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Abstract

We show di�erences of the synchronization basins of two Matsumoto-Chua’s circuit (operating

in either the R�ossler-type attractor regime or the Double-Scroll-type attractor regime), coupled

unidirectionally or bidirectionally through a negative feed-back controller. The knowledge of the

structure of the synchronization basins allows one to design a communication system robust to

imperfections on the setting of the initial condition. c© 2002 Elsevier Science B.V. All rights

reserved.

PACS: 05.45.+b; 84.40.Va; 47.52.+j
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1. Introduction

In using nonlinear dynamical systems for communication systems we must deal

with the following dynamical characteristics: (a) The sensitivity of the �nal state on

the initial condition; (b) grammatical limitations imposed by the dynamics; (c) the

recovery of the noisy and dumped signal. In this paper we address the �rst problem.

One basic problem in using chaos to communicate is the fact that the trajectory

initial condition changes as we turn on-and-o� the circuit [1]. In communicating with

chaos [2–8], the message is encoded somehow by the chaotic trajectory. Thus, after the

nonlinear wave-signal generator is turned on, the message is successfully transmitted if

the �nal state of the trajectory is robust to imperfections on the de�nition of the initial

condition.
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The sensitivity dependence of chaotic system to the initial condition would not

be a problem if the basins of attraction (the sets of initial conditions that go to-

ward attractors) were not so complex as it is often the case, when they have frac-

tal basin boundaries [9] (strong sensitivity of the �nal state on the initial condi-

tion), riddled basins [10,11] (extreme sensitivity), or other mixed types of

basins [12].

In this work we are mainly interested in dealing with situations for which we �nd

riddled basins, with extreme dependence on the initial condition, like those observed

for electronic circuits [1,13] and mechanical machines with impacts [14,15] that present

some sort of gear.

Designing and implementing cheap and e�cient techniques to overcome the problem

of �nal state sensitivity is of fundamental importance to any communication systems

based on chaos. Our main intention here is to present a communication system where

information is transmitted by synchronizing [16–20] a circuit A with a circuit B, using

unidirectional or bidirectional coupling.

The circuit considered in this work is the Matsumoto-Chua circuit [21,22]. We choose

it because it represents a large class of electronic circuits that present typical behavior

that can be potentially exploited in applications to communication systems. One useful

characteristic is the coexistence of two symmetric chaotic attractors, which can be

exploited for multi-channel, multi-user systems [23,24]. Another is the existence of

one single more complex chaotic attractor, which o�ers capacity for sending higher

rates of information.

Our main intention is to understand the operation of this circuit when used as a

signal wave generator of a communication system based on synchronization.

The unidirectional coupling used in this work is inspired in the work proposed in

Ref. [25], and it is a type of negative feedback. This type of coupling is used for a

one-way transmission of information, that is, information transmitted from A to B. We

show that the bidirectional coupling may diminish the sensitivity dependence on initial

conditions. In addition, this type of coupling can be used to implement a two-way

transmission of information system, for which the response of the receiver depends on

the information transmitted by the transmitter.

We show that the synchronization basins may be riddled depending on the coupling.

Understanding how these basins appear guide us to discriminate initial conditions that

lead to �nal states suitable for communicating.

2. Description of the system

We represent the elements of our communication system by two coupled Matsumoto-

Chua circuits, each one composed by two capacitors, C1 and C2, one inductor, L,

one linear resistor, R, represented by g = 1=R, and one piecewise nonlinear resistor,

represented by iNR. The evolution of circuit A is described by the equations

C1
dV AC1
dt

= g(V AC2 − V
A
C1
)− iANR(V

A
C1
)
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C2
dV AC2
dt

= g(V AC1 − V
A
C2
) + iAL + �AK(V

B
C2

− V AC2)

L
diAL
dt
=−V AC2 (1)

and circuit B is described by

C1
dV BC1
dt

= g(V BC2 − V
B
C1
)− iBNR(V

B
C1
)

C2
dV BC2
dt

= g(V BC1 − V
B
C2
) + iBL + �BK(V

A
C2

− V BC2)

L
diBL
dt
=−V BC2 ; (2)

where VC1 , VC2 , and iL, represent the tension across the capacitor with C1 = 10:0, the

tension across the capacitor with C2 = 1:0, and the current across the inductor with

L= 6:0, respectively. The current in the piecewise linear resistor iNR is

iNR = m0VC1 +
1
2
(m1 − m0)(|VC1 + Bp| − |VC1 − Bp|) ; (3)

where m0 =−0; 5, m1 =−0; 8, and Bp = 1; 0.
Integration is performed using the fourth-order Range–Kutta method with the inte-

gration time step of 0.04.

Circuits A and B are coupled according to the values of the constants �A and �B.

Two con�gurations are used in this work. Unidirectional coupling, for �A=0 and �B=1,

and bidirectional coupling, for �A = 1 and �B = 1. K is the coupling amplitude. We

allow g to assume two values, g=0:575 (R�ossler-type attractor for uncoupled circuits),

and g=0:6 (Double-Scroll attractor for uncoupled circuits). The unidirectional coupling

was �rst proposed by Pyragas [25] and it is a type of negative feedback. We place the

coupling term in the equation for the derivative of the tension across the capacitor C2
because the values of the conditional Lyapunov exponent stay negative even for higher

values of the coupling amplitude.

It is appropriate to make a changing of coordinates such that the (non)synchronized

state is easily recognized and characterized. Thus,

VC1⊥ = VCA1 − VCB1 ; VC1‖ = VCA1 + VCB1 (4)

VC2⊥ = VCA2 − VCB2 ; VC2‖ = VCA2 + VCB2 (5)

iL⊥ = iLA − iLB ; iL‖ = iLA + iLB :

The variables with indexes ‖ are on the synchronization manifold while the variables
with indexes ⊥ are on the transversal manifold. If circuit A and circuit B are synchro-

nized, the transversal variables are all null, and the trajectory of the coupled 6-D system

(Eqs. (1) and (2)) is on a reduced 3-D dimension subspace on the synchronization

manifold. Otherwise, the transversal variables are di�erent than zero. Stability analy-

sis of Eqs. (1) and (2) are performed calculating the conditional Lyapunov exponent

[18] of the new variables (5). If there is one transversal conditional exponent higher
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Fig. 1. Two chaotic R�ossler-type coexisting attractors of Eq. (1) for g = 0:575.

than zero then circuits A and B cannot synchronize. If all the transversal conditional

exponents are smaller than zero, the circuits may synchronize depending on the initial

condition (as discussed later on). Note that the conditional Lyapunov exponents does

not give a su�cient condition to de�ne the �nal state of the system.

If there is one transversal exponent slightly higher then zero, then there might

appear on-o� intermittent behavior [20], and thus, nonsynchronized state. This state

is characterized by a trajectory which presents regular behavior (synchronized state)

and irregular behavior (nonsynchronized state).

If the maximum transversal Lyapunov exponent is slightly smaller than zero, then

there might appear a riddled basin, whose characteristics is that the �nal state cannot

be predicted even for higher precision initial condition.

3. Coupling while in the R�ossler-type attractor

Eqs. (1) for �A=0 and g=0:575, present two coexisting R�osller-type chaotic attractors

(left and right attractors seen in Fig. 1), three equilibrium points, and one large unstable

limit cycle (not shown in Fig. 1). We are mainly interested in the two coexisting chaotic

attractors. The �nal state of the system, i.e., left or right attractor of Fig. 1, is depicted

by the basin of attraction of the noncoupled system. In Fig. 2, one can see the basin

of attraction of the attractors of Fig. 1, for g= 0:575 and a �xed iL(0) = 0.

These two basins have smooth continuous boundary that spirals-o� asymptotically

toward the external unstable limit cycle. This type of basin which was experimentally

veri�ed in Ref. [26], has no signi�cant �nal dependence on the initial condition, and

the experimental set up of the initial condition on the plan iL(0)= 0 was implemented
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Fig. 2. Basins of attraction of attractors of Fig. 1. Black (gray) points belong to the basin of the right (left)

attractor. White points go to the in�nity attractor. g = 0:575 and iL(0) = 0.

by a special device used in Ref. [26]. This type of basin would be very attracting for

a nonlinear communication system, once the initial position would not need to have a

high precision to reach some aimed �nal state.

This smoothly continuous boundary of the basins changes its characteristics when

coupling is introduced in the circuits, and what we see is a continuous but not smooth

boundary. However, the basins of Fig. 2 help us in understanding the synchronization

basin of the coupled circuits for unidirectional and bidirectional coupling.

To see the di�erences between unidirectional and bidirectional coupling we choose

a �xed coupling amplitude K = 2:0, and we plot a projection of the synchronization

basin on a plane positioned on V AC2(0) = V
B
C2
(0) = 0:2334 and iAL(0) = i

B
L (0) = 0:845

for the variables V AC1(0) (horizontal axis) and V
B
C1
(0) (vertical axis), for unidirectional

(Fig. 3) and bidirectional couplings (Fig. 4). In these �gures, white represents initial

conditions that synchronize the circuits, while black and gray regions represent initial

conditions that do not synchronize. Black represents V AC1 and V
B
C1
close to the region

of the left attractor (noncoupled circuit) of Fig. 2; gray represents V AC1 and V
B
C1
close

to the region of the right attractor of this �gure.

The squared structures of these basins can be explained through the basins of

Fig. 2. In general, for circuits A and B with initial conditions in di�erent basins (in

Fig. 2), the �nal state will not synchronize, regardless the value of the coupling am-

plitude K . Moreover, in Fig. 3, synchronizing white regions correspond to initial con-

ditions V AC1(0) and V
B
C1
(0) that would go toward the same attractor, if there were no

coupling.

Note that the basins of Fig. 2, for iAL(0)= i
B
L (0)=0, are similar to those obtained for

iAL(0) = i
B
L (0) = 0:845. The reason for Fig. 2 to be constructed with i

A
L(0) = i

B
L (0) = 0

is that this is a convenient set of initial conditions to experimentally obtain the basin

of attraction [26].
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Fig. 3. Synchronization basin (white) and nonsynchronization basin (gray and black) of Eqs. (1) and (2)

for unidirectional coupling of amplitude K = 2:0. g = 0:575.

Fig. 4. Synchronization basin (white) and nonsynchronization basin (gray and black) of Eqs. (1) and (2)

for bidirectional coupling of amplitude K = 2:0. g = 0:575.

For the bidirectional coupling the basin for the synchronized state is bigger than for

the unidirectional case. There is a reason for the white region to be larger in Fig. 4

than in Fig. 3. This can be understood by comparing the variations of the transversal

conditional Lyapunov exponent, in respect with the coupling amplitude K , for the

unidirectional (full line in Fig. 5) and the bidirectional cases (dashed line in Fig. 5).

As we can see, for K ¡ 3:47, the value of � is smaller for the bidirectional case. After

this value of K , � for the unidirectional case is smaller, showing that the bidirectional

coupling is bene�tted by synchronization if used for lower K .
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Fig. 5. Transversal Lyapunov exponent versus the coupling amplitude K , for unidirectional coupling (full

line) and bidirectional coupling (dashed line). g = 0:575. Critical values (for � = 0) are indicated.

The values of K for which � changes its value from positive to negative, i.e., when

� = 0, are the critical parameters Kuc (unidirectional coupling) and K
b
c (bidirectional

coupling) indicated in Fig. 5. As we see, Kbc ¡Kuc . For both couplings these critical

values represent the blowout bifurcation, when enough unstable periodic orbits of the

3-D synchronization manifold become transversally unstable. The value of K =Kr , for

which the �rst unstable periodic orbit on the 3-D synchronization manifold becomes

transversally unstable, is called riddled bifurcation critical point (also called of bubbling

bifurcation [27]). Thus, a riddle basin may appear for Kr¡K¡Kc.

Although a riddle basin has no area, it has positive measures. Given two basins, the

synchronized and nonsynchronized ones, the synchronized basin is riddled if an sphere

with arbitrary small radius centered in a point of the synchronized basin has within it a

point of the nonsynchronized basin, forming an open set, which does not contain only

points of itself. If the nonsynchronizing basin is also riddled, then it is an intermingled

basin [10,11].

For K ¡Kc and unidirectional coupling, there is no riddled basin on the plane

V AC2(0) = V
B
C2
(0) = 0:2334 and iAL(0) = i

B
L (0) = 0:845 for the variables V

A
C1
(horizon-

tal axis) and V BC1 (vertical axis) as shown in Fig. 6. We see that the boundaries are

continuous (but not smooth), and thus, we have neither a fractal nor a riddled basin.

The synchronization basin has still considerable size comparable to the nonsynchro-

nization basin. A similar result is obtained for bidirectional coupling.

For K ¿Kc and close to Kc we obtained on-o� intermittency. The trajectory alter-

nates its behavior intermittently, changing from a regular phase, expending some time

in the vicinities of the synchronization manifold, to irregular bursts, being expelled

to the phase space along the transversal manifold. The synchronization basin, on the

plane of Fig. 4, for this case of coupling, has nonsmooth continuous boundary, and the
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Fig. 6. Synchronization basin (white) and nonsynchronized basin (gray and black) of Eqs. (1) and (2) for

unidirectional coupling of amplitude K = 0:6. g = 0:575.

nonsynchronization manifold �ll almost completely the synchronization basin, leaving

only a few initial conditions that belong to the other basin.

Synchronization is not always aimed in communication. As suggested in Ref. [23],

the two nonsynchronized states of the coupled circuits, when operating in the R�ossler-

type attractor, can be used to transmit some kind of information. And, once the non-

synchronized basins have continuous boundaries, the �nal nonsynchronized states can

be precisely determined, and thus, communicating with the two synchronized states can

be performed even for coupling in the range Kr¡K¡Kc.

The fact that riddling is not found for K ¡Kc (Eqs. (1) and (2), with g=0:575) is

certain when the synchronization basin is on the plane de�ned to make Fig. 4. However,

out of this plane, this might not be true. As shown in Ref. [1], the synchronization

basin on the 3-D synchronization manifold is intermingled. This means that riddling

behavior may depend on the location of the synchronization basin.

4. Coupling while in the Matsumoto-Chua-type attractor

Next, we change to g = 0:6 in Eqs. (1) and (2). In this case, for �A = �B = 0,

we have the Double-Scroll attractor. The attractor can be seen in Fig. 7. Compar-

ing this attractor with the one of Fig. 1, we see that it is more complex, in speci�c

its topological entropy is higher, an indication that this Double-Scroll attractor

generates more information, and therefore the use of its signal can carry more

information [7].

The dependence of the conditional Lyapunov exponents with respect to K , for

Eqs. (1) and (2) with unidirectional coupling (full line in Fig. 8) and with bidi-

rectional coupling (dashed line in Fig. 8), is similar to what was shown in
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Fig. 7. Double-Scroll attractor obtained making �A = 0 and g = 0:6 in Eq. (1).

Fig. 8. Transversal Lyapunov exponent versus the coupling amplitude K , for unidirectional coupling (full

line) and bidirectional coupling (dashed line). g = 0:6.

Fig. 5, that is, bidirectional coupling reduces instabilities for K smaller than the value

K ∼= 3:73.
Considering Kr the parameter for which the riddled bifurcation comes about, the

synchronization basin of this coupled circuits for K ¡Kr should have only two basins,

the in�nity basin and the synchronized basin.
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Fig. 9. Synchronization riddled basin of the circuits with unidirectional coupling of amplitude K = 0:2, and

g = 0:6.

Fig. 10. Synchronization intermingled basin of the circuits with bidirectional coupling of amplitude K =0:2,

and g = 0:6.

However, contrary to what we saw in the previous section, for K in the critical

interval, Kr¡K¡Kc, the basin becomes riddled for unidirectional coupling, Fig. 9,

and intermingled for bidirectional coupling, Fig. 10.

The characterization of such basin is done by calculating the uncertainty exponent

� (de�ned in Ref. [28]), for the basin of Fig. 9, obtaining �u = 0:0006 ± 0:0006

(riddled basin), and for the basin of Fig. 9, obtaining �b = 0:0005 ± 0:0003. To un-
derstand what this exponent means, suppose we can specify an initial condition with

precision �. The uncertain probability f(�) of predicting incorrectly the future state
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of the system (synchronized or not) is given by f(�) ≈ ��. So, for an initial condi-

tion with precision of 10−16, f(�) = 0:98, thus, we have 98% of chance to predict

incorrectly the �nal state. In fact, theoretically for riddled basins this exponent should

be null. Even though the di�erence is very small, �u¡�b, showing that systems with

intermingled basin are, at least by the numerical point of view, more sensible to the

�nal state determination.

To calculate this exponent, we randomly pick 10000 initial conditions on the space

represented by Figs. 9 and 10. Each point generates a pair of �-perturbed points given

by (V AC1 ,V
B
C1

± �), which are iterated for an interval of time �t = 400. The �nal state
of the three (the randomly chosen initial condition and its perturbed pair of points)

points are then veri�ed. If any one of the perturbed points have a �nal state di�erent

than the nonperturbed one, we say that this point is uncertain.

The transient �t = 400 represents an interval of time within which the trajectory

visits a given Poincar�e section 100 times. To choose this transient we observe that

the synchronization basins (Figs. 2–4, 6, 9, 10) does not present perceptible changes

for a transient time within the interval [200,10000]. In the view of this result, we �nd

appropriate to choose the transient to be �t=400. In order to verify if the synchronized

state is indeed stationary we check if the distance V AC1−V
B
C1 remains bounded to 0.005

for an integration time of t = 80.

The fraction of uncertain points, f(�) over the whole amount (10000) is then calcu-

lated for 11 di�erent values of �, ranging from 10−2 to 10−10. The uncertainty exponent

is the slope of the log–log plot of f(�) versus �.

For K ¿Kc we can have on-o� intermmitency, depending on the initial condition

chosen. Otherwise the only other �nal state allowed is the nonsynchronized state.

5. Conclusions

In the unidirectional coupled Matsumoto-Chua system, riddled basin can be avoided

by choosing special initial conditions. So, g = 0:575 (R�osller-type attractor for the

uncoupled circuit), the �nal state has no dependence on these sets for di�erent ranges

of values of K , even for critical values, when K is close to Kc (for which the conditional

Lyapunov exponent becomes positive).

In general, when the initial condition of circuit A is in a di�erent basin than the

circuit B, the �nal state will not be the synchronized one, regardless the value of the

coupling amplitude K , observation already discussed in previous works as [29]. Thus,

in cases like this, if the �nal full synchronized state is required, we suggest the use

of the OPCL method [30,31]. In this method, there are ways to obtain the set of

initial conditions which will drive the coupled circuits to the synchronized state (the

synchronization basin), even if the circuits have their initial conditions set in di�erent

basins.

The absence of coexisting chaotic attractors for the Double-Scroll regime (g= 0:6),

at �rst glance, can let us speculate that the synchronization basin of the coupled circuits

is less complex than those obtained for the R�ossler system. But that is not the case.

As we show, due to a higher Lyapunov exponent of the Double-Scroll attractor, the
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synchronization basin for this regime is highly more complex than that for coupled

circuits independently operating in the R�ossler-type attractor regime (g= 0:575).

The trajectory of the Double-Scroll attractor is able to carry more information than

the trajectory of the R�ossler system, but it is more di�cult for synchronizing circuits

to operate in the Double-Scroll regime.

So, when using in the coupled system g = 0:6, the critical interval (Kr¡K¡Kc)

is to be avoided, if the coupling is a negative feedback of the type used in this work.

We characterized the existence of the riddled and intermingled basins through the

uncertainty exponent. This calculation demonstrated that the �nal state of a system with

riddled basin is undetermined.
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