40 pm. The TCABR minor radius for plasma confinement is a = 18.0 ¢m, meaning
that a > Ap, as required to an ionized gas to be a plasma (subsection 1.2.1). The major
radius of TCABR is Ry = 61.5 cm, giving an aspect ratio of ¢ = Ry/a = 3.4.

Other parameters of TCABR include the toroidal magnetic field, By ~ 1.1 T, the hydro-
gen filling pressure, Py ~ 3 x 10~* Pa, a discharge duration of Tp ~ 100 ms, and a steady
regime duration up to 7' < 60 ms. All parameters are summarized in Table 1.1.
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Table 1.1: TCABR parameters. Sources: Refs. 12, 15 and 16.

Parameter Symbol Value
Plasma format Circular
Plasma composition H Hydrogen
Major radius Ry 61.5 cm
Minor radius a 18 cm
Aspect ratio (Ry/a) q 3.4
Plasma current I, < 100 kA
Central (or toroidal) magnetic field By ~11T
Mean electronic density Mg 0.9~ 3x 10¥m3
Central electronic temperature kT, ~ 0.5 keV
Hydrogen filling pressure Py 3 x107* Pa
Discharge duration Tp ~ 100 ms
Steady regime duration T < 60 ms

1.3 Turbulent transport and bursts

The first theoretical attempts to describe the transport of heat and particles in magnetized
plasmas used cylindrical geometry. In these so-called classical models, it was assumed that
diffusion (i.e. movement of single particles due to collisions) would be the principal cause
of transport (see for ex. Section 4 of Ref. 17). However, the transport rate obtained in
experiments was much greater than expected. Further models then considered the toroidal
geometry of tokamaks, obtaining higher diffusion coefficients, and the corresponding descrip-
tion become known as the neoclassical theory for plasma transport [17]. Nevertheless, the
neoclassical diffusion was still much smaller than the transport observed in experiments.

This gap was then credited to anomalous transport [17,18|. Although a lot remains to
be understood, further research found evidence that the anomalous transport is mainly con-
vective (i.e., associated with coherent structures) and caused by turbulence—that is, due
to non-linear micro and mesoscale fluctuations in particle density, temperature and electro-
magnetic fields [19-21].2 Thus, another name for this anomalous phenomenon is “turbulent
transport”.

The confinement of plasmas in tokamaks is strongly affected by turbulent events that occur
at the edge of the confinement region (Preface and Section 7.3 of Ref. 19, and also Refs.
22-25). The transport of ions resulting from this turbulence can also damage and erode the
main chamber walls of fusion devices [19,26]. Several machines share similar characteristics
regarding these extreme events, indicating a universality of this type of phenomenon in
magnetically confined plasmas [24,25,27].

Among the turbulent phenomena, bursts stand out. They are also called blobs, filaments
and avaloids, and this name multiplicity will be addressed in a paragraph below. Bursts are

2For Ref. 19, see the Chapter 7, in special its abstract, Section 7.3 and Subsection 7.3.2.
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density peaks with amplitude higher than the average of the signal in at various standard
deviations.? Simulations and experiments also evidence that the high burst density is ac-
companied by high temperature [27-29]. Bursts are among the principal agents responsible
for the deterioration of plasma confinement [24,25|. Their shape is of filamentary coherent
structures extended along magnetic field lines in the devices, as seen in Fig. 1.10. In toka-
maks, these structures often propagate from the scrape off-layer (SOL) to the wall (e.g., Fig.
1.9), generating a considerable loss of particles that compromise the plasma confinement and
its life-span. They have been found in various magnetically confined plasmas devices such as
linear machines [24,25,27|, tokamaks [24,25,27-38,40-44] (including TCABR [15,29,45,46]),
stellarators [27,47| and in the Helimak [27,29,48,49].

Bursts [27-41,44,47| are also commonly called blobs [27-44,47|, filaments [27,31-37,39-44,
47, or avaloids (as an avalanche reference) [24,25,27|. It is possible to identify a dimensional
difference between the first three names. The density spikes in local measurements (Fig.
1.8) resemble explosions and, in this context, the term burst is fairly adequate. In its turn,
we see a blob format in 2D graphs of these structures (Fig. 1.9). Lastly, 3D analysis of
these events shows that they have a filamentary structure (Fig. 1.10). Thus, bursts, blobs
and filaments refer to the same coherent structures, but each name is more appropriate in
a different dimensional context. These nuances are used, for example, in [42,43,50]. In this
dissertation, the term burst will be preferred, as here the analyzed signal is locally-measured.
However, this paragraph highlights that all three names refer to the same structure.

Recently, a stochastic model was developed [50-55|, aiming to describe statistical features
of the edge plasma turbulence measured in a specific position. Therefore, in this model bursts
are the main actors. This stochastic description has been tested and validated in various
tokamaks around the globe, such as TCV [30,31], KSTAR [32], Alcator C-Mod [33-39], JET
[40], COMPASS [41], and also in the Texas Helimak [48,49]. Three different density signals
were analyzed: ion saturation current [30-32,34,38-40,48,49|, gas puff imaging [33,35-37,39|
and lithium-beam emission spectroscopy (Li-BES) [41]. In the present dissertation, this
stochastic model will be adopted to describe turbulent fluctuations in the TCABR tokamak.

. —Bursts

Isnt - <[s(l,f> + 2.50[

| | 1 | | |
65.02 65.04 65.06 65.08 651 6512 65.14 65.16 65.18 65.2
Time (ms)

Figure 1.8: Excerpt of a saturation current (/y,) measurement made in TCABR, showing
three bursts (peaks bigger than the I, average in more than 2.5 standard deviations).

3The most common threshold is 2.5 standard deviations [30-35], but some works use 2 [48] or 3 [25].
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Figure 1.9: Gas puff imaging of a blob propagation in the NSXT late H-mode (inter-frame
time of 7.0 us). The solid line indicates the separatrix [59,62].

poloidal [cm]

Filament
structure

5 10 15
toroidal [cm]

(b)

Figure 1.10: (a) Image of filaments in the NSTX tokamak edge, obtained with a 20 us
exposure photo [60]. (b) Poloidal-toroidal cross-section of filaments seen with D, emissions
in the Alcator C-Mod tokamak. A magnetic field line B is superimposed along the position
of maximum D, intensity [61,62].

Eventually, it has been observed that high confinement modes (H-modes) in fusion plas-
mas decrease the amplitude of bursts [59]. Nevertheless, in late H-modes, blobs still play
an important role and have not been fully understood [59] and filaments are also gener-
ated by edge-localized modes (ELMs) that can occur during H-modes [27]. Besides, recent
works [36, 37| were successful in applying the stochastic model of Refs. 50-55 to discharges
with high confinement regimes. This indicates that such stochastic model provides a power-
ful framework to describe turbulent density fluctuations in various scenarios of magnetized
plasmas.

Although the stochastic description presented in Refs. 50-55 is phenomenological, its
framework influenced further theoretical research [56-58|. Such works were able to explain
some plasma turbulence properties with a first-principles model based on filament dynamics.
The properties analyzed include the link between filament dynamics and density profiles in
the scrape-off layer of magnetized plasmas.

The onset of blob-filaments still is a topic of active research. Ref. 63 showed in theory that
filaments can be formed as a consequence of the nonlinear evolution of drift waves. A piece
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of evidence in favor of this hypothesis was obtained in TORPEX, a low-temperature toroidal
plasma device [64]. More specifically, blobs were observed detaching from interchange wave
crests, which were sheared off by the motion of particles due to E x B drifts (Fig. 2a—c of
Ref. 64).%

The mechanism of blob propagation is also understood and is supported by more experi-
mental evidence (see for ex. Refs. 64 and 65 and Subsection 7.3.2 of Ref. 19). It is mainly
ascribed to an inertial force effect, that is, the curvature of the toroidal magnetic field, which
in its turn causes plasma polarization and a corresponding E x B drift. This last one then
drives particles out of the plasma edge.

1.4 Objectives and chapter summary

This dissertation aims to apply the stochastic pulse train model (SPTM), deduced in Refs.
50-55, to the tokamak TCABR and compare different background choices for the SPTM,
using a new fit developed here. Recent articles [48, 54| introduced the use of correlated
Gaussian noise and pulse background to the SPTM. Here we will present an objective fit
procedure to adjust the SPTM with noise, which can be used in other magnetic confinement
machines. We will then apply the noise model to the TCABR tokamak and show evidence
that the density fluctuations in this device are better described by a background with cor-
related noise than with white noise. We will also compare the model with noise to the one
with a pulse background. Some evidence will indicate that the latter is better to describe
the structure of density fluctuations. In particular, we will apply two diagnostics to the
SPTM, the complexity-entropy diagram and the recurrence quantification analysis (RQA),
which were not used in this context before, but can give important insights into the signal
structure.

Chapter 2 will address the mathematical and statistical methods used in this dissertation
to analyze turbulence data. In Chapter 3, it will be explained how local turbulent mea-
surements were done with Langmuir probes. After, it will be presented an experimental
characterization of turbulent density fluctuations in the TCABR tokamak. Chapter 4 will
then describe the stochastic pulse train model with noise. Although Chapters 3 and 4 will
already contain some authorial work, our main contributions start on Chapter 5, in which
our method for fitting the SPTM with noise will be introduced. Chapter 6 then describes an
application of this fit for the TCABR experiment 34132. Chapter 7 presents an improved ver-
sion of the SPTM model considering stretched bursts and a pulse background, while Chapter
8 applies this new version to TCABR. Finally, Chapter 9 summarizes the results.

4For information about the curvature and E x B drifts, the reader is referred to Chapter 2 of Ref. 10.
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Chapter 2

Methods for analyzing turbulence data

Turbulent signals often require careful statistical analysis. This chapter presents the main
mathematical tools used in the dissertation.

2.1 Probability distributions

2.1.1 Definitions and moments

The probability density function (PDF) is used in countless fields, ranging from sociology
to engineering and nature sciences [66,67]. In the case of turbulent plasma fluctuations, the
PDF standardized moments skewness and kurtosis have special roles (e.g. Ref. 50).

The PDF of a random continuous variable & measures the probability of ® to be ranged
in a certain interval. Let P be the PDF and Pr the probability. Then

)
Pr(®, < ® < &) = / P(®)d®
[

1

The PDF is normalized to one:

/oo P(®)dd = 1

—00

The expected value of a function f(®) is defined by

o= [ s
whereas the so called raw moments of the distribution are obtained with f(®) = ®" n € N*,

(®") = /_ " nP(0)do

[e.9]

The average value is the first moment,

(@) = /_Oo OP(P)dd

e e}

Moreover, the central moments are defined as



2. Methods for analyzing turbulence data

and hence the variance is the second central moment,

7= (@ @)= [ (@ (@) P(®)dd (2.1)

The variance measures how spread the distribution is from its average value. The positive
square root of the variance is known as the standard deviation: op = \/03.

Finally, the standardized moments are defined as

b L[ @ o)) p@)da

n n
Oy 0% J-—co

The skewness and kurtosis of the distribution are the 3rd and 4th standardized moments:

S@ZM—;, K@ZM—i
Jp g

Some authors also use the excess kurtosis, K} = K¢ — 3 [68].

The skewness measures how asymmetric the distribution is. It can be negative, positive
or null. Usually, if the longest tail is on the left side of the distribution (with relation to its
mode), then the skewness is negative: Sp < 0. Meanwhile, if the longest tail is on the right
side, then the skewness is usually positive: Sg > 0. Eventually, a symmetric distribution
(mode equal to mean and median) has null skewness: Sg = 0.1

These three cases are exemplified in Fig. 2.1(a), using the beta distribution (e.g. p. 99
of Ref. 66 or Appendix D of Ref. 67):

F(a+5)
I'(a)L(B)

where ® € [0,1], a, 5 > 0 are called shape parameters and I'(«) is the Gamma function (e.g.
Appendix D of Ref. 67):

P(®;a,p) = P11 — @)A1 (2.2)

o) = /000 7 e "dz, Re(a) >0 (2.3)

As shown in Ref. 69, turbulent density fluctuations in magnetically confined plasmas usually
have positive skewness and of order of Sg ~ 1. Similar results will be presented in Chapter
6 for the TCABR tokamak.

In its turn, the kurtosis measures the weight of outliers (or extreme events) [68].2 Here

!These are the general ideas behind the skewness concept, but, if a tail happens to be fat, it can make
the skewness behave otherwise. For example, a non-symmetric distribution can have null skewness if one tail
is longer and the other is fat in such a way that both sides have the same weight. Multimodal distributions
are other cases that do not obey the general rule of longest tails.

2In plasma physics, the term “flatness” is sometimes used to refer to kurtosis |24, 38,50, 54,69]. However,
following Ref. 68, the terminologies of “peakedness” or “flatness” are inadequate to designate kurtosis, since
distributions with a variety of peaks and degrees of flatness can have the same kurtosis (Fig. 2 of Ref. 68).
In addition, distributions with very similar flattening can have astonishingly different kurtosis (Fig. 2 and 3
of Ref. 68).
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outliers are understood as points distant from the distribution mean in several standard
deviations.?

Skewness example Kurtosis example
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Figure 2.1: (a) Examples of positively, null and negatively skewed beta distributions.
(Parameters («, 3) used: (2,5) in blue; (5,5) in orange; (10,5) in yellow.) (b) PDFs (in
log scale) from two normalized Gamma distributions, respectively with v =5 (in blue) and
v = 10 (in orange).

The Gamma distribution, which will be of great importance for this dissertation (Chapters
4-9), can be used to exemplify the effect of the kurtosis. It is defined by (e.g. Ref. 50 or

Appendix D of Ref. 67)
1 o\ d
Py(®;7,4) = T()A (Z) exp <_Z) (2.4)

where ® > 0, I'() is the Gamma function and v and A are respectively the shape and scale
parameters. The Gamma distribution has mean, standard deviation, skewness and kurtosis
given by [55]

(@) = Ay (2.5)
Op = A"}/l/2
2
S.:p m
Ky =3+ 0
y

3As a counterexample, a distribution like P(®;a) = 3/(2a®)®2, defined for ® € [—a,a], would have no
outliers, since it has standard deviation og ~ 0.8a. That is, this distribution does not have points greater
than a = a0oe/(0.8a) = 1.2504 and therefore there are no ® distant from the mean (®) = 0 in several
standard deviations. Thus, it is of no surprise that its kurtosis is small, K¢ = 1.25, closest to the smallest
possible value, K¢ = 1.
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The excess kurtosis K¢ — 3 is inversely proportional to v and is independent of A.

When comparing different kurtosises, it is especially helpful to consider normalized vari-
ables with null mean and unity standard deviation,

®— ()

0o

o =

A point ® = 10 is for example 10 standard deviations distant from the mean. With such
notation, the kurtosis can be written as K¢ = <<§4>. In its turn, the distribution of @ is

obtained by the change of variables
3 Add 3
Py (D) = |—=| Po(P(P
(8) = |52 | Pa((@)
It is easy to show that, for a Gamma PDF (Eq. (2.4)), the corresponding Pj(®) is indepen-
dent of A:

~ 1/2 - v—1 ~
Py (0) = _g(v) (71/24) + 7) exp (—71/2<1> - 7)

Fig. 2.1(b) illustrates two normalized Gamma distributions Pj(®) with different . The
PDFs in blue and orange have shape parameters v = 5 and v = 10, respectively. As seen
considering the left tails, the blue curve produces outliers with a higher probability and hence
has a greater kurtosis than the orange distribution.

The kurtosis of any random variable is always greater than the squared skewness by at
least 1 (proof in pp. 432-433 of Ref. 70):

Ky > 1+ 55

Thus, the smallest possible value for the kurtosis is K¢ = 1. In turbulent density fluctuations

of magnetized plasmas, usually the following approximate parabolic relation is obeyed [27,
31-34,36,50,51,69, 71-73|:
3
Ko ~3+ 55;

From Eq. (2.5), it is easy to derive that the Gamma distribution exactly follows the relation
Kg =3+ 1.552.

To finish the discussion, let us highlight the differences between the moments analyzed in
this section. The average is the 1st raw moment of a distribution, (®), while the variance is
the 2nd centralized moment, 03 = pp = (¢ — <<I>>)2> Moreover, the skewness and kurtosis
are respectively the 3rd and 4th standardized moments, Sp = p3/os and Kg = p4/0j. For
the sake of simplicity, in this dissertation these four statistical indicators will be generically
called "moments", following previous works [32,50, 52,54, 55|. When needed, the adjectives
raw, centralized and standardized will be used to avoid ambiguity.
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2.1.2 Cumulative distribution functions (CDF)

The CDF Pg(®’) of a random variable @, evaluated at a value ®’, is the probability that ®
assumes values smaller or equal than &'

Py (D) = Pr(® < @)
The probability that ® is measured between ®; and ®, is then
PI‘((I)l S d S (I)Q) = Pcb(q)g) - Pcb(q)l)

Remembering that this same probability is given in terms of the PDF Pg(®) by the following

integral,
P

Pr(d; < ® < &) = / Pp(®)dd

Py
then we conclude by the fundamental theorem of calculus that the PDF is the CDF derivative,

Pa(P2) — Pa(P1) =/¢2 Py (®)dd —
P(®) = "0 (®) 2.6

As it will be shown in Subsection 2.2.2, this expression is useful to deduce the formula for the
empirical characteristic function (ECF). The ECF, in its turn, is important to fit turbulence
data in plasmas [55].

2.1.3 Convolution of PDFs

Let & be given by a sum of the two other random variables X and Y, with distributions Py
and Py:
d=X+Y

Then the PDF of @ is the convolution of Py and Py, which is defined by

Po(®) = (Py  Py)(D) = / " Py(® — 0)Py(0)dw

—0o0

Even if Px(X) and Py (Y') can be expressed by elementary functions, the convolution (Px *
Py )(®) may not have a closed-form.

Let us consider one example. As it will be described in Chapter 4, local measurements
of plasma density fluctuations can be modeled by a sum of pulses that follow a Gamma
distribution plus a Gaussian noise [32,34,37,41,48,54,55|. As seen in Subsection 2.1.1, the
PDF of the Gamma distribution is given by (e.g. Appendix D of Ref. 67)
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where X >0, v > 0 and A > 0 are respectively the distribution shape and scale parameters,
and I'(7) is the Gamma function (Eq. (2.3)). In its turn, the PDF of Gaussian data is
(Appendix D of Ref. 67)

1

2mo

Py(Y) = exp

o] i

where p € R is the distribution mean and ¢ > 0 is its standard deviation. The convolution
of Px and Py can not be expressed in terms of elementary functions. When the Gaussian
noise mean is zero (i.e., u = 0), then the PDF assumes the following intricate form (Eq. (A6)
of Ref. 54)

OGN - (19
Po(®) = 5aay ¥ P\ "3y ) “\ 30 [0 190/ (29)
Y11/ N
><M(2’2’2€ (71/2/1 e
1/2 P
g 12
T/2) (WQA ! 6)

1+~ 3 1 Lout e\
M| L2 (e 12
(S5 (g )

where € is the ratio between the variances from the noise and the Gamma process, € =
0?/(yA?), and M(a,b;z) is the confluent hypergeometric function of the first kind, for pa-
rameters a and b and argument z [74]. In general, M(a,b; z) can not be written in terms of
elementary functions.

Even though the convolution of two distributions often results in very complicated ex-
pressions like Eq. (2.9), there is another function that carries the same information as the
PDF and has simpler expressions for the sum of random variables. This is the characteristic
function (CF) and is the theme of the next section.

2.2 Characteristic functions of PDFs

2.2.1 Definition and properties

Let @ be a random variable with a probability distribution P(®). The characteristic function
(CF) of @ is defined by (see for example Chapter 4 of Ref. 75)

Co(u) = E [e™®] = / N e ®P(®)dd (2.10)

—00

where ¢ is the imaginary unit and v € R is the CF variable. The CF determines the same
information of the PDF. This affirmation can be explained in terms of the characteristic
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function logarithm, which is a moment generating function (Section 4.6 of Ref. 75),
= ()"
InCo(u) = ZFLHT (2.11)
n=1

where k, are the n-th cumulants of the PDF. The cumulants are cumulative (hence the
name). That is, if ® is the sum of random independent variables ® = &1 + ®5 + ... + Oy,
then its cumulants are

m) (2.12)

=
S
I
=
:/\

where KJ?(lm) is the n-th cumulant of ®,,. There is a correspondence between the cumulants

and the distribution moments. For example, the mean, variance, skewness and kurtosis of ®
can be written as

(®) = K, (2.13)
O'(% = Ko
R3
Se = 3/2
Ko
K
ch - 3 ‘|‘ _;l
K

The same can be done to other moments of the distribution. Thus, Eq. (2.11) shows that
the characteristic function completely determines the PDF moments and therefore its infor-
mation.

Nevertheless, in a lot of cases the PDF has no closed-form, whereas the CF is usually
much simpler and can be put in terms of elementary functions. Therefore the characteristic
function is a good candidate to fit data and it has already been used in the context of plasma
density fluctuations [55].

Other properties of the CF are also very useful for fitting data and will now be presented.
From Eq. (2.10) it is also seen that, by construction, Cs(0) = 1. Hence the point at the
origin carries no statistical information, since its standard deviation is null.

Also, from Eq. (2.10) it is noticeable that the CF is complex and, for real signals,
C@(u) = C@(—u)*

where the star means the complex conjugate. Separating Cg(u) in real and imaginary parts
yields
Re Cp(u) = Re Co(—u),

Im Cp(u) = —Im Co(—u)

Thus the CF real and imaginary parts are respectively symmetric and anti-symmetric. Con-
sequently, to fit real data, only u > 0 needs to be considered (as done in Refs. 55 and
76).
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Some characteristic functions that are important for this dissertation are the ones from
Gamma and Gaussian distributions (Eq. (2.7) and (2.8)). The Gamma characteristic function
is (Table 4.2 of Ref. 75)

Co(u) = (1 —iAu)™"

where, again, v > 0 and A > 0 are respectively the shape and scale parameters of the
distribution. The Gaussian CF is (as in Table 4.2 of Ref. 75)

1
Co(u) = exp (i,uu - 502u2)

where © € R is the distribution mean and o > 0 is its standard deviation.
The CF of a sum of random variables is the product of the original CFs [75]|. That is,
P=X+Y =
C@(u) = Cx(u)Cy(u)
Therefore the CF for a sum of Gamma and Gaussian random variables is
_ 1
Co(u) = (1 —iAu) " exp (i,uu — 502u2)

which is simpler than the PDF of X +Y (Eq. (2.9)).

2.2.2 The empirical characteristic function

When treating experimental data, it is important to evaluate an estimative of the CF. This
is normally done using the Empirical Characteristic Function (ECF) (well explained in Ref.
77 and also present in Refs. 55 and 76). The definition of the CF of a random variable ® is
given by Eq. (2.10),

Co(u) = / e P(®)dd

[e.o]

Using that the PDF is the derivative of the commutative distribution function (Eq. (2.6)),

dp

then it is also possible to write the CF in terms of the CDF,

P(®)

Co(u) = /0 1 P dP(®) (2.14)

As seen on Ref. 77, in a frequentist description the empirical CDF is simply given by
Pn(¢) =n(¢)/N, where N is the total number of data points and n(¢) is the number of ®;
such that ®; < ¢, with 1 < j7 < N. Therefore, in this discrete formulation, APy (®) = 1/N,
and the integral (2.14) can be approximated by the sum

1 N
Cv(w) = 5 D™
j=1

This is the empirical characteristic function (ECF), which can be used to fit plasma density
fluctuations [55].
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2.3 Covariance and correlation

While the variance of a random variable is defined by Eq. (2.1),

=(@—@)P) = [ (@ (@) P

the covariance between ® and another random variable W is, as seen for ex. in Section 4.3
of Ref. 66,
cov(®, ¥) = (( — (0)) (¥ — (¥)))

This means that

(@ = (2)) (¥ - ())) = /_OO (® = (@) (¥ = (¥)) Poy (P, ¥)dPdV

o0

where Ppy (P, V) is the joint probability of ® and W (see for ex. Chapter 5 of Ref. 67). The
covariance can be re-written as
cov(P, V) = (PT) — () (V)
If the variables are independent, (PW¥) = (@) (¥), and then the covariance is null.
The correlation coefficient (or simply correlation) of ® and ¥ is
cov(P, ¥)
090w

p(Q, V) =

p is bounded between —1 and 1 (theorem 5.4 of Ref. 67). If p &~ 1, the variables are strongly
correlated, meaning that if ® varies positively, U tends to do the same. If p =~ —1, the
variables are strongly anti-correlated and they tend to have opposite behaviors (when one
increases, the other tends to decrease).

If ® is measured N times in an experiment (or simulation), then its variance can be

estimated as
N

1 =\ 2
2 e — . —
Op = N —1 ]z:; (CI)J (I)>
where the sample average is
N
— 1
7=1
The sample covariance between ® and WV is, by its turn,
1N
cov(®,¥) = —— 2. (2 — @) (¥; - @)

A correlation matrix between the points of a random-valued vector x = (21,2, ..., Ty)
can be constructed with elements

pip = ——2—= (2.15)
O'q)jO'\pk

for j,k € [1, N]. The diagonal of such matrix is 1 by definition. The correlation matrix will
be used for example in Sections 5.2 and 5.6.
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2.4 Fourier transforms and power spectra

In general, a Fourier transform (FT) can be understood as a mathematical transformation
that decomposes space or time functions into spatial or temporal frequency functions. In this
dissertation, time series will be analyzed.

The Fourier transform of a temporal signal ®(¢) is given by (see for example Chapter 2
of Ref. 78, or 1 of Ref. 79)%
B(f) = / B(t)e2mf" gt

whereas its inverse is

o)~ [ T (e

—00

t = +/—1 is the imaginary unit and f is the frequency. When only positive time is defined,
it is helpful to use the one-sided Fourier transform,

d(f) = /OOO d(t)e 2 Ftqt

Experimental data are in general discrete. Thus it is important to define a discrete Fourier
transform (DFT) and its inverse (e.g. Chapter 2 of Ref. 78 or 1 of Ref. 79),°

N 1 2min .
<I>j:NZCI>neXp(—Z ~ ) j=01,2,...,N—1 (2.16)
n=0
N-1 2 in
o, — qJJeXp(i ]é > n=012... N-1 (2.17)
=0

where j is the index for frequency, n for time and N is the total number of points. The func-
tion ®,, = ®(t,) is thus decomposed into a linear combination of exponentials exp (—i2mjn/N)
with coefficients ®; = ®(f;).

To express the time ¢ in terms of n, one writes

T
th=nAt=n—0, n=0,1,2...,N—1
n nN_l n

4From Eq. (2.10), one notes that the characteristic function is the Fourier transform of the PDF.
5Some authors define the discrete Fourier transform as
1 N/2 o
. 2mjm .
&)=+ > dpexp <—z N ) . j=-N/241,-N/2+2,...,N/2
m=—N/2+1

Nevertheless, this notation is equivalent to Eq. (2.16). Also, Eq. (2.16) holds for complex ®. For details see
Sections 2.3 and 3.1 of Ref. 78.
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where At = T/(N — 1) is the time interval between points and T'= (N — 1)At is the total

time analyzed.® In its turn, to express the frequency f in terms of the index j, one writes
PR
T (N=-DAt T

j=0,1,2..,N—1
Another important quantity based on frequency is the power spectral density (PSD, as
in chapter 10 of Ref. 67), or simply power spectrum,

1 . .
Q = lim —®(f)- "
o(f) = lim o &(f)- &7(f)
where ®*(f) is the complex conjugate of ®(f). Qo(f) is a non-negative real function, whereas
the Fourier transform ®(f) is a complex one. Sometimes it is practical to write the Fourier
transform and the PSD as a function of the angular velocity w = 27 f.

Spikes and hills in the graph of {23 indicate the prevalence of frequencies on the signal.
For example, the discrete power spectral density of a sine function s(¢) = Asin(27bt) is

1
Qs(f) - ZAQ (6f7 b + 6f7 fmaz_b) (218)

where A € R, fi0 = 1/At and 0y, is the Kronecker delta function:

s L =0
700, f#b

From Eq. (2.18) follows that a finite linear combination of sines must show spikes in its PSD
graph. For example, if
O(t) = sin(27 - 50t) + 2sin(27 - 80t) (2.19)

then the PSD is

1
Qs (f) = 1 (07,50 + OF, frnan—50) + (07, 80 + OF, f1r0u—50)

If we choose At = 0.005, then f,.. = 1/At = 200. Fig. 2.2 presents the discrete PSD of
®. Four spikes can be seen, at f = 50, f = 80, f = 120 and f = 150. From Eq. (2.18),
it is clear that the last two are just mirrored versions of the first two frequencies, with the
symmetry axis located at the so-called Nyquist frequency, fxy = fina/2 = 1/(2At). In fact,
phenomena with frequencies higher than fx, cannot be properly detected (pp. 95-97 of Ref.
78). Thus, for practical reasons, the region with 1/(2At) < f < 1/(At) is usually omitted in
PSD graphs of real data.

6As an example, in the TCABR tokamak the time series of plasma steady fluctuations have: At = 0.5 us
and N < 12-10* + 1 for the total number of points (that is, T = (N — 1)At < 60 ms).
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Power Spectrum of ®(t)

0.8

— 06

0.4+

0.2}
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f

Figure 2.2: Power spectrum of Eq. (2.19), with A¢ = 0.005. The spikes indicate that
the signal is dominated by frequencies f = 50 and f = 80, while f = 120 and f = 150 are
“mirrored frequencies”. Inspiration of the example: MathWorks@®) fft documentation.

Sampling the PSD can create an effect known as spectral leakage (see pp. 98-99 of Ref.
78, or Ref. 81), which distorts the power spectrum. To avoid this, the signal is divided into
segments and smoothing windows are applied [81-83|. Appendix A.1 details this process.

The power spectral density is a powerful tool to analyze plasma turbulent signals. With
the PSD, it is possible to: identify unexpected phenomena in the frequency domain [48|,
estimate parameters from models [48,80] and compare simulations and experiments [35, 48].

2.5 Autocorrelation function

The autocorrelation of a complex function ® can be defined as (e.g. p. 397 of Ref. 84)

Ro(r) = (Bt + 7)®* (1)) = lim i/+Tq><t+T)q>*(t)dt

T—o0 2T -T

It is clear that the autocorrelation of a real function is even—that is, Re(7) = Re(—7).
7 is called the lag of the autocorrelation. When 7 = 0, then Rg(0) = (®?). For this
reason, sometimes the autocorrelation is normalized by (®?) so that Re(0) = 1.7 The sample
autocorrelation function is (section 4.2 of Ref. 85)

Ro(7) = (2.20)

LSVt @ &% forT=—1,-2,.. —(Ny —1)

Npt—T

n=1—71

{N;T ST P, LB for 7= 0,1, ..., (Npy — 1)

where N, is the total number of signal points. The power spectral density (PSD) is given
by the Fourier transform of the autocorrelation (see for example Ref. 53 or pp. 395-398 of

"MATLAB has an in-built function that calculates the sample autocorrelation, called xcorr. By default
it uses the normalization Rs(0) = 1.
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Ref. 84),

o0

Qo (w) = / Ro(T)e “"dr (2.21)

The autocorrelation function can be used to deduce the PSD formula (as in Ref. 53), and
can describe some of the signal properties. For example, different colors of Gaussian noise
(Subsection 2.6.1) have the same PDF, but different PSD and autocorrelation.

The autocorrelation can be generalized to analyze two signals at the same time, in which
case it is called the cross-correlation or cross-covariance (see Ref. 86 and section 4.2 of Ref.
85). Also, some authors [85,86] define the autocorrelation so that Re(0) = 1 and the terms
are calculated with respect to (@, 4, — (®)) (®* — (®)*) instead of ®,,,P5. We choose to
follow the definitions used in our field [53,54].

The power spectrum of the sum of independent real variables can be obtained via the
autocorrelation. Let

O(t) = X () + Y ()

Then
Ro(r) = (((X(t+7)+Y(t+7)][XO)+Y(Q)]) =

R@(’T) = Ry(T) + Rz(’T) + 2 <X> <Y>

From the relation between the frequency spectrum and the autocorrelation (Eq. (2.21)),
results

Qp(w) = Ay (W) + Ay (w) + 47 (X) (V) 6(w) (2.22)

where I have used a identity for the Dirac distribution,

/ e “Tdr = 2r8(w)

2.6 Correlated Gaussian noise

In this section, we introduce three of the four noise backgrounds that will be used in the
dissertation to analyze the structure of plasma density fluctuations: colored Gaussian noise,
Ornstein-Uhlenbeck noise, and uncorrelated Gaussian noise (which is a special case of the
previous ones). The fourth background is the pulse background, but its description will be
postponed to Chapter 7.

2.6.1 Colored noise

A colored noise (CN) can be defined as a time signal ®,(¢) with a power spectrum that
follows the relation
Oy o f7

at least for high frequencies below the Nyquist frequency, f < 1/(2At) [87,88]. We calln € R
the noise exponent. Usually n € [—1,2]. Gaussian colored noise is the one that follows the
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relation 2y o< f~"7 and is also normally distributed. The color of the Gaussian noise does
not change its PDF,

P(®y) = ———r

2
L o [_ (P = (D) ]

The most used Gaussian colored noise is the white noise (WN), which has exponent n = 0.
This means that the WN signal is uncorrelated and has a constant power spectrum. However,
experimental time signals are often correlated, in which case colored noises may be a good
option. All noises with 1 # 0 have a non-vanishing correlation between their points. Ref. 48
presents one example of CN applied in the context of plasma density fluctuations.

In this dissertation the MATLAB(®) dsp.ColoredNoise function will be employed to gen-
erate colored noise. In the region where the relation Q5 o< f~7 is obeyed, the MATLAB CN
follows

C(n)

where o, is the noise standard deviation, At is the interval between points and w = 27 f is
the angular velocity. We found an "empirical" expression for C,

0.82

C(n) = 10> (2.24)

as shown in the fit of Fig. 2.3(a). Fig. 2.3(b) exhibits an example of the power spectrum for
pink noise (n = 1), along with the fit of the Eq. (2.24).

10 Correction function Colored noise PSD
¥ £ 1 0_4 P
8 A '
G 6 =
O SN—r
=] -6
S 4 a=5.73(7) 5 10
ke, s b = 0.820(23)
2 £ 1 D_ata b i —Colored noise, 7 = 1
¢ —Fit: Iogm(C) =arn [ —Theoretical PSD
0 ‘ ‘ 108
0 0.5 1 1.5 2 10? 10% 10°
n Frequency (Hz)
(a) (b)

Figure 2.3: (a) Correction function C(n) for the straight part of the colored noise PSD:
Qu(w) = 03, AtC(n)/w". (b) Example of fit for n = 1.

2.6.2 Ornstein-Uhlenbeck noise

Another very useful correlated Gaussian noise is the Ornstein-Uhlenbeck (OU) process [89—
91]. Following the notation of Ref. 89, it can be defined by
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1
Dyt + dt) = Opr(t) — —Dp(t)dt + H2g(t)(dt)/? (2.25)
™N
7y is called the relaxation or correlation time [89,90]. @, here is the OU process (or noise), t
is a continuous-time variable, ¢ is the diffusion coefficient and ¢(t) is an uncorrelated Gaussian
distributed variable with vanishing mean and unity standard deviation. dt is understood as
an infinitesimal quantity, that is, dt € [0, ], where 0 is a real positive number and ¢ — 0.

The OU noise is a continuous Markov process, meaning that the current state of the
system at t 4+ dt only depends on the previous state at ¢, for dt — 0. The initial motivation
for the OU process was to describe the velocity of a Brownian particle [89,91]. Later, it has
been applied to model some types of colored noise [89] and different phenomena, including
plasma physics [54].

For initial time ¢y = 0, the Ornstein-Uhlenbeck noise (OUN) has mean and variance

(Bpr(t)) = Dpe /™ (2.26)
ox(t) = %CTN (1- e_2t/w) (2.27)

Thus the OU process is "asymptotically stationary", in the sense that its mean and variance
asymptotically tend to be constants for ¢/7y — oo. For this dissertation, the transient term
e~2/7™¥ can be neglected, as very rapidly in the modeled signals t/7y > 1.8 Neglecting the
transient regime, it is possible to write the diffusion coefficient in terms of the signal variance

and correlation time,
o2
c = 2_N

N
A non-vanishing average can also be added to the signal, transforming ®x/(t) into ®pr(t) +
(®p). Thus, neglecting the transient regime, the OU process can be described in terms of
(D), on and T
The correlation time is easily understood in terms of the auto-correlation (Section 2.5

and Eq. (A17) of Ref. 54) of the OU process,

Rar(r) = (@t + T)xr (1)) = 0 exp (—%) (@) (2.28)

Thus the correlation time 7, is the time where the autocorrelation decays in 1/e. The power
spectrum of the OUN;, on the other hand, is (Eq. (A14) of Ref. 54)°

81n the results of this dissertation, the maximum 75 will be about 10 ws. For ¢ > 57pr, the transient effect
e~t/7™7 is already smaller than 1%. Thus, after no more than 50 us the signal can be considered stationary.
On the other hand, the total analysis time considered for the signals in this dissertation will be T' ~ 40 ms.
Hence the noise non-stationary effects would be noticeable at most only at 50 ps/40 ms = 0.125% of the
analysis.

9Such functions of the form y(z) o< 1/(1 + cz?) are called Lorentzian functions [54,80].
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2TN0/2\/

_ 2
R p=pe + 27 (w) (D) (2.29)

Qn(w)

where w = 27 f is the angular velocity and §(w) is the Dirac distribution.

The Ornstein-Uhlenbeck process can be easily simulated using Gillespie’s algorithm, which
gives an exact updating formula (Eq. (1.10) of Ref. 89):

1/2
Our(t + At) = Bpr(t)e ™ ¢ [‘%N (1- e—w/W)] g(t) (2.30)

The non-vanishing mean (®,) can be added to ®(t) after the implementation of the above
equation.

2.6.3 Comparing CN and OUN

Some comparisons between colored noise (CN, Subsection 2.6.1) and the Ornstein-Uhlenbeck
noise (OUN) can be made. Both are correlated Gaussian noises—meaning that each point
P (t;) is normally distributed, but can be correlated with another ®(¢;). Both CN and
OUN can be expressed in terms of three parameters: the mean (®,r), standard deviation o
and a correlation parameter. In the case of colored noise, the correlation parameter is the
noise exponent 7, from Q o 1/f7. For the OU process, it is 7os. The correlation of both
processes increases with their correlation parameter. For n = 0 and 7, — 0, the signals tend
to the uncorrelated Gaussian noise (white noise).' When 75 — oo, the OUN tends to brown
noise (n = 2), as seen in Eq. (2.29).

Colored noise 10 Ornstein-Uhlenbeck noise

PR N VI Al
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5 w ‘ 5 : :
0 100 200 300 0 100 200 300
Time Time
(a) (b)

Figure 2.4: (a) Examples of colored noise with different exponent n (Qy o< 1/f7). n =0
corresponds to the so-called white noise; n = 1, to pink noise; n = 2, to brown noise. (b)
Examples of OU noise with different time correlations 7.

10Tn the OUN case, the condition 7ar — 0 has to be accompanied with 0/2\/ = TN /2 = cte.
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Fig. 2.4(a) shows three different characteristic signals of CN. All cases have unity standard
deviation. Each has a different average value so that the curves can be distinguished in the
same plot. For n = 0, white noise is achieved. For n = 1, results in the so-called pink noise.
n = 2 corresponds to brown noise, in reference to the Brownian motion [87]. Fig. 2.4(b)
depicts three OU processes with similar structures from the CN signals of Fig. 2.4(a). myr and
t have the same unit. For 7, — 0, white noise is recovered. For 7 &~ 2, the signal resembles
pink noise. For 7y > 1 (e.g., 7ax = 100), the process resembles brown noise (2 o< 1/w?),
since for w # 0 the power spectrum of the OU process is given by Qp(w) = 27x7/(1 + TR:w?)
(Eq. (2.29)) and thus, for myw > 1, then Qp(w) =~ 1/(Thw?).

In resume, the colored and Ornstein-Uhlenbeck noises are very similar. However, the
latter has some advantages. The PSD of CN is distorted as w — 0. Additionally, there is no
exact expression for the power spectrum of colored noise (Eq. (2.23)). The PSD of the OU
process, however, is well defined (Eq. (2.29)). Furthermore, the Ornstein-Uhlenbeck process
is easily computed with Gillespie’s algorithm (Eq. (2.30)), while colored noise implementation
is not unique and is not straight-forward [87,88].

In this dissertation, we will compare the results from white noise, colored noise and the
Ornstein-Uhlenbeck process to describe the background of plasma density fluctuations. The
three have been used in the literature of magnetized plasmas [34,48,54]. However, until now
no comparison between them was employed with experimental data.

2.7 Complexity-Entropy diagram

2.7.1 Bandt-Pompe probability

The Bandt-Pompe (BP) probability [92] is used to create the complexity-entropy diagram
[93], which is very useful to distinguish noise from chaos and to characterize a signal structure.
In this section will be explained how to obtain the BP probability from a signal ® (for example
® = I,,, Chapter 3). The notations and explanations here are mainly based on Refs. 94
and 95.

Let ® be a time series with N elements,!!
D = (D1,Dy,...,Dy)

An embedding dimension d is chosen to create overlapped d-tuples of ®. There are D =
N — d + 1 d-tuples in total, and they are elements of the set

Y = {((I)], '-'7(I)j+dfl) | ] - 1, ,D}
For example, if N =6 and d = 3,

d = {(I>1, (I)Q, q)?n (1)47 CI>5> (I)ﬁ}a

1Tn this section 2.7, bold letters will be reserved to arrays and sets.
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D=6-3+1=4
and the 3-tuples are
y(l) = (®y, By, P3), Y(Z) = (g, @3, Py)
y(B) = (q)?n (I)47 @5), y(4) = ((I)47q)57 q)ﬁ)
The Bandt-Pompe probability is obtained with permutations of the d-tuples. Let y =
(y1,-..,ya) be a d-tuple of Y. Then exists a permutation 7 = m...m4, where m; € N; =

{1,2,...,d} , such that § = (Y, Yy, ---sYn,) is in descending order. This 7 is called the
ordinal state of y. For example, if d = 3 and

® ={9.1,0.3,4.5,6.7,3.2, 3.8}
then the 3-tuples of ® are
y =(9.1,0.3,4.5), y¥ = (0.3,4.5,6.7) (2.31)
y® = (4.5,6.7,3.2), y¥ = (6.7,3.2,3.8) (2.32)
The ordinal state of y" is 7)) = 132, because the corresponding permutation of y™ is in

descending order,
- H 1 @
v = ") = (9.1,4.5,03)

For y®, y® and y®, the ordinal states are 7(® = 321, 7 = 213 and 7* = 132.

The Bandt-Pompe probability can now be defined. Let N, be the number of times the
d-tuples y € Y have ordinal state w. As stated before, the total number of d-tuples is
D = N —d+ 1. Then the BP-probability p, is defined as

= 2.
Pr= 7 (2.33)

pr is the probability that a randomly chosen d-tuple y have the ordinal state w. In the
example under appreciation, D = 4 and the possible ordinal states are K = 3! = 6,

7@ =123, 7® =132, 79 =312
7@ =321, 70 =231, 719 =213
The Bandt-Pompe probability distribution is defined as the set of all p,,
P ={p,:melIl} (2.34)
where IT is the set of all possible K = d! permutations. In the present case,

P = {P123, D132, P312, P321, P231, P213}

For the signal ® = {9.1,0.3,4.5,6.7, 3.2, 3.8}, there are four 3-tuples (Eq. (2.31) and (2.32))
and they respectively have the ordinal states 7)) = 132, 7(® = 321, 76 = 213 and #® = 132.
Thus, in this case, the BP probability distribution is

P = {0, 1/2, 0, 1/4, 0, 1/4}

In this thesis the time series of interest will not have 6 points, but rather N,; = 8 x 10%.
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2.7.2 Complexity and entropy

With the Bandt-Pompe probability distribution (Eq. (2.34)), one can proceed to construct
the Complexity-Entropy (CH) diagram [93]. The CH diagram is a two-dimensional plane,
having a complexity measure C;¢ on the y-axis and an normalized Shannon entropy Hg on
the x-axis. Both C;g and Hg are functionals of the BP distribution P.

The Shannon entropy is defined as

K
S(P) == prinlogy(p)
j=1

where K = d! is the number of permutations of the d-tuple and the probability p,q) is given
by Eq. (2.33). In the CH diagram, the entropy is normalized by the maximum entropy,

Smax = S(Pe)
where P, is a Bandt-Pompe equilibrium distribution, with equally probable states p, = 1/ K,
for all possible permutations 7 [96].1 Thus

K

S(P) =~ o, (%) ~ log, (K)

i=1

Consequently, the normalized Shannon entropy, used in the CH diagram, is

S(P) 1

Hs(P) = m = _m Zpﬂ'(j) logQ (pﬂ—(j))

j=1
The possible values of Hg are between 0 and 1. Hg = 0 implies that p_; = 1 for one

j, meaning that the system has only one state and is deterministic. Hg = 1 implies that
pety = 1/K for all j, yielding the maximum entropy.

In its turn, the Jensen-Shannon complexity is defined by

Cys(P) = Qus(P)Hs(P)
where the disequilibrium @ ;5(P) is

Qis(P) = Qo - Dys(P)

and Djg is the divergence

o= (252) [

2 2

12For example, a signal ® that is uniformly distributed or a Gaussian white noise will have a BP distribution
P., because in these two cases all possible ordinal states are equally probable. In this thesis, the chosen
embedding dimension is d = 6, yielding K = d! = 720 possible ordinal states and S(P.) ~ 9.5.
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2. Methods for analyzing turbulence data

Finally, the normalization constant on the @ ;5(P) equation is'®

K+1
Qo = K log, (K +1) — 2log,(2K) + logy(K)

Writing in terms of S(P) and constants, the normalized Shannon entropy and the Jensen-
Shannon complexity are given by

Hs(P) = g
P = {5 (F5Pe) - [SRLL SR S0

This Shannon entropy quantifies the number of ordering states a system has. On the other
hand, the Jensen-Shannon complexity measures how much a signal deviates from maximum
entropy. In other words, C;5 quantifies the preferred ordering states of a system [93].

2.7.3 The CH diagram

With the information provided, it is now possible to present a CH diagram. For a given
Shannon entropy Hg, the complexity C;s can not be arbitrary. Rather, C';g is constrained
between a minimum C,,;, and maximum C,,, |96]. This is illustrated in the red and blue
curves of Fig. 2.5, which depicts a complexity-entropy diagram with embedding dimension
doy = 6.1 (Following Ref. 95, doy = 6 will be used in all CH diagrams presented in this
thesis.)

In the complexity-entropy diagram, between C,;,, and C,,., is located the fractional
Brownian motion curve (fBm), seen in green in Fig. 2.5 for different Hurst exponents H
ranging from 0 to 1 [93]. Following Ref. 97, the fBm represents a family of processes By (t)
with null mean and autocorrelation

1
(Br(t)Br(t2)) = 5 (t%H + 51— [t — 752|2H>
where H € [0,1] is the Hurst exponent of the process. The usual interpretation [93] states
that signals situated above the fBm curve in the CH diagram have a predominantly chaotic
behavior, whereas signals located on the fBm curve or below it are mainly stochastic.

A Gaussian white noise signal has maximum entropy Hg = 1 and minimum complexity,
Cjys = 0. Other types of colored noise and Ornstein-Uhlenbeck noise are depicted in Fig.
2.5. It is seen that, as the correlation parameter (n or 7)) increases, the corresponding
CH points climb the fBm curve, decreasing the data entropy and enhancing the complexity.
Nevertheless, pure OU noises can not go further than the position with fBm Hurst exponent
H =0.5.

BWhen K > 1, Qg ~ —2. Example: for K = d! = 720 ordinal states, Qo ~ —1.98.

From now on, instead of d, the symbol doy will be used to denote the immersion dimension of the CH
diagram, to avoid confusion with the embedding dimension from the recurrence plots and the recurrence
quantification analysis (Section 2.8).
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2. Methods for analyzing turbulence data

In summary, the CH diagram quantifies the ordering of states of different signals. It can
be used to indicate if a time series has strong deterministic and/or stochastic components.
For these reasons, the CH diagram will be employed in Chapters 6 and 8 to compare different
categories of background signals which can model density fluctuations in the TCABR toka-
mak. In special, we aim to verify whether the stochastic pulse train model (to be introduced
in Chapters 4 and 7) has compatible results with experiments in the CH plane. This question
was proposed in Ref. 80.

CH diagram
0.5 ‘ ‘
_Cmax
2 0.4 _Cmin
o fBm
E= = OUN 1
x
Q@
g- 0.2r 0502
8 100
01 I 2 b
1
0 , ‘ , ‘ 000
0 0.2 0.4 0.6 0.8 1

Normalized entropy, H s

Figure 2.5: Example of a Complexity-Entropy diagram, showing the curves of minimum and
maximum complexity, C,;, and C),,... The green curve corresponds to fractional Brownian
motion and the points with Hurst exponents H € {0,0.5,1} have been highlighted in green.
Also shown are CH points of the signals of Fig. 2.4: in purple, are depicted CH points of
colored noise signals with exponents n € {0, 1,2} (where o 1/f7); in light blue, are exhib-
ited CH points of Ornstein-Uhlenbeck processes with correlation time 7y/At € {0,2,100}.
The points with H = n = 7//At = 0 coincide, as they correspond to white noise. Moreover,
the points with H = 0.5, n = 2 and 7//At = 100 almost coincide.

2.8 Recurrence plots and RQA determinism

2.8.1 Recurrence plots

Recurrence plots were proposed in Ref. 98 with the purpose of "measuring the time constancy
of dynamical systems". Since then, the theory of recurrence has evolved, finding applications
in various fields, such as plasma physics [99-103] and biophysics [104]. This section follows
Ref. 101, in which the concepts of recurrence plots (RPs) and recurrence quantification
analysis (RQA) are didactically elucidated.

Suppose an experiment measures a one-dimensional signal ®; = ®(t;), where the j-th
instant is given by t; = jA¢, with At > 0, j € [1,2,..., Ny| and N,; € N. The signal ®(t)
could be for example the ion saturation current measured in a tokamak (Chapter 3).
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2. Methods for analyzing turbulence data

An embedding space can be generated using vectors of the kind
Xj = (), Pjsr, Pivar, oy Pja-1)r)

where d is the embedding dimension and 7 is the delay. Usually, 7 is set as the value at which
the autocorrelation function of ® = (& — (®))/og reaches 0 for the first time, Rg(r) = 0
[99,102,105]. For practical purposes, it is enough to set 7 such that Rz(7) = 10%. The
embedding dimension d, on the other hand, in general does not have such a straightforward
method to be evaluated. Some details about this will be given in Subsection 2.8.2.

The embedding vectors x; can be understood as elements of a d-dimensional reconstructed
phase space. Embedding theorems guarantee that this phase space X = {x;|j = 1,2, ..., Ny}
conserves dynamical proprieties of the original signal ®(t), as long as d is large enough.
Nonetheless, even if d is small, important information about the system can be recovered.

The time evolution of the vectors x; can be represented by a trajectory in the phase space
with monotonically increasing j: xX; — X;j41 — Xj12 = ...XN,,—(d—1)r- In this framework, two
states x; and x; are said to be recurrent if the trajectory has approximately the same d-
dimensional state for both of them, “x; ~ x;”. Formally, the recurrence is defined as

1 = x| <
Rij_{, I = x| < e

0, |Ixi—xj| >c¢

where € is a threshold and ||...|| stands for some norm (usually the Euclidian norm).

The N,; x N, matrix with elements R;; is known as the recurrence matrix (RM). A
recurrence plot (RP) is an illustration of this matrix, drawing dots for R;; = 1 and letting
the space empty for R;; = 0. By construction, the RM is symmetric (R;; = Rj;) and the
main-diagonal elements are one, R;; = 1, meaning that a point is always recurrent to itself. In
fact, diagonal structures are important features of recurrence plots, as they are often related
to deterministic characteristics of the original signal.

Another important quantity is the recurrence rate, which is the fraction of points in the
RM that are recurrent with each other:

Npt

1 P
RR= ———— > Ry,
Npt(Npt — ]_) i Lk J

Ngt is the total of points of the recurrence matrix. In RR, the main diagonal isn’t accounted
for, since R;; = 1 by definition. The higher the threshold ¢ is, the more points are recurrent
with others. The threshold is in general chosen as a small fraction of the signal variance
[99,101] or set so that the recurrence rate is fixed at some small value, usually ranging from
RR = 1% to RR = 10% [101,102].

With recurrences, it is possible to analyze the dynamical behavior of systems even when
their governing equations are unknown. This applies for example to turbulent systems, such
as the ones found in the boundary of tokamaks. Besides, magnetized plasmas are associated
both with stochastic and chaotic behaviors [50,80] and can even alternate between regimes
of bursts and Gaussian noise [49]. At the same time, the plasma signal can have periodic and
stochastic components [48]. The recurrence theory can analyze all these types of signals.
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2. Methods for analyzing turbulence data

As examples, Fig. 2.6 depicts recurrence plots of synthetic generated series of white noise
(WN, n =0 in Subsection 2.6.1), brown noise (BN, n = 2), and a periodic motion (PM),

0.1
®; = sin(27 - 0.027) + sin (271' : ?z) (2.35)
so that ¢ = iAt, with ¢ = 1,2,...,1000 and At = 1. The noises had vanishing mean and
unit standard deviation. The recurrence rate was fixated at RR = 10%, the embedding
dimension was chosen as d = 4 and the delay 7 was fitted by the autocorrelation of the
signals, Rg(7) = 10%. The values obtained were myy = 1, 7y = 75 and 7py = 18.

White noise Brown noise 2 Periodic motion
2 W 0.5 Mgty NN
St 03 s
KA _121 Mw M ‘K M M KA 'O? W\M W W/"kv\ "’ NMW KA O
- - Nl _2
1000 1000 - 100
i - rT T
o 4
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— 500 -— 500 . — 5001
5
0b— e (o 0 -
0 500 1000 0 500 1000 0 500 1000
i i i
(a) (b) (c)

Figure 2.6: Examples of recurrence plots, with the original signals in the upper panels,
and the RP in the lower ones. Time index used: ¢ = iAt, with At = 1. (a) RP of a white
noise with zero mean and unity variance. (b) RP of a brown noise with vanishing mean and
asymptotically unitary variance. (c) RP of a sum of two sines (Eq. (2.35)).

For the white noise (Fig. 2.6(a)), the recurrence plot is filled with isolated dots. This ab-
sence of structures and diagonal lines indicates that recurrences occur by chance, as expected
for an uncorrelated process.

For the brown noise (Fig. 2.6(b)), the recurrences are concentrated near the main diago-
nal. This means that one state of the system is mainly recurrent with its neighbors, which is
expected for highly correlated noise. At times, the recurrences points form squares of length
L =~ 1gy. Regions around i € [100,300] and ¢ € [600,800] also were shown to be recurrent
because for these segments the signal fluctuated less.

Lastly, Fig. 2.6(c) depicts the recurrence plot of the sum of sines (Eq. (2.35)). All
recurrences are grouped into diagonals (smalls or large), reflecting that the signal is indeed
periodic, since a state is revisited by the trajectory in a predictable and periodic manner.
Small circles are seen near the extrema points, where the derivative d®/dt is close to zero.

We see that recurrence plots treat uncorrelated noise, correlated noise and periodic motion
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2. Methods for analyzing turbulence data

very differently.'® In the next section, it will be explained how to quantify these recurrences
in one quantity called determinism.

2.8.2 RQA determinism and embedding dimension

The recurrence plot can be quantified by various functions of the field known as recurrence
quantification analysis (RQA), which was introduced by Ref. 104 and is well explained for
example in Ref. 99. The most important quantifier of the RP is the so-called determinism,
defined as the fraction of recurrent points (i.e., R;; = 1) which form a diagonal in the RP,

lmax
P+ 32, tP(E)

(2.36)

The name comes from the fact that deterministic behavior is linked to the presence of diagonal
lines in the recurrence plot [101].

In Eq. (2.36), e < N — 1 and £,,;, > 2 are respectively the lengths of the biggest and
smallest diagonals found in the given RP (disregarding the identity line, which has ¢ = N
by construction). ¢ is the length of an arbitrary diagonal. P(¢) is the frequency distribution
of £ in the recurrence plot, so that /P(¢) counts how many recurrent points are contained in
diagonals of length ¢. P(1) is the frequency of isolated points.®

The RQA determinism of the signals of Fig. 2.6 are respectively DETyy = 0.760(1),
DETpy = 0.958(4) and DETpy; = 0.99945(2) (with uncertainties in parenthesis). As ex-
pected, the DET from the white noise series was the lowest. On the other hand, the periodic
motion has determinism practically compatible with 1-—which makes sense since the PM is
deterministic. The brown noise case, being highly correlated, also has a high determinism.

Increasing the embedding dimension also increases the RQA determinism (e.g Fig. 5
of Ref. 99). Because of this, DET can be employed to estimate a practical embedding
dimension for different systems. Fig. 2.7 depicts the profiles of DET x d for the three signals
considered in this section (Fig. 2.6). For d > 2, the DET from the periodic motion saturates
at DET = 1. Thus, d = 2 would be enough in this case. Deterministic signals such as this
one have well-defined embedding dimensions (see for example Sections 3.2 and 3.3 of Ref.
105).

Purely stochastic signals, however, can be regarded as having infinite embedding dimen-
sions (as stated in Section 6.5 of Ref. 105). This is illustrated by the white noise curve in

5Furthermore, Appendix B.5 shows RPs for the saturation current signals measured in TCABR. Never-
theless, to fully understand what are these signals and their simulations, Chapters 3 to 8 are needed.
16There are other ways to write the determinism, such as in Ref. 99,

Z’VYLG/.’I‘/
ey S, (PO

i LP(0)

The representation of Eq. (2.36) was chosen to highlight that P(1) is the difference between the numerator
and denominator.
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2. Methods for analyzing turbulence data

Fig. 2.7—the RQA determinism keeps increasing even for d = 20. Thus, in practice what
can be done is to choose an embedding dimension above which DET does not change much.

Effect of the dimension on DET

S —
0.8¢ 1
- 0.6 —+Periodic motion | |
LéJ —+—Brown noise
04" —+—White noise
0.2+
0 ‘ ‘ ‘
0 5 10 15 20

d

Figure 2.7: Profiles of the RQA determinism versus the embedding dimension, for the three
synthetic signals considered in this section.

A similar problem occurs with turbulent data, like the ones measured in magnetized
plasmas [99-102|. In practice, d = 4 was found to be an adequate dimension to analyze the
signals, because for higher values the determinism saturated, as discussed in Refs. 99 and
101. Thus, following these results, we will use d = 4 in the present dissertation. Higher
dimensions would also be adequate, but would demand more computational effort.

Table 2.1 stores the values that will be used in this work for the parameters of the
recurrence quantification analysis. We highlight that moderate changes in the parameters
wouldn’t alter the results. From now on, a subindex RQA will be added to N, 7 and d
to avoid confusion with other quantities (such as the embedding dimension from the CH
diagram, dcy, Section 2.7).

Table 2.1: Parameters from the recurrence quantification analysis. Values chosen in analogy
to other works about magnetized plasmas [99-102].

’ Parameter \ Value \ Name ‘
RR 10% Recurrence rate
Nrga 10 | Window length of the recurrence plot
TRQA D s Time delay
droa 4 Embedding dimension

2.9 Chi-square

Let y = (y1,%2,...,yn) be a vector of N independent data points which obey a function
£(60) = (f1, f2, .-, fn), where Oy = (01,0, ...,05) is the vector of M unknown true param-
eters. The normalized residuals between y; and f; are (see for example Eq. (E23) of Ref.
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2. Methods for analyzing turbulence data

106)
R;(6) = %_—M je{1,2,..,N}

9
where o; is the uncertainty associated with y;. An important quantity is the sum of squared

weighted residuals,
N 2
v — 1:(0
j

j=1

When 6 = 6, S assumes its smallest value and is called chi-square,

= é (%_U—JZJ(OO))Q (2.37)

In this thesis, x? maps will be used to fit functions without an analytical form. As in the
least-squares method, the goal of x? maps is to estimate the vector 8 = 8, which minimizes
S. In the context of x? maps, usually x? is also used to denote S (see for example Chapter
8 of Ref. 107 or pp. 268-278 of Ref. 108). This convention will be used in Chapter 5.

As stated in Section 1.3.6.6.6 of Ref. 109, when the residuals R; are independent and
normally distributed, the x> PDF is a Gamma distribution (Eq. (2.7)) with scale parameter
A = 2 and shape parameter v = v/2, where v is the number of freedom degrees. That is,

The expected value of this Gamma distribution is the number of freedom degrees,
2N gy=2.2 = 2.38
(X*) = Ay 5=V (2.38)

while its standard deviation is

o2 = Ay = 2\@ % (2.39)

Another important quantity is the reduced chi-square (e.g. p. 278 of Ref. 108),

Xy =" (2.40)

In the case of Gaussian data, from Eq. (2.38), (2.39) and (2.40) it is immediate that the
reduced chi-square has an expected value and a standard deviation of

2
(7)) =1 and o= »

Even though experimental data is not always Gaussian, the above results are useful as ap-
proximate reference values.
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Chapter 3

Measuring turbulent density fluctuations
with the saturation current

This chapter briefly describes the theory of Langmuir probes, focusing on the measurement
of saturation current (Iy), related to the plasma density. After, some of the principal
diagnostics decurrent of I,,; will be outlined, such as its distribution, power spectra and
bursts analysis.

3.1 Langmuir probes and saturation current

Langmuir probes are electrodes widely used in both laboratories and space to measure the
density and temperature of plasmas (see for ex. Section 11.5 of Ref. 11, Chapter 3 of Ref.
15 and Chapter 4 of Ref. 110). When immersed in plasmas, a sheath is formed around the
probe, because of the plasma shielding effect discussed in Subsection 1.2.1. In other words,
the plasma shields itself from the disturbing field caused by the electrode. The sheath extent
is of the order of the Debye length.

Since electrons are much lighter than ions, the velocity of the first is higher in the plasma.
Thus, the immersed electrode rapidly accumulates a negative charge. This potential then
repels electrons and attracts ions, becoming less negative. At some point, the rate at which
electrons and ions hit the probe surface will be equal, and the electrode achieves the so-called
floating potential ¢,, (Section 11.1 of Ref. 11). At ¢,,, the probe is in equilibrium and the
net current measured in it is 0.

An external potential ¢ can also be applied in the Langmuir probe. When ¢ is more
negative than ¢,, an electrical field is created around the electrode, repelling electrons.
Decreasing ¢ even more, eventually the contribution of the electrons to the probe current
will be negligible and the total current density will approach a constant value J;. This value
is known as the ion saturation current density, since only ions are measured (Section 11.5 of
Ref. 11).1

If, on the other way around, ¢ > ¢,,, then the induced electric field will repel ions. For
a large enough potential, the ion contribution to the electrode current density will be near

!There is an expansion effect of the sheath which slightly deforms the current-potential asymptote [45,111].
Still, for the proposes of this thesis, this correction can be neglected.
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3. Measuring turbulent density fluctuations

zero, letting the current density reach a constant value J.y, only due to electron collision.
Jeo is known as the electron saturation current density. The characteristic current-potential
curve of a plane probe immersed in a plasma is disposed at Fig. 3.1.

Jp 4

ELECTRON
SATURATION

Jeo

&
3

o
<Y

ION |
SATURATION |

! ELECTRONS

_____ IONS _ _ _ e — —— ——— —
COLLECTED | COLLECTED

Figure 3.1: Current-potencial curve for a Langmuir probe immersed in a plasma. J, is the
plasma current density. Source: Fig. 11.4 of Ref. 11.

The current measured in the probe is equal to the current density times the area of the
Langmuir probe pin, App. The ion saturation current is positively defined,
Lot = —AppJ;

In this dissertation, measurements of I,; performed in the TCABR tokamak will be analyzed.

The relation between I, density and temperature at the sheath is given by (Eq. (2.81)
of Ref. 112)

]sat ~ O.5ALPBTL()CS

where nyg is the estimated plasma density that would exist without the probe perturbation.
Due to quasi-neutrality, ng is approximately equal to ions and electrons. In its turn, ¢ is the
sound speed in the plasma (as used in Eq. (2.56) of Ref. 112),

T.+T;
my;

Cg = kB

kp is the Boltzmann constant, T, and 7T} are the electron and ion temperatures and m; is the
mass of ions (protons in TCABR).

The relation
Isat X N (Te + E>1/2
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3. Measuring turbulent density fluctuations

shows that I, is a measure of density, for given temperatures. The electron temperature
can be obtained with the characteristic curve (Ipp x Vpp) of the Langmuir probe (as in Eq.
2.80 of Ref. 112, or Ref. 45). However, it is difficult to measure the ion temperature (Section
2.9 of Ref. 112) and it is even harder to simultaneously obtain I, T, and T; to locally
evaluate the density [38,45]. Nevertheless, for the analysis presented in this dissertation, the
values of I, are sufficient to characterize turbulent fluctuations, similarly to what was done
in previous works which also employed the saturation current [30-32,34,39,40,48,49|.

Sometimes (as for example in Ref. 38) the ion temperature is neglected in the sound
speed expression, ¢; = \/kgT./m;. However, in the SOL, T; can be compatible to or higher
than 7T, (e.g. Fig. 2.21 of Ref. 112) and thus the assumption 7. > T; is not adequate for
our analysis.

For this thesis, a rake Langmuir probe was used and detailed information about the
instrument is given in Chapter 4 of Ref. 110. It has 18 pins divided into two rows, as seen
in Fig. 3.2(a). The distance between the center of two consecutive pins in the same row is
Ar = 5 mm (much greater than the Debye length, which is smaller than 0.06 mm in TCABR,
as seen in Fig. 4.1 of 110). Each tip has a cylindric shape, with a diameter of d = 0.8 mm
and height of h = 3.0 mm. Fig. 3.2(b) shows a schematic of the probe inserted in the plasma.
Because of the disposition used in Fig. 3.2(b), the effective area App that interacts with the
plasma is about Arp ~ d x h = 2.4 mm?.

Plasma

Probe

Ro
(a) (b)
Figure 3.2: (a) Photo of a rake probe with 18 tips used in TCABR. Source: Fig. 4.4 of
Ref. 110. (b) Scheme of the TCABR poloidal section, with the rake probe inserted. Also

shown are the tokamak major and minor radii, Ry = 61.5 cm and a = 18.0 cm, and the
radial position 7.

3.2 Steady state in TCABR

Although a discharge in TCABR lasts around 150 ms, only a part of it can be identified as
a stationary state for the plasma. Usually, the steady regime duration is about 7" = 30 ~
60 ms in TCABR, as described in Table 1.1. For this dissertation, experiment 34132 was
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3. Measuring turbulent density fluctuations

analyzed (Chapters 6 and 8), and the stationary regime was identified between t; = 60 ms
and ty = 100 ms of the discharge, yielding 7" = 40 ms. To help recognize this state, a
moving average of the saturation current was computed (yellow curve in Fig. 3.3(a)). For
t € [0,40] ms, I, increases on average. For ¢t € [40,60] ms, the moving mean decreases, and
for t € [60,100] ms it is approximately in steady state. For ¢t > 100, the current decreases.
Therefore, the interval ¢ € [60, 100] ms was chosen for the analysis. In all further I, graphs
of this work, only the stationary regime will be considered.

As seen in Fig. 3.2(b), in this experiment the plasma current and the line-averaged
electron density were about I, ~ 85 kA and n, ~ 1.1 x 10" m~3 in the steady regime. In the
same figure, the Mirnov coil signal shows that this discharge had low magnetohydrodynamical
activity.

Isat of r =19.5cm
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Figure 3.3: (a) In red, the saturation current for the position r = 19.5 cm of the TCABR
experiment 34132. In yellow, the moving mean with windows of 1 ms. The highlighted area
for ¢ € [60,100] ms corresponds to the interval detected as the steady regime. The dotted
black line indicates the average of I, for this interval. (b) Diagnostics of experiment 34132:
plasma current I, line-averaged electron density n., and Mirnov coil signal M..

Experiment 34132 of TCABR

3.3 The conditional average of bursts

To understand the idea underlying the stochastic pulse train model (Chapter 4), firstly it
is useful to explain a conditional averaging technique [15,25,113| widely used in plasma
physics to describe the average properties of extreme events [30-35,40,41]. Density signals of
magnetically confined plasmas are generally turbulent. An example is given in Fig. 3.4(a),
showing a saturation current measurement? at the scrape-off layer of TCABR.

2QOther local measurements of density used in magnetically confined plasmas are gas puff imaging (GPI)
[33,35-37,39] and Lithium-Beam Emission Spectroscopy (Li-BES) [41]. As the three aim to measure the
same quantity (plasma density), they exhibit a similar turbulent behavior.
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Saturation current

Bursts conditional average

70
60
__ 50
<
E 40
m
. <
< 30
S
v‘& 40 } Wﬂm ﬁr"% h‘ i ;‘1@*‘ 20
D o0t baalt o g AR TR i
— 20‘,!".’“}%#4‘«,,”%}?/“ i 7‘4.1""«‘ i OK’J‘%“ 'gﬁf\"'x#ﬂ\}‘l’zx‘ i 10 ‘ ‘ ‘
70.1 7015 702 7025 70.3  70.35 -20 -10 0 10 20
Time (ms) Time (us)
(a) (b)

Figure 3.4: (a) An example of saturation current measurement made in TCABR (exper-
iment 34132, position r = 19.0 ¢cm). In the bottom panel, a zoom showing 4 bursts. (b)
Conditionally averaged waveform made with the 493 bursts detected in the signal of (a).
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Figure 3.5: The conditional averaged burst for four different machines (Tore Supra, Alcator
C-Mod, MAST and PISCES). The signal was normalized by I = (Isat — (Lsat)) /o1, With
threshold 7 = 3 for bursts detection. Source: Ref. 25.
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Conditional average with 5 bursts Conditional average with 493 bursts
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Figure 3.6: Conditional average of (a) 5 and (b) 493 bursts detected in the I, signal of
Fig. 3.4(a). In red it is shown the conditional average, while the purple dashed line indicates
the threshold for bursts detection, Iso > (Isat) + 2.507.

Despite this noisy appearance of the density signals, the conditionally averaged burst
shapes of several plasma devices have similar waveforms and are reproducible within each
machine (given the same radial position and plasma conditions). Thus, this indicates a
universal feature of large-amplitude fluctuations in plasmas. Fig. 3.5 shows the conditional
average of bursts for four different devices, while Fig. 3.4(b) depicts an example for TCABR.

The procedure to construct the conditional average of bursts is the following. Bursts
are detected as peaks with intensity higher than the average of the signal by 7 times the
signal standard deviation. That is, a pulse is identified as a burst if its peak is bigger than
(Isqt) + Toy. T is called the threshold and is usually defined as 2 [48], 2.5 [15,30-35,40,41],
or 3 [25]—so that bursts are indeed seen as extreme events with intensity much stronger than
the plasma background fluctuations. The bottom panel in Fig. 3.4(a) exhibits a zoom with
four detected bursts.> After detecting these extreme events, they are put together in a time
axis with each peak at ¢ = 0 us, as in Fig. 3.6. Then the average of these pulses is made,
and this is called a conditional average (or an auto-conditional average [25]). An example is
given in Fig. 3.4(b). The average of all the 493 bursts results in Fig. 3.4(b).

Table 3.1: Fixed parameters used in experiments of I,,; analyzed in this dissertation.

| Symbol | Meaning | Value(s) |
t; Initial time for the I, analysis 60 ms
17 Final time for the I,,; analysis 100 ms
At Time step of the I,,; measurements 0.5 us
Atg | Minimum waiting time between bursts | 15 us
T Threshold for bursts detection 2.5

3To avoid detecting the same burst two times, it is determined a minimum waiting time between these
extreme events so that only the most intense peak is considered. The value used here is Atg = 15 us.
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3. Measuring turbulent density fluctuations

3.4 Characterization of density fluctuations in TCABR

This subsection describes some features of the I,,; measurement. For this dissertation, exper-
iment 34132 of TCABR is used as an example. It was coordinated by G. G. Grenfell [13,110].
In this experiment, the plasma had low magnetohydrodynamic (MHD) activity and, in the
discharge steady phase (Section 3.2), the average electron density and the plasma current
in the core were respectively n, ~ 1.1 10 m™3 and I, =~ 85 kA (Fig. 3.3(b)). With the
rake Langmuir probe (Section 3.1), I, signals at eight radial positions were simultaneously
measured.

Table 3.1 exhibits the fixed parameters used for I,,; measurement and burst detection.
The total duration of the analysis was T' =ty —t; = 40 ms. The method used for identifying
t; and ty was described in Section 3.2.

All probability distributions of I,,; measured in the experiment 34132 are displayed in
Fig. 3.7(a). As it will be shown in Chapter 6, the analyzed Iy, PDFs of TCABR can be
fitted as a convolution of Gamma and Gaussian distributions (presented in Subsection 2.1.3).
In Fig. 3.7(a), the PDFs become thinner as r increases and their average value decreases.
This expresses the reduction in plasma density with the radial position.

The conditionally averaged bursts also shrink with the increase of the radial position, as
seen in Fig. 3.7(b). Their asymmetry increases with r too, having a quicker ascension and a
slower fall as the position rises. Moreover, all appear to have a double-exponential shape.

On the other hand, Fig. 3.8 exhibits the radial profile of the number of detected bursts.
The number of extreme events varied between 400 and 560. The profile has a well-defined
peak at the last closed flux surface, r = a = 18.0 cm, indicating that bursts/blobs may be
mostly produced at this position in TCABR.

PDFs of Isat, #34132 Mean bursts |—r=17.0cm
0.15 . . ' —r=17.5cm
[ Jr=20.5cm 150 ¢ r=18.0cm
[ Ir=20.0cm r=18.5cm
r=19.5cm —r=19.0
. 0.1 [ Jr=19.0cm{]| Z 100! ::19.522
_§ r=18.5cm E 00 —r=20.0cm
I_ r=18.0cm \/m —r=20.5cm
[ Jr=175cm
0.05¢ ) i ©
\H [ Jr=17.0cm 50 ]
M ’——’k‘
0 A _____//\\
50 100 150 0‘|0 5 0 5 10
| (mA i i
sat (MA) Time (us)

(b)

Figure 3.7: (a) I, PDFs for the 8 radial positions, , measured in the discharge 34132. (b)
Conditionally averaged bursts of the same experiment showing that the amplitude decreases
with r. This is in accordance with Fig. 1.9, which shows a blob dissipation through the SOL.
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3. Measuring turbulent density fluctuations

Number of detected bursts

350 ‘ ‘
17 18 19 20

r (cm)

Figure 3.8: Radial profile of the number of detected bursts, in absolute values (left axis)
and divided by the total analysis time, 7" = 40 ms (right axis). Threshold for burst detection:
T = 2.5. The profile has a peak at the minor radius r = a = 18.0 cm.

Another important diagnostic obtained from turbulence measurements in magnetized
plasmas is the power spectral density (PSD, Section 2.4). Over different devices (tokamaks,
helimaks and stellarators), the spectra of gas puffing imaging, saturation current and floating
potential show a universal behavior: a flat low-frequency region, and for high-frequencies a
steep power-law tail (1/f*~%) [35,39,48,114]. Fig. 3.9(a) shows a I, log-log spectrum for
the TCABR tokamak, in agreement with the results from other machines. The inset of Fig.
3.9(a) depicts the same PSD but with a linear x-axis.

Power spectra can be used to detect periodical and correlated phenomena. In Ref. 48, the
PSD was used to identify correlated bursts. Another example can be depicted in TCABR. At
r = 20.5 cm, the position with the smallest density measured in the experiment 34132, two
small peaks were observed in the power spectrum (Fig. 3.9(b)), one at f; = 0.22 MHz and
another at fo = 0.31 MHz. In the time domain, they could correspond to periodic phenomena
with a time scale of 1/f; = 4.5 us and 1/f; = 3.2 ps. Oscillations of this order can indeed
be seen in the saturation current and in the background of the conditionally averaged burst
(Fig. 3.10).

In the context of magnetized plasmas, the parameter o7/ (I5,;) has been called the relative
fluctuation level [50]. In probability theory, it is also known as the coefficient of variation (see
for ex. p. 380 of Ref. 75). Because turbulence is associated with fluctuations in density [20],
o1/ (Isar) may be also referred to as the turbulence level, as done in Ref. 115. Fig. 3.11(a)
shows its radial profile for experiment 34132 of TCABR. The turbulence level increases with
the position, as in Alcator C-Mod [33] or Texas Helimak [115].*

A parabolic relation between kurtosis and skewness has been observed for various turbu-
lent signals of magnetized plasmas, in special for density data [32,33,36,50,69,71]. The most

4The turbulence level has also been associated with the gradient of density [115], which is proportional to
d (Isqt) /dr. To see the profile of (Is4;), the reader is referred to Fig. 6.4(a).
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3. Measuring turbulent density fluctuations

common expression is K; = 3 + 1.55%? where S; and K are respectively the 3rd and 4th
standardized moments of Iy, as defined in Subsection 2.1.1. Fig. 3.11(b) shows reasonable
agreement between this equation and data from the TCABR experiment 34132.

PSD of r = 19.5 cm, shot 34132 PSD of r = 20.5 cm, shot 34132

f=0.22 MHz

Linear x-axis .
b
S 10
f=0.31 MHz
6
5 " 2 3 4 5 x10°
0 5 10 x10 g
4 6 107 5 4 5 6
10 10 10 10 10 10
Frequency (Hz) Frequency (Hz)
(a) (b)

Figure 3.9: (a) PSD of r = 19.5 cm. (b) Iy, power spectrum for position r = 20.5 cm in
the experiment 34132 of TCABR. There are two unexpected bumps, one at f = 0.22 MHz
and another at f = 0.31 MHz.

Density oscillations at r = 20.5 cm Conditional average of bursts

sat

0 20 40 60 80 100 10 0 10 20
Time (us) Time (us)
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Figure 3.10: (a) 120 ps of Is; measured in the position r = 20.5 cm of the experiment
34132 of TCABR. The dashed line corresponds to the threshold I, = (I4) +2.50;. We can
see oscillations of period around At = 5.0 us, compatible with the bump of f = 0.22 MHz
in the power spectrum (Fig. 3.10(a)). (b) The respective conditional average of the bursts
exhibits small oscillations with period comparable to the ones referred in the PSD, since
(4.5 us)~! = 0.22 MHz.
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3. Measuring turbulent density fluctuations

Profile of the turbulence level Kurtosis x skewness
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Figure 3.11: (a) Radial profile of the turbulence level, o7/ (Is.:). The dashed line indi-
cates the minor radius position, a = 18.0 cm. (b) Parabolic relation between kurtosis and
skewness from I,,. Uncertainties were estimated with repeated simulations (Chapters 4-6).
Experiment 34132 was used.
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Chapter 4

Stochastic pulse train model with corre-
lated noise

In this Chapter, the stochastic pulse train model with correlated noise will be introduced.
Central for this dissertation, it will be used in all following chapters.

4.1 The model

4.1.1 Background-less case

In the past decade, a stochastic model was developed [50-55] to describe density fluctuations
in single-point measurements of magnetically confined plasmas. The model is referred by
many names, such as: Garcia Model [40, 41|, shot noise process [50, 54-57, 118|, Filtered
Poisson Process (FPP) [54-57], train of filaments [56,57], model of bursts-train turbulence
[48] and stochastic pulse train model (SPTM) [49]." In this dissertation, we shall adopt the
last one. The SPTM is central for this work and will be used in the following sections.

The general idea of the stochastic pulse train model consists of superposing pulses with
randomly distributed amplitudes, durations and arrival times, in order to reproduce average
proprieties of the experimental density fluctuations. In its most used form, the pulses are
assumed to be uncorrelated, with the same shape of the conditionally averaged burst (Fig.
3.4(b)). That is, in one of its simplest descriptions, the SPTM for I, is

ald t—t
Lat(t) =) Ajp [ —2L; ) 4.1
(0= 0 (= 20) (@)
7j=1

where Np is the number of pulses spawned in the time interval considered, A; and ¢; are
respectively the amplitude and time occurrence of the j-th pulse, 7; is the characteristic
duration of the pulses, A € [0,1] is the pulse asymmetry parameter and ¢(6; \) is the pulse
shape function. 75 and A\ are assumed to be the same for all pulses in this description.

In Fig. 4.1 a fit of the conditional average of bursts is shown with a double-exponential

! Also, following Refs. 51 and 116, the model ancestors correspond to Refs. 117-119.
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4. Stochastic pulse train model with correlated noise

waveform for ¢(6; ). This suggests that the function adopted for (4.1) should be

exp (/) , 0 <0

exp[—0/(1—=X)] ,6>0 (4.2)

P(0;\) = {

When A = 0.5, the pulses are symmetric, and usually in TCABR this is the case for radial
positions inside the plasma column (r < a = 18.0 c¢m), as seen in Fig. 5.4 and 5.5 of Ref.
15. If A = 0, the rise tends to be instantaneous, and such approximation is considered in
Refs. 32, 50 and 53. In the scrape-off layer (r > a), the conditionally averaged burst shape is
usually asymmetric in a lot of devices, with A € [0.10,0.35] [15,30,31,33-35,40]. Sometimes
it is convenient to use 7, and 7 instead of A and 74, where 7, is the characteristic duration
of the pulse rise and 7y, of the fall. That is, 7y = 7. + 7y and A\ = 7,./7,.

160 Bursts conditional average

{ Data
—Fit
140 |

Figure 4.1: Fit of the conditionally averaged burst (position r = 17.0 cm), using the model
of two exponentials: ¢p = Ay + A16(t/74;A). A is the background, A; is the mean burst
amplitude and ¢ is given by Eq. (4.2). The fit yielded 7, = 2.85(5) pus and A\ = 0.506(14).

Supported by vast experimental evidence [30, 32,36, 37,40, 41, 48|, the distribution of
amplitudes, A; in Eq. (4.1), is assumed to be exponential (Eq. (14) of Ref. 50):

P = oo (- 55 ) (13)

where (A) is the average amplitude. On the other hand, provided with the same references,
the arrival times ¢; of the pulses are supposed to be uncorrelated and uniformly distributed—
that is, P,(t;) = 1/T, where T is the time interval considered in the analysis.

Since the time occurrence of the pulses is uniform and uncorrelated, the resultant number
of pulses K in an interval T follows a Poisson distribution [51],
1
T K!
where Np is the expected value, Np = (K). In the simulations we will fix K = Np, to
diminish statistical fluctuations without losing relevant information.

Pi(K) (Np)& e~ NVr
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4. Stochastic pulse train model with correlated noise

The fact that the pulses are uncorrelated and uniformly distributed also implies that the
waiting time At,, between pulses follows an exponential distribution (Eq. (4) of Ref. 50):

1 At
P,(At,) = —exp | ——— (4.4)
w w
where 7, = (At,,) = T/Np is the average waiting time.
Bursts amplitude distribution Bursts arrival times distribution
10° ‘ ‘ 3.0% :
I Experiment
——Mean simulation
— 2.0%
. %q 10 ;m
Pt o
a 1.0%
1072
: 0.0%
2 4 6 8
Ap (o7)
(a)

Figure 4.2: Experimental and simulated distributions of (a) burst amplitude and (b)
burst arrival time. The 493 bursts that composed the distributions were detected as events
with peaks higher than I, > 2.5. Position used: » = 19.5 cm.

Simulated saturation current
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Figure 4.3: 40 ms of a simulated saturation current made with the stochastic pulse train
model (Eq. (4.1) and (4.2)). The bottom panel exhibits a 0.25 ms zoom of the signal.

The assumptions about the pulse amplitude and arrival time also hold for TCABR. Fig.
4.2 compares experimental and simulated distributions of burst amplitudes and arrival times
for this device. The blue lines seen in Fig. 4.2 correspond to the mean of 50 simulations, just
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4. Stochastic pulse train model with correlated noise

to diminish the statistical fluctuation. (Further information about how the simulations are
obtained will be given in Chapters 5 and 6.) It is seen in Fig. 4.2(a) that the experimental
and simulated burst amplitude distributions are consistent with an exponential (a line in the
logarithm scale). Moreover, Fig. 4.2(b) indicates that the burst arrival times agree with a
uniform distribution.

Fig. 4.3 depicts an example of simulation with the background-less stochastic pulse train
model from Eq. (4.1) and (4.2). The parameters used were Np/T = 100 ms™!, (A) = 10 mA,
Tq =3 us and A\ = 0.2.

4.1.2 Adding a background of correlated noise

Previous works [35,41,48,49,54,55| reported the need of adding some kind of noise background
in the SPTM to correctly fit the signal PDF and to account for diffusive transport. The most
common choice is to use Gaussian noise. With this, the saturation current becomes

Loar(t) = In(t) + Ly(t) (4.5)

where I5(t) is the pulse train, which gives rise to the bursts, and is given by Eq. (4.1),

1alt) = Y- e (Zh0) (46)

J=1

In its turn, Ix(¢) is the Gaussian noise background, having the probability distribution

1 exp [_ (In(t) — <[N(t)>)2] (4.7)

Py(In(t)) =

The use of correlated Gaussian noise was considered in Refs. 48 and 54, in the first
with colored noise (CN), and in the second with an Ornstein—Uhlenbeck (OU) process. In
this dissertation, the results of both noises will be compared. They were briefly described
in Section 2.6. In resume, the correlation of the Gaussian noise does not alter the PDF of
the signal. As stated in Subsection 2.6.1, colored noise can be defined by the relation of
proportionality between the power spectrum and frequency,

Qn(f) &%

where 1 € [0, 2] the noise exponent. The case of uncorrelated noise (n = 0) has been used
with the SPTM in some cases [34,40,41,49,54].

Ornstein-Uhlenbeck processes, on the other hand, have power spectra (Eq. (2.29))

2TNUJ2\/

Oy (w) = + 2m8(w) (In)*

1+ TRw?

where w = 27 f, 0(w) is the Dirac distribution and 7, is the correlation time. Thus, colored
and OU noise can be described by three parameters. The mean and variance, (1) and o3,
and the correlation parameter (7 for CN and 75 for OUN).
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4. Stochastic pulse train model with correlated noise

In this thesis, we shall deepen the discussion of Refs. 48 and 54 and present evidence of
why correlated noises are better than uncorrelated ones to describe the background of plasma
density fluctuations in tokamaks. Furthermore, it will also be argued that OUN has some
advantages over CN.

Table 4.1 groups the parameters of the pulse-train model with correlated (colored or OU)
noise. Sometimes, instead of presenting Np/T and oy, the model is also given in terms of
the parameter v = 7,Np/T and the noise level € = 03./0% = 03;/(7 (A)?), as in Ref. 54.

Table 4.1: Parameters of the stochastic pulse train model with correlated noise (OUN or
CN), with reference equations and values range obtained in TCABR.

’ Symbol \ Meaning \ Eq. \ Values range ‘
Np/T | Number of pulses per time (4.6) | [50,10%] ms™!

Ty Characteristic duration of the pulses (4.6) | [2,6] us
A Pulse asymmetry parameter (4.2) | ]0.1,0.6]

(A) | Average amplitude of the main pulses (4.3) | [5,19] mA

(In) | Average of the Gaussian noise (4.7) | [2,18]mA

3% Standard deviation of the Gaussian noise | (4.7) | [1,6] mA

TN Correlation time of the OU noise (2.28) | [0,6] us
n Noise exponent of the colored noise (2.23) | [0,1]

4.2 Probability distribution

For the background-less model of I, (Subsection 4.1.1), the probability distribution function
is well known to be a Gamma distribution [50, 52, 55|:

it = ey () o (+35) -

where (A) and 7 are respectively the scale and shape parameters, and I' is the Gamma
function:

I'(y) = /0 h 7 e dx (4.9)

Further details about the Gamma distribution were given in Subsection 2.1.1.

The parameter 7y is the characteristic duration of the pulses multiplied by the number of
pulses per time (Table 4.1),
v =T1aNp/T = 74/ 70 (4.10)

v is known as the intermittency parameter [38,49-52,116|. “Overlap parameter” might be
a more appropriate name for this quantity, because the overlapping of the pulses increases
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4. Stochastic pulse train model with correlated noise

with ~, while the intermittency decreases.? Nevertheless, we chose to follow the conventional
nomenclature.

The Gamma distribution (Eq. (4.8)) has mean, variance, skewness and kurtosis given
respectively by [50]

(Lsat) = v (A) (4.11)
o} =7 (A)
2
S] = m
K[ — 3 + -

By adding Gaussian noise to the Gamma-distributed pulses, the above moments become [54]

(Lsat) = v (A) + (In) (4.12)
o7 =7 (A) + o3
- 2
_ —71/2 1t
6
Ki=3+——
! y(14e)

where € is the noise parameter,

N _ N

op (A

The SPTM with Gaussian noise (I = Ip + Iy) also has a known probability distribution,
for the case of null noise mean ((Ixr) = 0). The answer is Eq. (A6) of Ref. 54:

(ye)/2! 12,
Pr(Isat) = ;/Q—W X exp (_W> (4.13)

(ye)'/? v 11 Lot 1/2 2
X{Ql/QF((1+7)/2)XM 22 2\
1/2 I 1+7v 3 1 I 2
Y sat _1/2 Y sat _1/2
r(/2) <w2<A> ! )M< 2 272 <W2<A> ! )

where M (a, b; x) is the confluent hypergeometric function of the first kind, with parameters
a and b and variable z [74]:

€

20ne may ask what “intermittency” exactly means. Quoting the Encyclopedia of Nonlinear Science [121],
if a signal I(t) “exhibits segments of relative constant values (laminar phase) interspersed by erratic bursts,
we say the system dynamics is intermittent”. So, following Refs. 50 and 51, a strong intermittency regime
occurs when the pulse overlap v = 7,4/7,, is small, since in this case there will be long calm phases, interrupted
by sudden bursts with peak much higher than the signal average.
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4. Stochastic pulse train model with correlated noise

The probability distribution for the correlated noise model (Eq. (4.13)) is exceedingly com-
plicated and hence is not of much use. Instead, it is preferable to work with the PDF
characteristic function, as it will be shown in the next section.

4.3 Characteristic function

The characteristic function (CF) was defined in Section 2.2. Following Ref. 50, the CF from
the Gamma distribution (Eq. (4.8)) is

Cr(w) = (1 — iu (A)) ™ (4.14)

while the CF from the Gaussian distribution (Eq. (4.7)) is

Cy = exp (z (In)u — %ajg\/ug) (4.15)

As stated in Section 2.2, the CF of a sum of random variables is the product of the original
CFs. That is, for the SPTM with correlated noise (Eq. (4.5)),

Lit(t) = Ip(t) + In(t) =
Cr(u) = Cp(u)Chr(u)
Therefore the CF for a sum of Gamma and Gaussian random variables is

Cr(u) = (1—1i(A)u) "exp (z (In)u— % i/u2> (4.16)

which is simpler than the PDF of Ig + Iy (Eq. (4.13)). Following Ref. 55, a fit of Eq.
(4.16) will be used in this work to estimate the parameters v, (A), (Iy) and o, from a given
experimental [,,;.

4.4 Power spectral density

In this section will be listed the power spectral density (PSD) for the stochastic pulse train
model (SPTM) with colored noise (CN) and Ornstein-Uhlenbeck noise (OUN). Details about

the derivations are given in Appendix B.1.

As in Subsection 4.1.2, the saturation current is modeled as a sum of burst pulses plus
correlated Gaussian noise,

]sat = ]B<t) + [N<t)

Then, from Subsection 2.6.2 and Refs. 53 and 54, results that the PSD for the SPTM with
OUN is given by

27407 27\ 03 )
Q7" (w) = = + NI o () 6
row) (1+ 72w?) (1 + Tfoﬂ) 1+ 713w? ear)” 0(w)
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4. Stochastic pulse train model with correlated noise

where 7, = Aryq and 7y = (1 — A\)7y4 are respectively the characteristic durations of the pulse
rise and fall. w = 27 f is the angular velocity and §(w) is the Dirac distribution.

For the case with colored noise, the power spectrum is ill-defined and just an approximate
relation for f > 102 Hz can be given (again, using Subsection 2.6.1 and Refs. 53 and 54),

2
2740%

QCN WJ) =~ + A . (72 + 2w (I w

0.820

where C(n) =~ 105737

4.5 Mean simulations

With simulations, we aim to understand concepts underlying experimental data. Thus, it
is of no interest to have large statistical fluctuations in the functions of these synthetic
realizations—since this noise would only difficult the analysis. For this reason, in Chapter
6 the experimental functions of I, will be compared to averaged simulated functions. This
means that simulated diagnostics of PDFs, PSDs and others will be presented as the average
of several realizations with the same inputs.

Nevertheless, it is important to show the difference between unitary and averaged simu-
lated diagnostics at least once. This is the purpose of Fig. 4.4, which exhibits a comparison
of the conditional average of bursts, the PDF, the power spectrum, and the bursts distribu-
tions of waiting time and amplitude. 100 repetitions were used. This averaging procedure
was also employed in Fig. 4.2.

The inputs used in the simulations of Fig. 4.4 were the following. For the main pulses,
Np/T =04ups™!, (A)=7TmA, 75=5us, A=0.1
For the Ornstein-Uhlenbeck process,
(In) =2mA, oy =1mA, 7y =0.5upus

These values are similar to the ones found in the scrape-off layer of TCABR. (more specifically
in the position r = 19.5 cm of experiment 34132). The meaning of each parameter is described
in Table 4.1. The uncertainties of the graphs in Fig. 4.4 were estimated with the standard
deviations of the simulations from each diagnostic.
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Chapter 5

Fitting the SPTM with correlated noise

This chapter introduces the fitting method developed for the stochastic model with noise.

5.1 Introduction

This section initiates the thesis main results. Here will be described the fitting method
we developed to adjust the stochastic pulse train model (SPTM) with Gaussian noise—the
noise being uncorrelated, colored or made with Ornstein-Uhlenbeck processes. The method
consists of fitting the seven SPTM parameters (Table 5.1) in three steps.

Table 5.1: Parameters adjusted by the CF-CAB-PSD fit.

’ Symbol \ Name \ Eq. \ Fitted by ‘

0l Intermittency parameter (4.10)

(A) | Mean amplitude of the pulses | (4.3) CF

(In) Noise average (4.7)

oN Noise standard deviation (4.7)
A Pulse asymmetry parameter | (4.2) CAB

T4 Pulse characteristic duration | (4.2)

TN Noise correlation time (2.28) PSD

First, a covariant least-squares fit' of the characteristic function of I,, evaluates the
parameters of the PDF (v, (A), (Iy), on), taking advantage of the fact that the CF does
not depend on the other three parameters. Then, the shape parameters of the bursts (7; and
A\) are adjusted with a x? map of the conditionally averaged waveform (Section 3.3). The
conditional average of bursts (CAB) is independent of the correlation parameter—since this
is a background feature, while the CAB only detects extreme events. Lastly, the correlation
parameter (1 or Ty) is fitted with a x? map of the frequency spectrum of I, (Section 2.4).
The whole three-step procedure will be referred to as the CF-CAB-PSD fit.

The position r = 19.5 cm of the TCABR experiment 34132 will be used as an example
of the fit. To fit the stochastic pulse train model with correlated noise, the data must have
similar behavior to the one expected by the model (Section 4.1). In special, a convolution

IFor details about the generalized least-squares fit, see for example Appendix B of Ref. 15.
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5. Fitting the SPTM with noise

of a Gamma and a Gaussian distribution should adequately describe the PDF of the density
signal.

5.2 Fit of the characteristic function

As stated in 4.2, the PDF of a convolution of a Gamma and a Normal distribution (i.e., PDF
of Isut(t) = Ip(t) + In(t)), is too intricate to fit. Thus, it is preferable to adjust the signal
characteristic function, as proposed in Ref. 55. The CF has the same information as the
PDF (Section 2.2). Following Section 4.3, the CF of the stochastic pulse train model with
Gaussian noise is (Eq. (4.16)),

Crlu) = (1— i (A) 1)~ exp (7, () — %sz\/uz)

The CF of a discrete signal can be estimated by the empirical characteristic function [55,77],

Npt

1 — |

C[(U) = N_t GWIj (51)
p j=1

where I; is the j-th point of I,,.

The CF is a complex-valued function. However, the parts with « > 0 and u < 0 carry the
same information, since Cr(u) = Cr(—u)*. Thus, to use a least-squares routine, we defined
the effective characteristic function

Crlu) = Re Cr(u), u<O0.
T m Cr(u), u>0.

Cr(u) is real-valued. The real part of the CF is put in the negative part, taking advantage
of Re Cr(u) = Re Cr(—u). Fig. 5.1(a) shows an example of fit of the C;(u), for the radial
position r = 19.5 cm in TCABR.

The characteristic function has non-negligible correlated points, as can be seen in the
"continuous" correlation matrix of Fig. 5.1(b).? For this reason, it is mandatory to choose
just a few points u to construct the empirical CF of Eq. (5.1), as otherwise correlated points
near the diagonals of the correlation matrix can make it non-invertible (determinant 0),
precluding the use of the least-squares [122|. We chose an array with 12 points,

- W%
= 1,2,...,12
u 12 ( ) b ) )

where uy9, means |Cr(u1%)| = 1%. From the point of view of C;(u), there are 24 points in
total (12 for the real part and 12 for the imaginary part).

2The terms of the correlation matrix are given by Eq. (2.15), where in this case x = C;(u). The correlations
were estimated using repeated simulations of Cr(u).
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Figure 5.1: Fit of the characteristic function and its correlation matrix (with high resolu-
tion) for the position r = 19.5 cm in TCABR.

5.3 Chi-square map of the conditionally averaged burst

Having obtained v, (A), (Iys) and oy with the CF fit, it is possible to adjust 7; and A with
the conditional average of bursts (CAB). However, as shown in Appendix B.2, a direct fit of
the burst conditional average may distort the true values of 7, and A, due to effects of pulse
overlap and finite time resolution. For this reason, we chose to compare experiments and
simulations, as both are influenced by these effects.

To make this comparison, we used x? maps (Section 2.9). The chi-square can be defined

as (Eq. (2.37)) N .
X2 _ Z; (yj _Ufj(0)> (52)

where y; are the points from the experimental CAB, f; are the points from the simulated
CAB, o; is the total uncertainty associated with y; and f; and @ = (74, A) is the vector of
parameters to be fitted. We want to find the pair @ = (74, \) which minimizes the y?. N = 81
points (40 ps) were used to make the conditional average in TCABR. The uncertainties o;
are estimated with repeated Monte Carlo simulations.

Fig. 5.2(a) shows a x? map of the CAB for the position 7 = 19.5 cm in TCABR.? The
map has a parabolic format. An estimate of the true parameters is obtained interpolating the
x? values near the minimum. For this case, the obtained parameters were 75 = 4.57(32) us
and A = 0.105(13), where the uncertainties (in parenthesis) were estimated as the standard
deviation of repeated fits. With the blue curve, Fig. 5.2(b) presents the corresponding adjust
of the CAB. Although the experimental conditional average is not perfectly fitted by a double

3In general, the asymmetry parameter A ranges from 0 to 0.5 in tokamaks [30-42]. In Fig. 5.2, A € [0, 1]
was displayed just to highlight the parabolic format of the map.
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5. Fitting the SPTM with noise

exponential, it is at least a reasonable approximation.

1 ‘ ‘ : ‘ m —I-Experiment
. 501 — Fitted simulation
1.6
1.4 E
1.2 &
1
0.8
-20 -10 0 10 20
Time (us)
(b)

Figure 5.2: (a) x? map for the conditional average of bursts, ¢p, showing a minimum
around the region (74, \) = (4.25 s, 0.10). The black contours highlight the parabolic shape
of the map. (Log scale was used to improve visualization, and the y? was reduced by the
degrees of freedom, y2 = x?/N.) (b) The corresponding fit of the conditionally averaged
burst. Position in TCABR: r = 19.5 cm.

5.4 Chi-square map of the power spectrum

With v, (A), (Iy) and oy obtained by the characteristic function (Section 5.1) and 7, and
A, by the conditional average of bursts (Section 5.3), it only lasts to adjust the correlation
parameter. In the case of signals modeled with Ornstein-Uhlenbeck noise, this quantity is
the relaxation time 75, whereas for the colored noise it is the noise exponent 7 (Sections 2.6
and 4.1.2). The correlation parameter can be fitted by the power spectral density (Sections
2.4 and 4.4).

As stated in Ref. 54, trying to fit the experimental PSD directly can yield biased results,
since the sample PSD differs from the analytical one near the Nyquist frequency fny, =
1/(2At). Furthermore, the colored noise model doesn’t even have an exact expression for the
PSD (Subsection 2.6.1). For these reasons, it is preferable to fit the frequency spectrum with
x? maps made from experiments and simulations, since in this case only sample spectra are
compared and analytical expressions are not needed.

The chi-square adjustment was already explained in Section 5.3. Now, the data to be fitted
is the logarithm of the PSD, y = log,, Q;(w) and the function to adjust is the corresponding
PSD from the simulated signal. The fitted parameter is the correlation time 6 = 75 (or
the noise exponent 7 for the colored noise case). Each frequency spectra was set to have
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5. Fitting the SPTM with noise

N = 22 = 4096 points. Fig. 5.3(a) shows an example of adjusted x? curve, while Fig.
5.3(b) compares the experimental PSD and its simulated counterpart that was fitted via the
chi-square.

«10  x? map for the PSD I’ __ Fitof the PSD
| | —Graph | — Experiment
| - - Best value 3 — Average of simulations
28/ i —
| 5
Y26 | =
‘ [
‘ o
| —_
2.4+ |
l
|
2.2 : — ; : - : ‘ : :
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10
v (us) Frequency (Hz) x10°
(a) (b)

Figure 5.3: (a) x? map of the PSD diagram, as a function of the noise correlation time 7
and with a minimum around 7, = 0.45 ps. (b) The corresponding fitted power spectrum.
Position in TCABR: r = 19.5 cm.

Table 5.2: True parameters used in the synthetic realizations of I, to test the the consis-
tency of the CF-CAB-PSD fit for different positions.

CF fit CAB fit | PSD fit
r(em) | v [ (A) (mA) [ (Iy) (mA) [ ow (mA) [| X [ 74 (us) [ 7 (ps)
170 | 4 12 10 3 05| 2 0.3
185 |07 14 12 5 03] 4 13
195 | 2 7 2 1 01| 5 0.5

5.5 Consistency of the CF-CAB-PSD fit

This section analyses whether the CF-CAB-PSD method is consistent or not. For this pur-
pose, we simulated positions r = 17.0 cm, r = 18.5 cm and r = 19.5 cm of the TCABR
tokamak. The first is in the plasma edge (r < a = 18.0 cm), having large pulse overlap
~ and symmetrical pulses, A = 0.5. The second is right after the last closed flux surface
(LCFS, approximately at a = 18.0 cm) and it had large noise parameters ({1}, onr and 7/)
and small pulse overlap v in comparison to other positions. Lastly, r = 19.5 cm is in the
scrape-off layer of the tokamak (SOL, r > a) and is far from the LCFS. It has large pulse

4The PSDs were computed with MATLAB’s pwelch function, which uses Welch’s method [82]. Windows
of N = 22 points were used, with an overlap of 50% (Appendix A.1).
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duration 7, and very asymmetric pulses (small A). All parameters used in the simulations
are in Table 5.2.

To then verify the consistency of the CF-CAB-PSD fit, various simulated signals of I .
were created, with the same initial conditions for each position (Table 5.2), and the fitting
procedure was applied to each one of them. The evaluated parameters were stored in his-
tograms (Fig. 5.4, 5.5 and 5.6). The parameters are well distributed around the true values.

CF fit CAB fit
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0.2 go.z

> 0.1
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Figure 5.4: Histograms of the CF-CAB-PSD fit, showing the results for 150 realizations
of a synthetic I, signal of » = 17.0 cm, with true values given by the first row of Table 5.2
and highlighted in orange in the figures.
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Figure 5.5: Histograms of the CF-CAB-PSD fit, showing the results for 250 realizations of
a synthetic Ig,; signal of r = 18.5 cm, with true values given by the middle row of Table 5.2.
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Figure 5.6: Histograms of the CF-CAB-PSD fit, showing the results for 200 realizations
of a synthetic I, signal of » = 19.5 cm, with true values given by the last row of Table 5.2.
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Figure 5.7: Correlations of the seven fitted parameters for the simulations of positions
r =18.5 cm and r = 19.5 cm.

5.6 Correlations between parameters

With the repeated simulations of Section 5.5, it is possible to estimate the correlations (Sec-
tion 2.3) between the seven fitted parameters of the CF-CAB-PSD method (Table 5.1). Fig.
5.7 shows the correlations for the simulated positions of r = 18.5 cm and r = 19.5 cm of
Section 5.5. In both cases the pattern is almost the same: the intermittency parameter v is
strongly anti-correlated with the other parameters adjusted by the characteristic function—
(A), (In) and 0. Moreover, these last three have a high positive correlation between them.
We underline that this correlation is not necessarily physical, but statistical. This means
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5. Fitting the SPTM with noise

the present analysis does not indicate that one parameter can be omitted in favor of another
because of physical reasons.

As illustrated in Fig. 5.7, all the other parameters (74, A and 77) do not have important
correlations, with exception to p((A),74), which is close to 0.5. The correlation matrix for
the r = 17.0 cm is also very similar to the ones shown here. Table 5.3 presents the numerical
values for the case r = 19.5 cm.

Table 5.3: Correlations of the parameters obtained in Subsection 5.5 for the simulation of
r = 19.5 cm. In bold, the correlations with absolute values above 0.5, which correspond to
the parameters of the CF fit.

L Ly [ A [ ow [ 7 [ A ] ]
v | 1 |-0.91-0.91]-0.74 | 028 ] 0.12 | 0.01
(4) [-0.91| 1 | 0.72 | 0.55 | 0.46 | 0.18 | 0.11
(Ix) | -0.91] 072 | 1 | 0.85 | 0.17 | 0.09 | 0.10
on | -0.74| 0.55 | 0.85 | 1 | 0.18 | 0.06 | 0.02
7, | 028 | 046 | 017 | 018 | 1 | 0.15 | 0.07
A | 012 | 018 | 0.09 | 006 | 015 | 1 | 0.04
7v | 0.01 | 011 | 010 | 0.02 | 007 | 0.04 | 1
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Chapter 6

Simulations of the SPTM with correlated
noise to describe density fluctuations in
TCABR

This chapter compares a experiment of TCABR with stochastic simulations with noise, in
order to describe local measurements of plasma fluctuations.

6.1 Introduction

As shown in Chapter 5, we developed a routine to fit the stochastic pulse train model with
correlated noise. Now, this CF-CAB-PSD fit will be applied to the discharge 34132 of the
TCABR tokamak. This experiment was already introduced in Sections 3.2-3.4. Eight radial
positions were measured with a rake Langmuir probe, at the outboard mid-plane of the
tokamak. The first tip was mounted at » = 17.0 cm and the eighth, at » = 20.5 cm.

Plasma edge Right after the LCFS Scrape-off layer

10 (@) —Experiment | (b) (c)
0 100 200 O - 100 200 O 100 200
Time (us)

Figure 6.1: The top panels show excerpts of saturation current for three positions in the
TCABR tokamak: (a) in the plasma edge, » = 17.0 cm; (b) right after the last closed
flux surface (LCFS), » = 18.5 cm; (c): at the scrape-off layer, r = 19.5 cm. The bottom
panels show simulations of the corresponding experimental data. In each panel, at least one
large-amplitude burst is seen, with a peak above Lot = 2.5.

Following the usual convention [30-36, 40, 48], the results of this chapter are displayed
using the normalized saturation current,
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6. Simulations of the SPTM with correlated noise applied to TCABR

T Isa - Isa
]sat = d < t>
ar
such that I, has zero mean and unit standard deviation. The top panels of Fig. 6.1 depict
some excerpts of I, for three positions measured in TCABR. The bottom panels show the
corresponding simulations made with the parameters obtained with the CF-CAB-PSD fit

presented in Chapter 5.

Plasma edge Right after the LCFS Scrape-off layer
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Figure 6.2: In red, (a) PDFs (in linear and log-y scales), (b) conditionally averaged bursts

and (c) power spectra of Lo for three positions—plasma edge (r = 17.0 cm), right after the

last closed flux surface (r = 18.5 cm) and at the scrape-off layer (r = 19.5 cm). In light blue,

graphs of simulations resultant from the CF-CAB-PSD fit (Chapter 5).

6.2 Transition from the plasma edge to the SOL

In this section are shown the results of the CF-CAB-PSD fit for three characteristic positions
of TCABR—at the plasma edge (r = 17.0 cm), readily after the last closed flux surface
(r = 18.5 cm) and at the scrape-off layer (r = 19.5 cm). With this, it is possible to analyze
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6. Simulations of the SPTM with correlated noise applied to TCABR

whether the stochastic pulse train model can describe the transition between the plasma
edge, 0.8 < r/a < 1, to the scrape-off layer (SOL), r/a > 1 (where a = 18.0 cm is TCABR'’s
minor radius). For the results of all eight positions, the reader is referred to Appendix B.3.1.

Each column of Fig. 6.2 corresponds to a position in TCABR, and each row depicts
graphs with the same axes. The simulated graphs in blue were averaged with 30 Monte Carlo
simulations, to diminish statistical fluctuations. Excerpts of I, for these same positions can
be seen in Fig. 6.1.

An increase of intermittency is observed with the probability distribution functions (PDFs),
Fig. 6.2(a). At the plasma edge panel, the maximum value is about fsat = 7, whereas af-
ter the last closed flux surface (LCFS), L = 10. At the SOL, the maximum is I, = 8.
Furthermore, it is noticeable that inside the plasma edge the PDF is closer to a Gaussian,
indicating that the pulse overlap is high and the intermittency, low. Outside the confinement
region, the PDF becomes more positively asymmetric, and its kurtosis and intermittency
increase. The simulated distributions, obtained with the fitting procedure of Chapter 5, are
in excellent agreement with the experimental ones.

Fig. 6.2(b) shows the conditionally averaged burst shapes. On average the bursts are
symmetric in the plasma edge, where the fitting method obtained A = 0.509(81) for the pulse
asymmetry parameter (Eq. (4.2)). As the radial position goes from the plasma edge to the
SOL, the conditionally averaged waveforms become more asymmetric, with A = 0.293(30) at
r =18.5 cm and with A = 0.105(13) at r = 19.5 cm (uncertainties in parenthesis). The pulse
characteristic duration also increases with r, going from 7, = 2.240(67) us to 75 = 3.81(12) ps
and 74 = 4.57(32) pus, at r = 17.0 cm, r = 18.5 cm and r = 19.5 cm, respectively.

Finally, Fig. 6.2(c) shows the comparison between experimental and simulated power
spectral densities (PSD). The fit is not perfect, but the model reproduces the general behavior
of the frequency spectrum—that is, a plane region for low frequencies followed by a power-law
spectrum for high frequencies.

6.3 Radial profiles

Using the procedure described in Chapter 5, it is possible to fit the eight positions measured
in TCABR. A radial profile of the obtained parameters is depicted in Fig. 6.3. (For the
exact values, see Appendix B.4.) The parameters 7, (A), (In) and o, which define the
probability distribution of I, generally decay with r. This is expected since the density
decreases with the radial profile ((I ) in Fig. 6.4(a)).

For these four parameters shown in Fig. 6.3(a), it is possible to see a regime change in
r = a = 18.0 cm, where a indicates the beginning of the limiter and thus the end of the
plasma confinement region. Before r = a the intermittency parameter v = 7,Np/T achieves
its biggest values, demonstrating that the pulse overlap is higher inside the plasma column
than in the scrape-off layer. On the other hand, the average amplitude of the pulses (A)
starts to decrease rapidly at » = a = 18.0 cm. The same happens to the mean and standard
deviation of the noise, (Iy) and o .

As for the graphs in Fig. 6.3(b), one sees that the pulse characteristic duration 7, increases

85



6. Simulations of the SPTM with correlated noise applied to TCABR

with r, going from 74 = 2.2 us at r = 17.0 cm to 7y = 5.0 us at r = 20.5 cm. The pulse
asymmetry parameter A\, on the other hand, is compatible with A = 0.5 in the plasma edge
(indicating symmetric pulses) and then decays to A = 0.1 in the scrape-off layer (indicating
asymmetric pulses). The behavior of 7, and A was predicted in the discussion of Fig. 6.2(b).

Parameters from the CF fit Parameters from the CAB fit
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Figure 6.3: (a) Radial profile of the parameters fitted with the characteristic function for
the eight radial positions measured in TCABR. Also included is the number of pulses per
time, evaluated as Np/T = v/74. (b) Radial profile from the parameters fitted with x* maps
from the CAB and PSD. The dashed line indicates the plasma minor radius, a = 18.0 cm.
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Figure 6.4: (a) Four statistical properties of I,,: mean, standard deviation, skewness and
kurtosis. The dashed line in r = a = 18.0 cm indicates the limiter position. (b) The radial
profile of the parameters with a similar trend as the kurtosis.

It lasts to analyze noise correlation time 7y in Fig. 6.3(b). First of all, it is clear that
the 7y profile is different from the pulse characteristic duration 74, unlike what was used in
Ref. 54. In the second place, the noise correlation time seems to have a peculiar profile in
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6. Simulations of the SPTM with correlated noise applied to TCABR

Fig. 6.3(b)—it increases until » = 18.5 cm, then decreases up to r = 19.5 cm and thereafter
increases again. Surprisingly, this behavior can be accounted for by analyzing the radial
profile of the kurtosis.

One sees in Fig. 6.4 that, for this experiment, S;, K7, v~', ¢ = (Iy) / (Ip), € = 03/ /0% and
Ty have a similar profile—namely, a local maximum and minimum respectively at » = 18.5 cm
and » = 19.5 cm. As mentioned in Sections 2.1 and 3.4, there is a well-known parabolic
relation between excess kurtosis and skewness for density fluctuations in magnetized plasmas:
K —3=~1.55%32,33,36,50,69,71]." From Eq. (4.12), it is seen the connection between K7,

—1

~~ " and e,
61

(1 —|—€)2

For small noise levels ¢, then the excess kurtosis is approximately equal to the intermit-
tency level 7! times a constant, K; — 3 ~ 6+~ !. Furthermore, when the pulse overlap
v = Ta/Tw decreases (such as for » = 18.5 cm in Fig. 6.3(a)), an increase is expected for the
relative mean and variance of the noise, ¢« = (Iy) /(v (A)) and € = o3/ (v (A)Q). Finally,
when € = 0%,/0% increases, then the noise correlation 7y must also do so, to mimic the sig-
nal’s true complexity. This explains the similar trend between the parameters Sy, K, 77!,
t, € and 7y in Fig. 6.4.

K]—3:

Correlations | r=17.0 cm Correlations | r=18.5cm
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Figure 6.5: Correlations between the intermittency-related parameters of Fig. 6.4, for two
characteristic cases: (a) r = 17.0 cm, with low noise level ¢ < 5%. (b) r = 18.5 cm, with
high noise level, 9% < e.

6.3.1 Correlations of parameters

Fig. 6.5 depicts the correlations between the intermittency-related parameters, Sy, Ky, 771,
t, € and 7x. As examples, the r = 17.0 cm and r = 18.5 cm cases are shown respectively in

1Using Eq. (4.12), one sees that, for the stochastic pulse train model with correlated noise, the exact
expression is K1 — 3 = 1.5(1 + €)57, which corresponds to K; — 3 &~ 1.557 for small e.

87



6. Simulations of the SPTM with correlated noise applied to TCABR

the (a) and (b) panels. For both scenarios, the correlations between S;, Ky, v~ and ¢ are
above 0.5. In contrast, the correlations between 1) and the other parameters are near to 0.0.
The main difference between the two positions occurs for the noise level €. For r = 17.0 cm,
the correlations of € are above 0.5, whereas for r = 18.5 cm the correlations between e and
Sr, K, v~! are close to 0.0.

Positions with low noise level € (i.e., r € [17.0,17.5,19.5,20.0] cm, following Fig. 6.4(b))
have correlations similar to the »r = 17.0 cm case. On the other hand, positions with high
noise level € (i.e., r € [18.0,18.5,19.0,20.5] cm) are similar to the r = 18.5 cm case.

6.4 Comparison between noises

6.4.1 Determinism

In this section, three different choices for the correlation time 75 will be compared. Some
authors use 7,y — 0 ps (corresponding to uncorrelated or white noise) [34, 40, 41], while
recently the dynamical noise 7y = 7; was proposed [37,54]. In this thesis, we considered
the case where 7y is fitted with the PSD (Section 5.4), and thus the correlation time is not
necessarily equal to the pulse duration, 7y # 74. Apart from 7, all the other parameters
are equal in the three scenarios (see Fig. 6.3 or Tables B.1 and B.2 for the values).

To make this comparison, we propose the use of the determinism (DET) from the recur-
rence quantification analysis (RQA)—see for example Refs. 98 and 99 or Section 2.8. DET
quantifies the percentage of diagonal lines that are recurrent in the recurrence plot [99].?
Chaotic signals tend to have higher RQA determinism than stochastic ones.

Profiles of RQA determinism

0.9
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—+Exp.
0.6+ TN =T4
TN # Td
05" W — 0
17 18 19 20

r (cm)

Figure 6.6: Radial profiles of determinism obtained with recurrence quantification analysis.
In red, the data from the TCABR experiment; in dark blue, light blue and gray are the data
from the SPTM simulations. All have the same parameters from Fig. 6.3, with the exception
of the correlation time 7. The dashed line marks the LCFS approximate position.

2For recurrence plots of the experimental and simulated I, of TCABR, see Appendix B.5.
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Fig. 6.6 shows the radial profile of the determinism of I, for the experimental and
simulated data. An embedding dimension of drga = 4 was used, as well as a delay of
Trqa = 10 points (5 ps) and repeated windows with Nrga = 10% points to evaluate the
average and standard deviation of the determinism. The recurrence rate was fixated at 10%.
These parameter values were chosen following previous works [99-102]. Moderate changes in
them don’t alter the results.

The red curve in Fig. 6.6 represents the experimental RQA determinism. It slightly
increases with r. In gray is shown the data obtained with Gaussian white noise (7 — 0 us).
There is an obvious structure with a minimum in » = 18.5 cm and maximum at r = 19.5 cm.
Therefore, for the signal with white noise, we infer that the determinism and the noise level
e follow opposite trends, since the profile of this last one has a maximum at r = 18.5 cm and
minimum at r = 19.5 cm (Fig. 6.4(b)).

In its turn, the dark blue curve in Fig. 6.6 shows the determinism obtained with the
correlation time equal to the characteristic duration of the pulses. This condition 7\ = 74
was proposed in Ref. 54 to model dynamic noise. However, the dark blue curve in Fig. 6.6
is systematically above the experimental data.

Lastly, the light blue curve in Fig. 6.6 shows the RQA determinism obtained with the
simulated signal with correlation time different from the pulse duration (7ar # 74). Although
not perfect, the simulated data is closer to the experimental points than in the other two
scenarios (Tar — 0 ps and 7y = 7).

6.4.2 CH diagram

In addition to determinism, we propose to use the complexity-entropy diagram to differentiate
which noise best describes density fluctuations in tokamaks. The CH plane was presented in
Section 2.7. It characterizes a signal I in terms of a pair of complexity and entropy (Cs, Hg),
which describes the local structure of signals in terms of tuples of dimension dog. Following
previous works [80,93-95|, we adopted dcy = 6, meaning that each embedding vector had a
duration of dog At = 3 ps.

Fig. 6.7 presents CH diagrams for the eight measured positions in TCABR and the
corresponding simulations with dynamical OU noise (7ns = 74), fitted OU noise (7nr # 74)
and uncorrelated noise (7pr — 0). The experiment, illustrated in all four panels of Fig. 6.7,
has its points above the fractional Brownian motion (fBm) curve. The points from the three
different simulations are in general below the experimental data and close to the fBm curve.
The model with dynamical noise is the closest to the experiment in the CH plane, followed
up by the fitted noise case. The uncorrelated noise model has the majority of its points
close to (Cys, Hy) = (0,1), which corresponds to a purely white noise signal. In all three
scenarios, the simulations with the lowest noise levels € (i.e. r € [17,17.5,19.5,20] cm, see
Fig. 6.4) have a higher complexity. In contrast, signals with high noise levels (such as the
one of r = 18.5 cm) tend to have the lowest complexity and highest entropy.

It can be elucidating to investigate the entropy and complexity separately, as done in
Fig. 6.8. For the described signals, Hg and C;g are highly anti-correlated. This means that
it suffices to examine one, since the results of the other will be the opposite—a minimum
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6. Simulations of the SPTM with correlated noise applied to TCABR

in Hg will be a maximum in C);g, and vice-versa. The white noise model has the worse
results, whereas in this case the dynamical noise models better the experimental complexity
and entropy.

CH diagrams r(cm)
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0.4 :
N 20
0.3} T
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Figure 6.7: Complexity-entropy diagrams for the eight experiments measured in TCABR
(in circles), together with the simulations from three different Ornstein-Uhlenbeck noises
(7 = T4, T # Tq and 7ir — 0 ps, in triangles). In the top-left panel, the points of all
signals are shown. For the other panels, the experimental data is compared to one type of
simulation at a time, and each position r is represented by a color in the rainbow scale.

The simulated entropies depicted in Fig. 6.8(a) have a local maximum and minimum
at r = 18.5 cm and r = 19.5 cm, respectively, as seen before for the intermittency-related
parameters (Fig. 6.4).> The experimental entropy, on the other hand, mainly decays with the
radial position. This evident discrepancy between experiment and simulation indicates that
the stochastic pulse train model with Gaussian Ornstein-Uhlenbeck noise does not describe
well the local structure of density fluctuations for the TCABR tokamak.

3For the case of fitted noise (7ar # 74), the maximum at r = 18.5 cm is flattened, as seen in Fig. 6.8(a).
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Figure 6.8: Shannon entropy and Jensen-Shannon complexity for the experimental posi-
tions (in red) and the corresponding simulations with different correlation times 7.

6.4.3 Colored noise

In this subsection, the results from colored and Ornstein-Uhlenbeck noises are compared. The
model with colored noise (CN)—characterized by the relation Q;(f) oc f~7 in the frequency
spectrum—was used in Ref. 48, whereas the OU noise case was introduced in 54 and applied
in 37. The parameters from both models are the same: ~y, (A), (Ix), oa, A and 74 (as in
Table 5.1). The only exception is the correlation parameter, which is 7 for the CN case and
Ty for the OU case. See Section 2.6 for more details.

Because of the similarities, both can be fitted with the CF-CAB-PSD procedure (Chapter
5). The only difference is that, for the colored noise scenario, the exponent 7 is fitted instead
of the correlation time 7. With this in mind, we created simulations for the CN model,
fitting the experimental I,,; with the CF-CAB-PSD fit, just as done for the OUN in Chapter
5. Hence, the parameters v, (A), (Iy), on, A and 74 were already evaluated. They can be
seen in Appendix B.4, together with the values of the noise exponent 7.

Results comparing CN and OUN simulations are presented in Fig. 6.9. One notices that
both have very similar determinism, Shannon entropy and Jensen-Shannon complexity. In
fact, a monotonic relation was found between the two, as indicated by Fig. 6.10(a). The
radial profile of the parameters 7 and 7, is shown in Fig. 6.10(b).

The results from the CN and OUN simulations are almost identical. Still, as discussed
in Section 2.6, the power spectral density (PSD) of the colored noise is ill-defined, especially
for frequencies approaching zero, f — 0. On the contrary, the PSD of the OUN is well
defined and is given in terms of analytical functions. Thereafter, it is preferable to use the
Ornstein-Uhlenbeck noise.
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Profiles of RQA determinism
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Figure 6.9: (a) Profile of the determinism for the experiment (in red) and simulations
with Ornstein-Uhlenbeck noise (in blue) and colored noise (in purple). (b) Profiles of the
Shannon entropy and Jensen-Shannon complexity for the same signals.
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Figure 6.10: (a) Graph of n x 7. (b) Profiles of these same correlation parameters 7y
and 7, obtained with the CF-CAB-PSD fit for the models with Ornstein-Uhlenbeck noise
and colored noise, respectively.

6.5 Summary and discussion

A lot of information was given in this chapter and hence it is worthwhile to summarize and
organize the main results. We applied the CF-CAB-PSD fit to the experiment 34132 of
TCABR, in which I,,; was measured at eight radial positions. With the fit, simulations with
bursts and correlated noise were generated and compared to experimental data.

In Section 6.2, the distributions of the model were shown to be in excellent agreement
with the experiment. The conditionally averaged burst (CAB) was also adequately adjusted,
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6. Simulations of the SPTM with correlated noise applied to TCABR

at least as a first approximation. The power spectral density (PSD), on the other hand, was
poorly fitted. This indicates that the adopted pulse train model with Gaussian Ornstein-
Uhlenbeck noise does not reproduce so well the structure of density fluctuations in TCABR.

In Section 6.3, radial profiles of the parameters were presented. The distribution param-
eters mainly decay with the radial position, which makes sense since the plasma density also
decreases with r. Also, we found a relation between the intermittency-related parameters,
such as v, e and 7. A decrease in the pulse overlap v tends to be accompanied by an increase
in the noise level €, so that the absence of pulses is replaced by noise with higher fluctuation
levels. However, to mimic the pulse shapes, the noise correlation 7, must also grow.

In Section 6.4, four different noise cases used in the literature were compared: three with
Ornstein-Uhlenbeck noise (OUN), defined by the correlation time 7)r, and one with colored
noise (CN), which has the noise exponent 1. In Subsection 6.4.3, the CN model proved to
be very similar to the OUN scenario with 7 fitted by the PSD (7pr # 74 case). However, as
the power spectrum of the CN is ill-defined, it is preferable to use the OUN.

In Subsections 6.4.1 and 6.4.2 we introduced the use of the determinism and the CH
diagram to distinguish which OUN better models density fluctuations. Between white (7 —
0 ps), dynamical (7ns = 74) and fitted noise (7p # 74), the last performed better, from the
point of view of the determinism. On the other hand, from the perspective of the CH diagram,
the dynamical noise had better results. In both scenarios, the white noise model had the
worst outcomes. Thus, from the four noise models, only the dynamical and fitted OU cases
are indicated to describe I,,; measurements in TCABR.

Nevertheless, the analysis in the CH diagram showed that all of the considered models
with noise couldn’t accurately reproduce the experimental entropy and complexity. Even the
dynamical noise case, which had the better results for this graph, showed a biased profile
(Fig. 6.8).

Certainly, the problem is not with the fitting procedure, which is unbiased, as seen in
Section 5.5. Hence, our analysis with the CH diagram, the RQA determinism and the power
spectrum indicate that the stochastic pulse train model with noise may not describe faithfully
the local structure of density fluctuations in the TCABR tokamak. These results motivated
us to analyze another type of background fluctuations. This new background will be subject
of Chapters 7 and 8.
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Chapter 7

Stochastic pulse train model with pulse
background

In Chapters 4-6, we considered the stochastic pulse train model with correlated noise (SPTM-
N). As analyzed in Sections 6.4.2 and 6.5, the SPTM-N could not faithfully reproduce the
structure of the background of density fluctuations in TCABR. In this chapter, another type
of SPTM will be introduced, changing correlated noise to a pulse background. The SPTM
with a pulse background was first considered in Ref. 48, to analyze correlated bursts. The
burst shape will also be generalized here, to better fit the experimental averaged burst.

7.1 The model

The stochastic pulse train model with pulse background (SPTM-PB) is given by
Lot (t) = Ip(t) + I(t) (7.1)

where both terms correspond to a pulse train (as in Eq. (4.6)),

ZAJ¢< b, ;A Cme) (7.2)
and

N(b) (b)
Z AP ( 10.5,1, 1> (7.3)

The supper script ® will be used to denote the background. The distributions of amplitude
and interval between events remain exponential and uncorrelated, as in the SPTM-N case
(Eq. (4.3) and (4.4)).

Also, here we are also generalizing the pulse shape to

exp (— \Q/Ay@) , <0

D(0; X, G, Cf) = oxp _[9/(1_)\)}9‘}, 0>0

(7.4)

The exponents ¢, (for the pulse rise) and (; (for the fall) transform the standard exponentials
in stretched exponentials. They were first used to fit conditionally averaged bursts in Ref.
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15. As it will be shown in Chapter 8, in TCABR these stretching exponents ( range from
0.5 to 1.0.' The case (. = ¢y = 1 corresponds to standard exponentials.

Stretched exponential fit

Standard exponential fit

120 — i 120 — i
[ Data [ Data
I —Fit —Fit
100 ¢ | 100!
< <
E so! E 8ot
[20] [21]
< <
60t 601
40" 4=
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Time (us) Time (us)
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Figure 7.1: Conditionally averaged burst of the experiment 34132, position » = 17.5 c¢m, in
TCABR. (a) Least-squares (LS) fit with standard exponential. (b) LS fit with generalized
stretched exponentials, yielding 7, = 1.51(4) us, 7, = 1.40(4) ps, ¢, = 0.812(22) and (5 =
0.837(24).

Table 7.1: Parameters of the stochastic pulse train model with pulse background and their
possible values found for TCABR.

’ Symbol \ Meaning \ Eq. \ Possible value ‘

Np/T | Number of burst-related pulses, per time (7.2) | [0.05,1] us™*

(A) | Average amplitude of the main pulses (4.3) | 9,20] mA

T4 Characteristic duration of the main pulses (7.2) | [2,5]

A Asymmetry parameter of the main pulses (7.4) | [0.1,0. 5]

G Stretching exponent of the rise of the main pulses | (7.4) | [0.5,1.0]

Cr Stretching exponent of the fall of the main pulses | (7.4) | [0.5, 1. O]
Ng’)/T Number of background pulses, per time (7.3) | [1,5] w
<A(b)> Average amplitude of the background pulses (4.3) | [2,7] m

Téb) Characteristic duration of the background pulses | (7.3) | [0.8, 1. 8] us

The motivation for using stretched exponentials comes from the fact that the conditionally
averaged burst was not perfectly fitted by the model with unstretched exponentials (as seen

ITo optimize the creation of simulations, it is interesting to truncate the exponentials after their amplitude
becomes sufficiently small. Details are given in Appendix B.7.
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7. Stochastic pulse train model with pulse background

for example in Fig. 6.2(b)). Fig. 7.1 exemplifies the difference between the two fittings.
Panel (a) shows a fit with the standard exponential (¢, = (; = 1). Panel (b) exhibits the
stretched fit (¢, (s € ]0,1]). The model used in (b) is clearly better for this data since the
one in (a) is unable to adjust the peak.

For the pulse background we shall consider symmetric unstretched pulses (A®) = 0.5
and C,Sb) =( J(cb) = 1). With this consideration, the SPTM with pulse background has nine
parameters, as depicted in Table 7.1.

7.2 Characteristic function of the SPTM-PB

The pulse background I,,(¢) from Eq. (7.3) is a train of unstretched bi-exponential pulses
which have exponentially distributed amplitudes and waiting time between events. As in
Section 4.2, a signal such as this is Gamma distributed [50,52,55],

1 5,() " L(t)
By(1p(t)) = (ALY (7 ®) (<A(”))> =P <_<A(b)>> i

where (A®) is the mean amplitude of the pulses of Eq. (7.3), v = Tép)Nl(;p)/T is the
intermittency parameter of the pulse background (PB) and I" is the Gamma function (Eq.
(4.9)). A Gamma distribution has the characteristic function [55]

—y®)

Cy(u) = (1 —iu (AD)) (7.6)

However, with stretched pulses, the PDF of I5(t) is not Gamma distributed anymore. In
fact, in this { # 1 case, neither the PDF nor the characteristic function (CF) can be given
in terms of elementary functions. Nevertheless, we found out that the derivation of the CF,
now expressed in terms of a nonelementary integral, continues to be straightforward.

Following Eq. (A13) of Ref. 55, the characteristic function logarithm for the SPTM with
independent random variables and uniform pulses occurrence is

InCp(u) = 7/00 do [Cy (up(8)) — 1]

—00

where v = 7;Np/T is the same intermittency parameter from the SPTM-N model and, for
stretched pulses (Eq. (7.4)),

exp -|9/Aﬁ*), <0

o(0) =
) eq>—wm1—»w},ezo
C'4 is the CF of the amplitude distribution. Since A is exponentially distributed,

1
Ca(u) = T iu (A)
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and thus 1

Ca(ud(0)) = T— (A) 6(6)

Returning to the integral,

InCp(u) = 7/

—00

[e.e]

1
0 [1 (A

As detailed in Appendix B.8, results that this expression is equal to
I () = YA+ L (i (A5 Go) + 71— X) - L (i (A} Cy) (7.7)

where we defined the nonelementary integral

such that
iu (A)

L(iu (A);() = d
(u()16) = [ ot B
L(z;¢) converges for Re(1/¢) > 0 and for all z € C except for real z such that z > 1. Since

(by the definition of the stretching exponent) 0 < ¢ < 1 and iu (A) is imaginary, it results
that L(iu (A); () always converges—and thus In Cz(u) always exists.

The characteristic function of a sum of random variables is the product of the individual
random variables. Hence, from

Lar(t) = Ip(t) + (1)

follows that the characteristic function of the pulse train model with pulse background is
Cr(u) = Cp(u)Cy(u)

with Cp(u) and Cy(u) given respectively by Eq. (7.7) and (7.6).

7.3 Moments of the SPTM-PB

As seen in Eq. (7.7), the characteristic function logarithm of the stretched bursts Ig(t) is
rather complicated and is given in terms of the nonelementary integral L(iu (A) ;). Never-
theless, with the CF it is possible and easy to deduce the moments of the PDF of Ig(t). As
detailed in Appendix B.8, for |iu (A) | < 1, the integral L(iu (A);() can be written as?

L(¢u<A>;g)_r(1+%)Z(“;<l—//?yl

n=1

2For ¢ = 1, this infinite sum is equal to

Liu(ay;n =S 8
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Therefore, in this case, the logarithm of Cp(u) (Eq. (7.7)),
InCp(u) = yA- L(iu(A);¢) +5(1 = A) - L (iu({A); ()

becomes
oo A 1 1—X 1
e _ o (AN 1+ 2 11+ = 7.8
nCp(u) 7; i) [nl/cr ( +Cr)+n1/<f ( +Cf)] 7

As observed in Section 2.2, the logarithm of the CF is a cumulant generating function,

= ()"
In OB(U) = Z IinT
n=1
Hence, from Eq. (7.8) the cumulants can be written as

Rp = Sn (/\JCMCf) X (n - 1)' Y <A>n

where we defined the stretch coefficient of order n as

A 1 1—\ 1
sn (A Gy Cp) = eyt <1 + 5) + gl (1 + C_f) (7.9)

Note that for unstretched pulses s, (A, 1,1) = 1.

With the cumulants and Eq. (2.13), it is possible to obtain the mean, variance, skewness
and kurtosis of the train of stretched pulses I5(t) (Eq. (7.2)),

(Ig) = K1
O'%:/‘ig
K3
Sp = 3/2
2
K
KB - 3+_;1
K

(Continuation of the footnote of the previous page.) Hence, for this case of unstretched pulses, the Cp(u)
from Eq. (7.7) is the characteristic function of a Gamma distribution,

InCp(u) =4 L(iu(A);1) +v(1 =N - L(iu(4);1) =

InCp(u) =—yIn(1 —iu(4)) =
Cp(u) = (1 —iu(d))””
just as in Eq. (7.6), for example.
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Therefore

=t (1+ L) v a-nr (1 2)]

o5 =7 (A) 520\ G, )

2 53<)‘ gerf)

Sp = ~1/2 3/2(/\ G Ch)

6 s4(A, G,
K, _3+_84( G Cr)
Y 82(>\ C’ra é-f)
For the stochastic pulse train model with pulse background (SPTM-PB), the saturation
current is given by Eq. (7.1),

Lsar(t) = Ip(t) + L(1)
Since the cumulants are cumulative (Eq. (2.12)), then the mean, variance, skewness and
kurtosis of the SPTM-PB are respectively

(Tat) = 51 (A, Gy Cr) 7 (A) + 7P (A®)

= 53 (A Gy Gp) 7 (A + 4B (A

, (7.10)
[53 (0, G, ) 7 (4)" 40 (4]

K]:3+%[34(/\7§m<f)’7< ty® (A®)]
Or

where the stretch coefficient s, (A, ¢, (r) is defined in Eq. (7.9).

7.4 Fitting the SPTM-PB

As seen in Section 7.2, with stretched pulses, the characteristic function can no longer be
given in terms of elementary functions. Because of this, the CF-CAB-PSD fitting method of
Chapter 5 cannot be used to adjust the stochastic pulse train model with pulse background
(Isat = Ip + I,). Moreover, even with unstretched pulses (( = 1), it is difficult to implement
the CF-CAB-PSD fit for the SPTM-PB, because in this case both Ig and I, are a train of
unstretched pulses, and then the characteristic function fit is not sensible to choose between
the parameters of Ig and I,.
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It results that the fitting procedure adopted was to manually adjust the simulated mean
and standard deviation to the experimental I, and also analyze the reduced y? from various
diagnostics—PDF, PSD, conditionally averaged burst, CH point, and distributions of bursts
amplitude and waiting time. For this reason, the obtained profiles for the SPTM-PB parame-
ters are not entirely objective and it would be desirable to improve the fitting method for the
SPTM-PB in future works. Nevertheless, as will be shown in Chapter 8, these preliminary
results already present important advantages with respect to the SPTM-N model (which was
described in Chapters 4, 5 and 6).

100



Chapter 8

Simulations of the SPTM with pulse back-
ground to describe density fluctuations in
TCABR

This chapter compares simulations of the SPTM-PB (Chapter 7) with the experiment 34132
of TCABR (described in Sections 3.2-3.4), in a similar manner to what was done to the
SPTM-N case (Chapter 6). First, the transition from the plasma edge to the scrape-off layer
will be presented (Section 8.1). Then radial profiles of the SPTM-PB parameters will be
depicted in Section 8.2. Finally, a comparison between backgrounds will be made in Section
8.3, using the CH diagram and the RQA determinism (Sections 2.7 and 2.8).

Plasma edge Right after the LCFS Scrape-off layer

(@ (b) ©

0 50 100 150 200 O 50 100 150 200
Time (us)

Figure 8.1: The top panels show excerpts of saturation current for three positions in the

TCABR tokamak: (a) in the plasma edge, » = 17.0 cm; (b) right after the last closed flux

surface (LCFS), r = 18.5 c¢cm; (¢): at the scrape-off layer, » = 19.5 cm. The bottom panels

show SPTM-PB simulations. In each panel, at least one large-amplitude burst is seen, with

a peak above fsat > 2.5.

8.1 Transition from the plasma edge to the SOL

In this section, three positions of the TCABR will be compared (as done in Section 6.2
for the SPTM-N): the plasma edge (r = 17.0 cm), right after the last closed flux surface
(r =18.5 cm > a) and at the scrape-off layer (r = 19.5 cm > a). For the results of all eight
positions, the reader is referred to Appendix B.3.2.
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8. Simulations of the SPTM with pulse background applied to TCABR

The normalized saturation current will be used, as in Chapter 6,

T Isa - [sa
Lut(t) = M

or
Fig. 8.1 shows excerpts of the experimental and simulated saturation current, in red and
black, respectively. The simulations seem to reproduce well the behavior of the experiment.

Plasma edge Right after the LCFS Scrape-off layer
Log y-axis
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Figure 8.2: In red, (a) PDFs (in linear and log-y scales), (b) conditionally averaged bursts
and (c) power spectra of I, for three positions—plasma edge (r = 17.0 cm), right after the
last closed flux surface (r = 18.5 cm) and at the scrape-off layer (r = 19.5 cm). In black,
simulations of the SPTM-PB (Chapter 7).

Fig. 8.2 compares the distributions, conditionally averaged bursts and power spectra of
4 for the same positions of Fig. 8.1. In opposition to what was seen for the SPTM with
Gaussian noise Fig. 6.2, the simulated averaged bursts and frequency spectra are in great
agreement with the experiment. The first occurred because of the use of stretched bursts
(¢ # 1), as described in Section 7.1. The use of pulse background, in this case, makes no
difference with respect to the noise background (Chapters 4 and 6), because the background
structure is not important to the conditionally averaged burst. In its turn, we infer that
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the power spectra of Fig. 8.2 were better fitted because of the pulse background. This last
statement is in accordance with the prediction of Appendix B.6: that the SPTM with a pulse
background fits the I,,; PSDs in TCABR better than the SPTM with Gaussian noise.

Nevertheless, as seen in the middle panel of Fig. (8.2), the SPTM-PB couldn’t fit the
T4 distribution so well as the SPTM-N. (For all the other five fitted PDFs, see Appendix
B.3.2.) This indicates that the stochastic pulse train model with pulse background isn’t able
to perfectly reproduce the Gaussian background. Thus, with the PB model, a small noise
term may still be needed to accurately describe small fluctuations.

In conclusion, the SPTM-PB described well the transition from the plasma edge to the
scrape-off layer of TCABR, from the perspective of conditionally averaged bursts and the
power spectra. In contrast, the PDF was not so well fitted.

Statistical properties

< — —Sim.
j&: 50 i‘c_:/ ?g 1 Exp.
3 & 10
T o
18 20 18 20
15
2
B 15 M x 10
1 5
18 20 18 20
r (cm) r (cm)

Figure 8.3: (a) Four main statistical properties of I4,;: mean, standard deviation, skewness
and kurtosis. The dashed line in » = @ = 18.0 ¢m indicates the limiter position.

8.2 Parameters and moments

Fig. 8.3 shows the average, standard deviation, skewness and kurtosis of the I,; measured
in TCABR, compared to the values predicted by the SPTM-PB model. As expected, the
simulated mean and standard deviation are in excellent agreement with the experiment, since
these two were used to fit the SPTM-PB (Section 7.4). The skewness and kurtosis are also
well reproduced, although the predicted values of the kurtosis are in general slightly above
the experimental ones.

Fig. 8.4 presents the nine parameters of the SPTM-PB fitted for the TCABR experiment.

More specifically, Fig. 8.4(a) depicts the principal parameters of the SPTM-PB distribution.*
The average amplitude of the pulses, (A), presented a global maximum around the minor

! As discussed in Section 7.2, in this case, the PDF (which has the same information as the CF) depends
on v, (A), ~®) <A(b)>7 A, ¢ and (¢. Nevertheless, the dependence on the last three occurs only through

the stretch coefficients s, (A, ¢, (¢). For this reason, here v, (A4), ~® and <A(b)> are referred to as the main
parameters of the distribution.
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radius ¢ = 18.0 cm. This was also obtained for the SPTM-N (Fig. 6.3(a)). All the other
parameters on Fig. 8.4(a) in general decay with the radial position, which makes sense since
(Isa¢) and oy decay with r (Fig. 8.3). Fig. 8.4(b) depicts the profiles of the pulse parameters

A, Gy G, Tq and Tcgb).
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Figure 8.4: Parameters of the SPTM-PB fitted for the TCABR experiment. The exact
values are stored in Tables B.4 and B.5.

The parameters from the main pulses, A, (., (5 and 74, are difficult to fit manually
(and thus should not be taken as an ultimate answer). This happens because they are highly
correlated, which can be more easily understood in the terms of the rise and fall characteristic
durations, 7, = Aty and 7y = (1 — A\)74. If 7, is overestimated, then also would be (,, so that
the overestimated duration is compensated by a less stretched pulse (¢, — 1). The same
argument holds for 74 and (.

Nevertheless, the effective duration 7.5 = s1(\, ¢, ()74 is well behaved, since the stretch-
ing and duration effects are combined. It is 7.; who matters for the average of I, as can
be noted using Eq. (7.10),

<Isat> = 81 (>\7 CTJ Cf) Y <A> + fy(b) <A(b)> -

<[sat> = Yef <A> + ’}’(b) <A(b)>

where the effective intermittency parameter was defined as vy = s17 = s173Np/T =
7.tNp/T. The dashed line in Fig. 8.5(a) depicts the values obtained for the effective dura-
tion 7.y = s174. It is seen that its profile is better behaved than the one of 7;. The effective
duration is stable for » < 18.0 cm. Then it rapidly increases until » = 19 cm, a position in
which it becomes stable again.

Lastly, Fig. 8.5(b) exhibits the profiles of the stretch coefficients s, so, s3 and s4, which
influence the I, average, standard deviation, skewness and kurtosis in the SPTM-PB. We
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recall that the stretch coefficient of order n was defined in Eq. (7.9),

A 1 1— A\ 1

Note that s,(A,1,1) = 1. For n =1,
s1 (NG, Cr) = [)\F (1 + l) +(1-MNT (1 + l)}
Cr Cf

Hence, s; increases with 1/¢, and 1/(; and thus s1(\, (., (r) > 1 (for ¢, (f and A defined
between 0 and 1). Conversely, for n = 2 and 0.5 < ¢ < 1 it results that

91/¢ ¢

Therefore sy is really close to 1 and the variance of I, 07 = sy (A)2 + ® <A(b)>, is not
much affected by the stretch coefficient. For n > 2, contrastingly, the factor n/n'/T'(141/¢)
rapidly decreases with 1/¢ and hence s,, < 1 for n > 2. In resume, the stretch coefficients
behave like

0.94<ll“(1+1) <1

S1 <)‘7 Cwa) 21
59 (>\a gmgf) ~1
Sp>2 <)\7 Cr;Cf) S]-

for ¢, (s € [0.5,1] and X € [0,1]. Their behavior is shown in Fig. 8.5(b).

Profile of 7, = s, (\,{,,¢))74 Stretch coefficients

R P 14/

—8,-—8,-—8,-8

1 2 3 4

17 18 19 20 17 18 19 20
r (cm) r (cm)

(a) (b)

Figure 8.5: (a) Profile of the effective pulse duration 7.y = 5174, compared to the profile
of the pulse duration 74. (b) Profiles of the stretch coefficients s, s2, s3 and s4 obtained for
the TCABR experiment using the SPTM-PB.
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8.3 Comparison between background models

In this section, the pulse background model (SPTM-PB) will be compared to the TCABR ex-
periment and Gaussian noise models (SPTM-N), using nonlinear tools, namely the Complexity-
Entropy diagram (Section 2.7) and the determinism from recurrence quantification analysis
(Section 2.8).

The complexity-entropy points of the SPTM-PB are shown in the squares of Fig. 8.6.
Unlike what was obtained for the SPTM-N (Fig. 6.4.2), the points from the pulse background
case are in great agreement with the experimental data, in circles.

CH diagram Zoom r(cm)
0.5 - : ‘ ; » ; ; ; : 20.5
— “max - " ®
F- e 20
(QO 4 Crin e\ 0.36 8
O fBm R\ 19.5
|
> 0.3} * Exp. I "o 19
= = Sim.PB LNy 0.32; .
L N\ ° 18.5
= AN ®
N 18
S o1 *. 0.28
\\ -
. ., 17.5
: : : : TN : : — W17
0 0.2 0.4 0.6 0.8 1 0.7 0.75 0.8 0.85
Normalized entropy, Hs Normalized entropy, HS

Figure 8.6: Complexity-Entropy diagram and its points for the TCABR experiment and
the SPTM-PB data.

0 IZrofiIes of Jensen-Shannon complexity F1’rofiles of normalized Shannon entropy

—+OUN v =174

—+OUN 7y # 74
| 06/ OUN 7 = 0
O n n n n n n
17 18 19 20 17 18 19 20
r (cm) r (cm)
(a) (b)

Figure 8.7: Profiles of the Jensen-Shannon complexity (a), and the Shannon normalized
complexity (b). In red are the data from the TCABR experiment. In other colors are the
synthetic data corresponding to dynamical Ornstein-Uhlenbeck noise (OUN), in dark blue;
fitted OUN, in light blue; white noise, in grey; pulse background, in black.

It is elucidating to analyze the entropy and complexity separately, as done in Fig. 8.7(a)
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8. Simulations of the SPTM with pulse background applied to TCABR

and (b). The PB simulations have Shannon entropy and Jensen-Shannon complexity in
excellent agreement with the experiment, in opposition to the Gaussian noise simulations.
Fig. 8.8 shows the profile of the RQA determinism.? The PB profile is similar to the fitted

OU noise case (Tnr # 74) and the experiment.

Profiles of RQA determinism

E 0.7 - EX
a P
—4-OUN (‘I‘N=7‘d)
0.6¢ —+OUN (ry#7.)
OUN (r,—0)
0.5/ ‘ _+PB
17 18 19 20

r (cm)

Figure 8.8: Profiles of the RQA determinism from the same signals of Fig. 8.7.

8.4 Summary and discussion

In this chapter, the stochastic pulse train model with pulse background (SPTM-PB) was
applied to local measurements of density fluctuations in the TCABR tokamak. The model
reproduced well the experimental conditionally averaged bursts and the power spectral densi-
ties from I,y (Fig. 8.2). The Iy, PDF was adequately fitted for » = 17.0 cm and r = 19.5 cm
in Fig. 8.2(a). For r = 18.5 ¢cm, on the other hand, the PDF was not so well adjusted, and
we found out that the same occurred for r € [18.0,20.0,20.5] cm (Fig. B.6). These results
for the CAB, PSD and PDF are in contrast with the obtained for the SPTM-N (Section 6.2),
since this last model reproduced well the PDF for all positions, but not the CAB and PSD.

In Section 8.2, radial profiles of the obtained parameters were shown. Lastly, in Section 8.3
two non-linear diagnostics were used to compare the experiment with the SPTM-N and the
SPTM-PB. Data of the SPTM-PB obtained from the CH diagram and the RQA determinism
showed good agreement with the experiment, in contrast to the SPTM-N data.

Furthermore, Ref. 80 questioned the possibility of the stochastic model to figure inside
the chaotic region in the CH diagram (i.e., above the fBm curve). It is therefore a striking
result that the model with pulse background not only managed to be in this region, but was
also extremely close to the experimental data. The fact that the PB data are similar to the
experimental ones for the CH diagram and the RQA determinism indicates that this model
and the experimental signal have a similar dynamic behavior.

2The RQA determinism is obtained from recurrence plots. For recurrence plots of the experimental and
simulated I,,; of TCABR, see Appendix B.5.
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Chapter 9

Conclusion

As stated in Chapter 1, turbulence in the edge of magnetized plasmas transports high-
amplitude bursts to the boundary of tokamaks, deteriorating the particle confinement |25,
26,65]. Our work focus on modeling local measurements of density fluctuations with bursts
in the TCABR tokamak. With a stochastic pulse train model (SPTM) [50, 54|, different
types of backgrounds are used to describe these signals: four different Gaussian noises (three
of them portrayed in Ref. 48 and 54) and a pulse background [48]|. They are summarized in
Table 9.1.

Table 9.1: Different background signals used with the SPTM for this dissertation. OU
stands for Ornstein-Uhlenbeck. All four noises are Gaussian and the 7y # 7, case was
proposed in the present work. For details, see Chapters 4, 5 and 7.

’ Background \ Correlation parameter \ How is set ‘
Colored noise n 7 is fitted
White noise 0 w=0o0rn=0
Dynamical OU noise ™ ™ = T4
Fitted OU noise N Ty 1s fitted (T # T4q)
Pulse background Téb) Téb) is fitted

However, these models hadn’t yet been compared simultaneously to an experiment. Fur-
thermore, there wasn’t a fitting method for the SPTM that could adjust all its parameters
in a unified and objective way. In this dissertation, we aimed to tackle these two gaps.

To do the analysis, we introduced the CF-CAB-PSD fitting method for this stochastic
model, considering correlated noise (Chapter 5). The fit is consistent and can be applied to
different tokamaks.

In Chapter 6, the fit and model were applied to the TCABR tokamak. Between the four
noise models considered, the white noise case had the worst results when concerning the
RQA determinism and the CH diagram. Also, the results from the model with colored noise
were very similar to the ones of the fitted Ornstein-Uhlenbeck noise. However, since the
power spectrum of the colored noise is ill-defined, it is preferable to work with OU processes.
Therefore, out of the four noise models for the SPTM, we only suggest the use of two: the
dynamical and the fitted Ornstein-Uhlenbeck processes.

The model distributions were in excellent agreement with the experimental ones. However,
the simulated conditionally averaged bursts (CABs), power spectral densities (PSDs), RQA
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9. Conclusion

determinism and CH points weren’t in so good accordance with the experimental values,
even for the best noise models.

With this in mind and inspired by Refs. 15 and 48, we introduced a pulse train model
with stretched bursts and a pulse background (Chapters 7 and 8). Surprisingly, this SPTM-
PB had worse distributions than the SPTM-N, but better CAB, PSD, DET and CH. In
special, not only its points were really close to the experimental ones in the CH diagram, but
they also appeared in the chaotic region of the plane. This remarkable result was thought
to be unlikely [80], since the model used is stochastic. Hence, our analysis indicates that
the SPTM with pulse background and the density fluctuations in TCABR have a similar
dynamic nature. For further works, it would be interesting to improve the fitting method for
the SPTM-PB and apply it to more experiments in TCABR and other plasma devices.
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Appendix A

Methods details

A.1 Windowing the power spectrum

Sampling the PSD of a signal (simulated or experimental) is subjected to a phenomenon
called spectral leakage, which distorts the power spectrum (see pp. 98-99 of Ref. 78, or Ref.
81). To suppress this leakage, the signal is often multiplied by a function that gradually
falls to zero at the edges [81]. The sampled PSD can also be very noisy, and thus it is
interesting to apply smoothing procedures, dividing the signal into segments and after taking
their average [81,82]. These procedures to decrease the leakage and the signal noise can be
unified, as described by the windowing method of Welch |78, 82].

In Welch’s method, the original signal X with length N is divided into K overlapping
segments, as seen in Fig. A.1. Each segment has L points and is separated from its neighbors
by D points. Usually, D = L/2 is chosen, meaning that the overlap is 50%. If D = L, then
the overlap is 0%.

1 X() |
(0] : N -1
| X@ |
0 L-1
1_ Xao(h) l
D D+ L—1
| X))
m — L N -1

Figure A.1: Illustration of data segmentation in Welch’s method. Source: Fig. 1 of Ref.
82 (with D 4+ L+ 1 corrected to D + L — 1 in the 2nd segment).

After the splitting, the segments are windowed. That is, in the time domain, the segments
Xk (k=1,2,..., K) are multiplied by a window function . Widespread used windows are
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the Hann, Hamming and Blackman [83]. In this thesis, the Hamming window was used,

) 25 25 2mj .
Wi(i) = 1- == <j<L-1
(7) 46 ( 46)608(1,—1)’ 0=y

One can see that this function W afford more influence on the center of the interval than
on the edges. To prevent loss of information and to decrease statistical fluctuations, Welch’s
method uses a segment overlap of 50% [82].

After windowing X}, a discrete Fourier transform is applied in the corresponding functions
X k W

L—-1
1 3
Ap(n) = = Xp(j)W (e ™ E n=0,1,..,L -1

Jj=0

The squared magnitude Sy is then computed:

where

Finally, the estimated PSD of the signal X is given by the mean of the Sy, where k =
1,2, ..., K. With this average, the PSD is smoothed, generating a graph with lower statistical
fluctuation and less leakage.

In resume, the steps of Welch’s method are:

1. Divide the signal X into K segments with length L and distance D between the begin-
ning of neighboring segments;

2. Multiply each segment X, by a window function W;
3. Compute the discrete Fourier transform of each modified segment X, W
4. Compute the PSD S, of each segment;

5. Evaluate the average of all Sy, generating a smoothed power spectrum.

Fig. A.2 illustrates the effect of windowing a signal with the Hamming function. The leakage
effect is reduced.

Welch’s method is available in several programming languages, such as Python™ (welch
function of the scipy.signal library) and MATLAB®) (pwelch function). In this dissertation,
the MATLAB version was used, with a normalization factor of wAt to match theoretical
spectra.
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Figure A.2: Periodograms (i.e., PSD estimates) of a signal, with the use of a rectangular
window (W = 1), in blue, and with a Hamming window, in orange. The Hamming win-
dow reduces the effect of leakage, which distorts the PSD estimation. Figure taken from
periodogram article in Wikipedia.
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Appendix B

Details of the stochastic pulse train model

B.1 PSD with correlated noise

B.1.1 Colored noise case

In this appendix, some derivations of the power spectrum are presented, for the stochastic
pulse train model with colored noise. Let Iy, be given by the stochastic pulse train model
with unstretched waveform and white Gaussian noise (see Chapter 4 for details),

Isat = IB(t) + IN(t)v

ald t—t
1al) = - a0 (= 20),
j=1

Oy = U',2\/At

At is the time interval between measurements, Np is the number of pulses, ¢ their shape, 74
their characteristic duration and A the asymmetry parameter. A; and ¢; are respectively the
amplitude and time occurrence of the j-th pulse. The normalized I, is

T o [sat - <Isat>
or

According to Eq. (C8) of Ref. 53, the power spectrum of this Iy is

27, 1 1 €At
Qj(w) = ] +d€ {(1 + )\QTng) [1 +(1-— )\)QTng} + Q_Td}

where € is the ratio of the noise and burst variances (Eq. (C2) of Ref. 53),

)
Il
mqm|§w

and w is the angular frequency, w = 27 f. Thus

o +o3 oF
lte=—5H"=~+
o o
B B
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and, using A\tq = 7, and (1 — \)1q = 7y,

2 2
Ow) = 2125 (1+720%) 7 (14 75?) 7+ A
I I

An interesting question is what happens when the color of the noise is changed from
white (2 = cte) to another color type (2zr o< 1/f7). Following Section 2.6, an approximate
answer for the PSD of the MATLAB colored Gaussian noise generator is

C(n)

wn

Qp ~ Ata?\/

where
0.820

C(n) ~ 10573

Hence the PSD of the normalized saturation current is approximately

2 _ _ 2 O
Qj(w) ~ QTdZ—g (1+ 77w?) ! (14 17w?) Ly At%% (B.1)
1 I

Furthermore, the normalized PSD formula is (Eq. (17) of [54]):

(W) — 27 (L) 3(w)

2
o1

Qf(w) =

where §(w) is the Dirac distribution and 0% = 0% + 0%/ is the total variance. Thus, for the
non-normalized PSD,
Qr(w) = 020 (w) + 27 (L,0)* 6 (w)

and hence the stochastic pulse train model with colored noise has the power spectrum

1 —1 0(77) 2
Qr(w) ~ 27503 (1 +77w?) (L+77w?) + Atgf\/v + 27 (Lyat)” 0 (w) (B.2)
The CN part is approximated. While o3/ is a model parameter, the burst variance is given

by Eq. (4.11):

Fig. B.1(a) is depicts a fit of the power spectrum of the SPTM with colored noise. The
data is in blue and corresponds to a mean of 10 SPTM simulations, while the curve in purple
is the fit from Eq. (B.1). It is clear that the PSD has a flat behavior for low frequencies and
has a power law at high frequencies. The model parameters for the bursts were 7. = 1.0 ps,
7 = 2.5 us, Np/T = 200 ms™, (4) = 10 mA; for the colored noise, (I/) = 0 o = 1 mA and
n = 1. The simulation of Fig. B.1(b) has exactly the same inputs, except for oy = 3 mA.
The increase of the noise standard deviation shows that the model is not perfect for the
colored noise part, as the new fit is not adequate for low frequencies.
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Figure B.1: (a) Example of a simulated PSD (in blue) and its fit (in purple) with the
pulse background model. (b) Same simulation but with o, = 3 mA instead of opr = 1 mA.

B.1.2 Ornstein-Uhlenbeck noise case
As seen in the previous subsection, the power spectrum due to the burst pulses is

27402,
(14 72w?) (1 + Tf2w2)

Qp(w) = + 27 (I5)? 6 ()

Furthermore, the PSD of the Ornstein-Uhlenbeck noise (OUN) is (Eq. (2.29)),

277\[0]2\[
W) =1

T 2m6(w) (@)

Hence, using the expression for the power spectrum of the sum (Eq. (2.22)), results
Qr(w) = Qp(w) + Qv (w) + 4o (w) (I) (Iy)

Thus the PSD of the SPTM with OUN (I = Ip + Ly) is

27,0%, 2T Oy
(1+ 72w?) (14 T?aﬂ) 1+ TRw?

Q(w) =

where I used

(Ig)" + (Iv)* + 2(I) (Lv) = ((T8) + (In))* = (Loar)’
B.2 Least-squares fit of the conditionally averaged burst
The dark blue data in Fig. B.2 corresponds to the values that would be obtained for the
bursts parameters 7, and A using a least-squares fitting of the conditionally averaged burst.

The results are different from the ones obtained with the CF-CAB-PSD fit (Chapter 5 and
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Fig. 6.3(b)). Partially because of the pulse overlapping, the conditionally averaged burst
appears to be, in general, longer and less asymmetric than the original pulses. This indicates
that the conditional averaging analysis may distort the original pulse shape. If the rising
duration 7, = A7y is close to the temporal resolution of measurements, At = 0.5 ps, then the
pulse shape in the CAB may also be distorted.

CAB fit with X2 and least-squares

‘ ; ;% :
0.6¢ X |
—+LS

~< 047}
0.2+

O L L
17 18 19 20

r (cm)

Figure B.2: Radial profile from the parameters fitted with the conditionally averaged
burst (CAB). In light blue are the results from the y? fitting. In dark blue are the results
from a least-squares (LS) fitting. The dashed line in 7 = a = 18.0 c¢m indicates the LCFS
approximate position.

B.3 All fitted PDFs, CABs and PSDs

B.3.1 Stochastic model with noise

This section presents all the PDFs (Fig. B.3), CABs (Fig. B.4), and PSDs (Fig. B.5) fitted
with the stochastic model with Ornstein-Uhlenbeck noise and the CF-CAB-PSDs method
(Chapters 4 to 6), for the experiment 34132 of TCABR. The parameters used for the simu-
lations are shown in Appendix B.4.1.
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Figure B.3: In red, the experimental I, distributions in linear and log-y scales. In
blue, the corresponding simulated distributions, made with the stochastic model with OU
noise (Chapters 4 to 6). The simulated PDFs in general are in great agreement with the
experimental ones. When r € [18.0,20.0,20.5] cm, the fit is not ideal for high L. This
indicates a difference in the simulated and experimental kurtosis, as confirmed by the K; x r
panel of Fig. 6.4(a).
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r=17.0cm r=175cm r=18.0cm

r=185cm r=19.0cm r=195cm

r=20.0cm r=20.5cm

I — Average of simulations
2 —+Experiment
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Figure B.4: In red, the conditionally averaged bursts (CABs) of the eight positions mea-
sured in the experiment. In blue, the corresponding simulated CABs, made with the stochas-
tic model with Ornstein-Uhlenbeck noise (Chapters 4 to 6). Apart from r = 17.0 cm,

the model recovered only approximations of the averaged waveforms. Nevertheless, for
r € {19.5 cm, 20.0 cm, 20.5 cm}, the CABs rise was well fitted.
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Figure B.5: In red, the power spectral densities (PSDs) of the eight positions measured in
the experiment. In blue, the corresponding simulated PSDs, made with the stochastic model
with Ornstein-Uhlenbeck noise (Chapters 4 to 6). The model recovered only approximations
of the functions. For r = 20.5 cm the experimental spectrum had two peaks, one around
f =0.22 MHz and the other around f = 0.31 MHz (as described in Section 3.4).

B.3.2 Stochastic model with pulse background

This section presents all the PDFs (Fig. B.6), CABs (Fig. B.7), and PSDs (Fig. B.8) fitted
manually with the stochastic model with stretched bursts and pulse background (Chapters 7
and 8), for the experiment 34132 of TCABR. In opposition to the case of unstretched bursts
and Gaussian background (Subsection B.3.1), the present model fitted well the CABs and

PSDs, but not the PDFs. The parameters used for the simulations are shown in Appendix
B.4.2.
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Figure B.6: In red, the experimental I,q distributions (in linear and log-y scales). In black,
the corresponding simulated distributions, made with the stochastic model with stretched
bursts and a pulse background (Chapters 7 and 8). In general, the fitted model couldn’t fit
the peak of the experimental PDFs,; in opposition to Fig. B.3.
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r=17.0cm r=175cm r=18.0cm
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Figure B.7: In red, the conditionally averaged bursts (CABs) of the eight positions mea-
sured in the experiment. In black, the corresponding simulated CABs, made with the stochas-
tic model with stretched bursts and a pulse background (Chapters 4 to 6). Because of the
stretched bursts ((., (s # 1), the model fitted really well the experimental waveforms, in
opposition to Fig. B.4.
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Figure B.8: In red, the power spectral densities (PSDs) of the eight positions measured
in the experiment. In black, the corresponding simulated PSDs, made with the stochastic
model with stretched bursts and a pulse background (Chapters 4 to 6). Contrary to Fig.
B.5, the model fitted very well the experimental spectra.

B.4 Fitted parameters

B.4.1 Parameters for the SPTM with noise

Tables B.1 and B.2 show the parameters fitted for experiment 34132 of TCABR (Chapter
6), with the CF-CAB-PSD method (Chapter 5) and the stochastic pulse train model with
noise (SPTM-N, Chapter 4). Both the Ornstein-Uhlenbeck noise and the colored noise cases
are considered in Table B.2, respectively with the parameters 75 and 7. For the meaning of
each parameter, the reader is referred to Table 5.1.

Table B.3 shows the values and uncertainties for the relative mean and variance of the
noise, t = (Iy) / (Ig) = (Iy) /(7 (A)) and € = 03}-/0% = a3;/(7(A)?). Also included is the
number of pulses per time, Np/T = v/74. To estimate the uncertainties of ¢, € and Np/T,
one must beware of the correlations between the UP-OUN parameters. Table 5.3 gives a good
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approximation for these correlations. To evaluate them more precisely, the same procedure
of Section 5.5 can be employed. For each position r, 100 repeated fits were made to adjust
synthetic signals with true values of Tables B.1 and B.2. The correlations from the SPTM-N
parameters can then be estimated numerically from these sets of 100 fits. This procedure
was used for example in Fig. 6.5, where the correlations between the intermittency-related
parameters were evaluated for two positions.

Table B.1: Parameters fitted with the characteristic function for the model with noise
(Chapters 4, 5 and 6). Uncertainties in parenthesis.

7 (em) | v [ (A) mA) | (Iy) (mA) | on (mA) |
17.0 | 484(26) | 10.80(31) | 12.7(14) | 3.4(64)
175 | 2.92(13) | 11.38(29) | 10.63(70) | 3.36(26)
18.0 | 0.886(32) | 18.20(44) | 15.88(25) | 5.236(88)
185 | 0.724(35) | 13.56(42) | 12.13(24) | 4.820(76)
10.0 | 1.340(62) | 9.30(26) | 6.90(26) | 3.364(85)
195 | 1.956(82) | 7.02(19) | 2.39(24) | 1.365(96)
20.0 | 1.129(42) | 7.73(22) | 3.45(12) | 1.511(44)
205 | 0.86(41) | 5.26(16) | 2.32(10) | 1.51(28)

Table B.2: Parameters obtained for the SPTM-N with the y?-map fits—\ and 7, obtained
with the conditionally averaged burst and 7 with the PSD (Chapters 4, 5 and 6). Also
included is the exponent n for the colored noise case.

(r(em) [ X | maws) [ wps) [ n |
17.0 | 0.548(33) | 2.550(63) | 0.052(37) || 0.2L(11)
17.5 | 0.465(21) | 2.890(75) | 0.047(41) || 0.018(19)
18.0 | 0.355(19) | 3.116(76) | 0.722(59) || 0.757(28)
185 | 0.203(15) | 3.811(71) | 1.301(83) || 0.977(18)
19.0 | 0.121(9) | 3.64(15) | 0.651(32) || 0.712(32)
195 | 0.105(13) | 4.57(18) | 0.46(11) || 0.543(92)
20.0 | 0.112(18) | 4.70(20) | 0.85(14) | 0.815(41)
20.5 | 0.127(14) | 5.75(17) | 1.26(12) | 1.063(17)
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Table B.3: Values and uncertainties obtained for . = (Iy) / (Ip), € = 03//0% and Np/T =
v/ 74, using the CF-CAB-PSD fit for the UP-OUN model.

’ r (cm) \ L \ € \ Np/T (1/us) ‘
17.0 | 24330% | 2.05(68)% | 1.90(13)
175 | 31.9(28)% | 2.99(47)% | 1.011(61)
180 | 98.6(30)% | 9.55(41)% | 0.284(13)
185 | 123.6(47)% | 17.46(79)% | 0.1899(86)
190 | 554(20)% | 9.75(60% | 0.363(28)
195 | 17.4(19)% | 1.92(28)% | 0.429(28)
20.0 | 39.5(200% | 3.38(21)% | 0.240(15)
20.5 | 5L.4(32)% | 9.57(50)% | 0.1496(77)

B.4.2 Parameters for the SPTM with pulse background

Tables B.4 and B.5 show the parameters used in Chapter 8, fitted manually for the experiment
34132 of TCABR with the stochastic pulse train model with pulse background (SPTM-PB).
In this model nine parameters are fitted: ~, (A), v, <A(b)>, Gry Cfy A, Tq and T(gb). For
the parameter meanings and names, the reader is referred to Table 7.1 (in which one can
interchange Np/T for v = 7,Np/T). The uncertainty of a parameter p was estimated as
a percentage of its value, dp. For example, the uncertainty chosen for the intermittency
parameter was 6y = 4% and, for the pulse average amplitude, § (4) = 1% (A).

The distribution of the SPTM-PB depends on 7, (4), v, (A®)), ¢, (; and A. However,
the dependence on the last three exists only through the stretch coefficients s, (X, ¢, (f), as
described in Section 7.2. With this in mind, Table B.4 shows the values obtained for the
main parameters of the distribution: v, (4), v, (A®). On the other hand, Table B.5 stores

the values for the pulse parameters ¢,, (¢, A, 7q and Tcgb).

Table B.4: SPTM-PB parameters mostly related to the I, distribution, manually fitted
for the TCABR experiment. Also included is the number of pulses per time, Np/T.

r(em) | v (A mA) | 4@ [ {(AD) (mA) || Np/T (1/ms) | NS /T (1/ms) |
17.0 [ 3.00(12) [ 11.20(11) | 5.07(10) [ 6.50(13) 1000(30) 5070(99)
17.5 | 1.41(6) | 15.00(15) | 2.84(6) 5.70(11) 640(19) 3150(60)
18.0 | 0.705(28) | 18.00(18) | 2.86(6) 5.40(11) 300(9) 2600(50)
18.5 | 0.321(13) | 18.00(18) | 3.31(7) 5.26(9) 107.0(32) 2204(44)
19.0 |0.323(12) | 15.50(16) | 2.78(6) 4.45(9) 85.0(26) 2174(44)
19.5 |0.293(12) | 14.00(14) | 2.45(5) 4.16(8) 85.0(26) 1477(30)
20.0 |0.328(13) | 12.00(12) | 1.974(39) |  3.56(7) 80.0(24) 1234(25)
20.5 | 0.204(8) | 9.80(10) | 1.653(33) | 2.28(5) 60.0(18) 972(20)
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Table B.5: Pulse parameters of the SPTM-PB, manually fitted for the experiment.
e | ¢ [ ¢ [ T ]| ) |

17.0 [ 1.000(20) | 1.000(20) [ 0.500(10) [ 3.00(6) | 1.000(30)
17.5 ] 0.670(13) | 0.670(13) | 0.500(10) | 2.20(5) | 0.900(27)
18.0 | 0.750(15) | 0.650(13) | 0.426(8) | 2.35(5) | 1.100(33)
18.5 | 0.650(13) | 0.650(13) | 0.333(7) | 3.00(6) | 1.500(45)
19.0 |0.650(13) | 0.650(13) | 0.2105(42) | 3.80(8) | 1.280(38)
19.5 | 0.740(15) | 0.600(12) | 0.1500(30) | 3.50(7) | 1.66(5)
20.0 | 1.000(20) | 0.650(13) | 0.2195(44) | 4.10(8) | 1.60(5)
20.5 | 0.700(14) [ 0.550(11) | 0.294(6) | 3.40(7) | 1.70(5)
TRQA fitted by autocorrelation
14 : : :
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gm
3
= 8
—Exp.
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Figure B.9: Profiles of the delays T fitted as the values at which the autocorrelation
function reached 10%, Rj(Trga) = 10%. The red, blue and black curves correspond respec-
tively to the experiment 34132 (Sections 3.4 and 6.1), the simulations with fitted Ornstein-
Uhlenbeck noise (Chapter 6) and the simulations with pulse background (Chapter 8).

B.5 Recurrence plots of the saturation current

In this appendix, we show recurrence plots (Section 2.8) for the saturation current measured
in the TCABR experiment 34132 (Section 3.4) and for simulations of the stochastic model
(fitted OU noise and pulse background, Chapters 4 to 8). Other RPs of I, can be seen
in Refs. 102 and 103, but for the Texas Helimak. Here the recurrence rate was fixated at
10% (in analogy to Refs. 100-102), the immersion dimension used was drga = 4 (as in Refs.
99-102), and each delay Trga was chosen as the value at which the signal autocorrelation
reached 10% (in analogy to 99 and 102). Fig. B.9 shows the obtained 74 for each signal
considered in this section.

In its turn, Fig. B.10 exhibits the recurrence plots for the experimental I, and its
simulations. For » = 17.0 cm, the RPs slightly resemble the one of white noise (Fig. 2.6(a)),
which is dominated by isolated and uniformly distributed points. In contrast, for r = 20.5 cm,
there is more empty space, caused by high-amplitude bursts that aren’t in general recurrent
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with other segments. This is in accordance with Ref. 101, where it is stated: “Abrupt changes

or rare events manifest themselves as white bands”.

As the reader may recall from Fig. 8.7(c), for r = 17.0 cm and r = 20.5 cm, the RQA
determinism respectively assumes its lowest and greater values, DET ~ 0.70 and DET ~ 0.85.
Also, the same occurs for the kurtosis (and skewness) as seen in Fig. 8.3, or to the turbulence
level o7/ (Ise:) (Fig. 3.11(a)). These facts are evidence that strongly intermittent plasma

fluctuations have a higher RQA determinism.
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Figure B.10: Recurrence plots of the saturation current, for the experiment 34132 (red,
top panels), and for the SPTM simulations with fitted OU noise (SPTM-FOUN, blue, center

panels) and with pulse background (SPTM-PB, black, bottom panels).
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B.6 CF-PSD fit for the SPTM-N

As noted in Section 6.2, the SPTM-N can not reproduce the experimental I,,; power spectrum
seen in TCABR, if the CF-CAB-PSD fit is used. However, the power spectrum can be better
adjusted if, instead of fitting 7; and A with the CAB, these two are adjusted with a chi-square
map of the PSD, together with the parameter 7. This would yield a CF-PSD fit (the CF
part is equal in both methods).

H di
104 ‘ Powgr speqtrum 05 C‘ diagram
[ ~Exp. _Cmax
[ ——Sim. CF-CAB-PSD fit 04—c
i\ Sim. CF-PSD fit 0 min
f - —f{Bm
LN O_ 0.31| ® Experiment <’
6L W 2 » Sim. CF-CAB-PSD fit
3 Sim. CF-PSD fit
g— 0.2
o
o
0.1F
0 L L L L
0 0.2 0.4 0.6 0.8 1
Frequency (Hz) «10° Normalized entropy, H ¢
(a) (b)

Figure B.11: (a) Adjustment of the power spectrum with the CF-CAB-PSD fit (blue)
and CF-PSD fit (yellow) for the position » = 18.5 cm in TCABR, experiment 34132, and
SPTM-N simulations. (b) Corresponding points in the CH diagram for the same experiment
and simulations.

Fig. B.11(a) shows a comparison between one experimental PSD and two simulated PSDs
fitted with the CF-CAB-PSD method (in blue) and with the CF-PSD method (in yellow).
The CF-PSD fit is clearly more adequate, and the same is observed for the CH diagram (Fig.
B.11(b)). The obtained parameters A, 7; and 7 for both methods were

OCF—CAB—PSD = ()\,Td,TN) = (0.29(3),3.8(1) s, 1.3(1) },LS)

and
OCF-PSD = ()\, Td,TN) = (015(3), 25(2) Us, 15(3) },LS)

The asymmetry and duration parameters of the pulses, A and 74, are smaller for the CF-
PSD fit.! This may indicate that the plasma density in TCABR would be better described by
the superposition of two types of structures: the bursts, with higher characteristic duration
(74 =~ 3.8 us in the present position and experiment); and by smaller pulses, not detected by
the conditional averaging analysis, with smaller characteristic duration (75 ~ 2.5 us).

Moreover, the noise correlation parameter 7os = 15(3) pus obtained with the CF-PSD method was much
higher than the one adjusted by the CF-CAB-PSD, 7y = 1.3(1) us. However, we investigated that the results
wouldn’t be much different if a lower value was used for the first simulation, for example, 7y = 5 us.
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This hypothesis is corroborated by the simulated conditionally averaged bursts (Fig.
B.12). The fit of the averaged burst made by the CF-PSD method is worse than the one
made with the CF-CAB-PSD method since the first has a smaller pulse duration 7.

The results of Fig. B.11 and B.12 led us to investigate whether a stochastic pulse train
model with a background of small and short pulses would reproduce the experiment better
than the SPTM with noise. The results of the SPTM with pulse background (PB) are

depicted in Chapters 7 and 8. In special, a glance at Fig. 6.2(c) and Fig. 8.2(c) shows that
the I, power spectrum is better fitted by the SPTM-PB than by SPTM-N.

Conditionally averaged burst

Sim. CF-CAB-PSD fit

-10 0 10 -10 0 10
Time (us) Time (us)

Figure B.12: In red is shown the conditionally averaged burst (CAB) from the TCABR
position r = 18.5 cm and shot 34132. In blue and yellow, are the simulated CABs fitted with
the CF-CAB-PSD and CF-PSD methods, respectively.

B.7 Truncated exponential

In the stochastic pulse train model, the form of the pulses is exponential (see Chapters 4 and 7
for details). Because of this, there is a ingenious way to optimize the simulation computation
time, truncating the exponential function.? On one side, we know that

* t
/ exp (——) dt = 74
0 Tf
But, on the other hand,
157 t
/ exp (——) dt = 74 [1 — exp (—15)] = 99.99997% - 7¢
0 Tf

That is, if the exponential is truncated at 157, the error committed in the pulse integral with
relation to the exact value would be only of exp(—15) = 3 - 1075% of the pulse amplitude.
The same argument is valid to the pulses rise, 7,.

2The idea for the method is due to F. A. C. Pereira.

138



Appendix B: Details of the stochastic pulse train model

Furthermore, the exact average of the background-less pulse train is (Eq. (4.11), where

v = (7 +74)Np/T) N
(Lsat) = <A>?P (e + Tf)

and the truncated mean would be
Np

<[sat>trunc = T

(A) (1=3-1077) (1, + 74)

So the error committed in the mean of I, due the truncation of a symmetric pulse (7, = 7y)
would be

<Isat> - <Isat>trunc = eXp<_15)<Isat> =3- 1077<Isat>

Hence, as this difference is too small compared to the statistical fluctuation of the average
(~ 1072(I44)), it is helpful and secure to adopt this truncation procedure.

For comparison, in the computer used for this work, a simulation with 40 thousand pulses
and 80 thousand points takes one minute to be done. When truncating the exponential on
157, and 1574, however, the same simulation is computed in just two seconds, which is 30
times faster. Individually, one minute may not seem of great importance, but when dealing
with thousands of simulations (to estimate fluctuations, for example), one day of simulation
could become one hour. This truncation technique was also adopted in Ref. 48.

We can also extend the truncation concept to the stretched-waveform case (Eq. (7.4)). In
this scenario, the shape contribution for the fall is, in units of the fall characteristic duration

(0 =1/7y), N N
[ ewtman=r(ig) =g ()

Truncating the integral by a length [ yields

! 1._/1 1._/1
—6°)dg=-T (=) —=I"(=,1°
/oexp( )i =2 (c) ¢ (c’ )

where I'(a, x) is the incomplete Gamma function:

F(a,x)z/ Y te Vdy

1 o0
r (27”) = [ vty
[

The difference between the exact and the truncated integral is thus

) l 1 1
o (—0) do — | exeo (—0) do — 2T (L ¢
/0 exp (=0°) df /Oep( ) df CF<C’Z)

We want too find a truncation length [ such that the error committed in the approximation
is less than 1073,
r(1/¢ 1)

T < (B.3)
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Fig. B.13(a) shows the error (B.3) as a function of the truncation length [ for various
stretching exponents. Adopting a truncation length of [ = 90 will suffice up to ¢ = 0.5.
In terms of the characteristic duration, this means that the pulse fall exponential will be
truncated in 907,. This time interval is still much smaller than the total time in consideration:
T ~ 40 ms > 907y ~ 0.2 ms.

The same argument is valid for the rise, and it is practical to define a truncation vector
1 = [l,,lf] such that the rise and the fall are truncated in 7./, and 74, respectively.

The truncation length for ¢ = 1072 can be approximately fitted by an exponential, as
seen in Fig. B.13(b). The result is

(e = 107°) = 8.2(7) + 1.34(25) - 10" exp (‘#7(4))

This fit was employed in the dissertation so that, for each value of (, a truncation length was
chosen to speed up the simulation, without compromising the accuracy of the model.

—(=05 100
—¢=055 | I Data
:g = g-?‘ 80\ —Fit:1=A, + A, exp(-¢A) |
¢=0.8 e A1 =8.2(7)
¢=0.9 o 607 4
4_1'0 = A, =1.34(25)-10
=1 I
-~ ¢=103 w 40; A, =0.097(4)
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Figure B.13: (a) Error vs truncation length for various stretching exponents ¢. (b) In
blue, truncation length as a function of ¢ for error € = 1073, In red, fit with an exponential.

B.8 Characteristic function of the train of stretched pulses

B.8.1 Derivation

In this section we will derive the expression for the characteristic function of Ip(t), which
was used in Section 7.2. In its turn, I5(t) is the train of stretched pulses (Eq. (7.2)),

ZAjcb ( I\ g,cf)
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The amplitudes A; and the waiting times At; = ¢;1 — t; between events follow exponential
distributions. The pulse shape ¢ is given by stretched exponentials (Eq. (7.4)),

exp (— |9/)\|C”) L 0<0

P(O; A, G, Cp) =
77 exp —lo/ =N} 020
Following Eq. (A13) of Ref. 55, the logarithm of the characteristic function for a train of
independent pulses with uniform occurrence is

o0

inCa(u) = [ dB[Ca(uo(6) ~ 1]
where v = 7;Np/T is the same intermittency parameter from the SPTM-N model (Chapter 4)
and, in this case, ¢() = ¢(0; A, ¢, (¢). Ca(u) is the characteristic function of the amplitude
PDF. Since A is exponentially distributed,

1
Calw) = =@

and thus ]

Ca(ud(9)) = 1— iug(6) (A)

Returning to the integral,

In Cp(u) :7/:d9 L —iu;(e) (A) -

The integral can be split into rise and fall parts,
InCp(u) = J,+ Jy

where

0
1
Iy = fy/ do —1
o |1—duexp (- |9/>\]<T> (A)

and

o 1
/i :7/0 v 1—iuexp{—[9/(1—)\)]<f}(A> -

Defining Ay =1 — A,

. 1
Jf:7/0 a6 1_¢u(A>eXP[—(0/)‘f)Cf}_1
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Since
] Lo (A) exp [— (e/Af)Cf]
1 —iu(A)exp [— (G/Af)cf} 1 —iu (A) exp [_ (9//\f>4f]
then
e (e [— (e/Af)ﬂ
= 7/0 Ao [~ /2]

B e iu (A)
"= 7/0 - [(6/2)°" | — i (4)

Let x = 60/As. So dv = df/ )\ and

B e iu (A)
Ir= Mf/o W D @) — i (A)

This is a nonelementary integral. Defining

z

L(z:() = de————— B4
0= [ e (B.4)
then
Jr=v(1—=X)-L(iu(A); ()
and the analogous is obtained for J,,
Jy = A+ Liiu (4):)
Thus the natural logarithm of Cjp is
InCp(u) =J,+J; =
InCp(u) = yA - L{iu(A);¢) +7 (1= A) - L(iu(A); ¢r)
B.8.2 Relation to the polylogarithm
The function L(z; () is closely related to the polylogarithm (p. 611 of Ref. 123),3
1 o z
Li;(2) = ———— dr——— B.5
1 (Z) 1‘\(1 4 8) \/0 mexp (xl/s) — 2 ( )

3Actually, in Ref. 123 the integral representation of the polylogarithm is expressed as

) z oo ys—l
Lis(z) = = —d
is(2) F(s)/o v — 2

1/5 it is easy to show that the above equation is equivalent to Eq. (B.5).

With the change of variables y = x
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That is,
L(z;¢) =T (1 + 1/Q)Li1yc(2)

The polylogarithm converges for Re(s) > 0 and all z € C, except for real z such that
z > 1. It also converges for Re(s) > 1 and z = 1. Therefore, L(z;() converges for the same
conditions, keeping in mind that s = 1/{. Since in the case analyzed for this dissertation
¢ €]0,1] and z = iu (A), with u, (A) € R, then L(iu (A); () converges always.

Furthermore, for z € C and |z| < 1, the polylogarithm can be written as

oo

Li(z) =Y =
is(2) 2y

Thus, in this case,

1\ = 2"
L(Z,C):F(l‘l—z)z:m

n=1
With this expression, it is possible to find the cumulants and moments of the train of stretched
pulses, Iz. This was done in Section 7.3.
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