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Abstract

We present a computational procedure to control an experimental chaotic system by applying the occasional pro-
portional feedback (OPF) method. The method implementation uses the fuzzy theory to relate the variable correction
to the necessary adjustment in the control parameter. As an application we control the chaotic attractors of the Chua
circuit. We present the developed circuits and algorithms to implement this control in real time. To simplify the used
procedure, we use a low resolution analog to digital converter compensated for a lowpass filter that facilitates similar
applications to control other systems.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos control in mechanical and electrical engineering systems has been much investigated in the last years [1,2].
Among these systems are electric circuits with several applications as emission in lasers [3] or the demand of energy
in electric power systems [4a].

Many of these applications are based on the method OGY (Ott, Grebogi and Yorke) of chaos control [5] that sta-
bilizes unstable periodic orbits, immersed in the chaotic attractor, by small alterations of a control parameter.

A variant of the OGY method is the occasional proportional feedback – OPF that, instead of using the system
dynamics to vary a parameter appropriately, calculates the correction in one of the variables to force it to pass through
a small interval fixed in the phase space [6]. The OPF has been applied in several real situations by using analogical
circuits [7]. However, digital implementations of this method were limited by the number of bits of the analogical digital
conversion (AD) and by the time of this conversion [4b,8].

Even with those methods that prescribe the control variation, the sequence of the applied variations can still be
improved by a learning or preliminary evaluation. For that, it is convenient to apply concepts of the fuzzy theory.
In this way, actions can adjust the control parameter variations, even with imprecise information on the reference var-
iable evaluation [9,10]. The fuzzy theory has been already applied to control chaotic systems [8,11].

The Chua circuit (CHC) [12] has been used to study the control of dissipative chaotic systems [13] due to the relative
easiness of its implementation and due to its versatility in the generation of several kinds of attractors.
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Usually, the Chua circuit has been investigated by using analogical circuits or by simulations. Even so, to implement
some experimental works, as in Ref. [4b] for chaos control and in Ref. [14] for circuits synchronization, AD interfaces
have been connected to computers to read the signals.

This work uses computers to control an experimental Chua circuit by means of fuzzy techniques what has not yet
been fully discussed in other studies. With this procedure, the use of computers allows us to follow the experimental
circuit control besides propitiating a larger flexibility on the storage and on the orbits fuzzy treatment. Moreover, to
treat the circuit analogical signals, the use of a low resolution (8 bits) converter AD was tested, compensated by a low-
pass filter implemented by software.

The structure of this presentation is the following: the implementation is described in Sections 2 and 3 (and in
Appendix A); the characterization is in Section 4. Section 5 contains the control of the Chua circuit followed by the
carried through test conclusions. Final remarks are in Section 6.
2. Electric circuit

The circuit is a dissipative dynamical system, defined for the electric circuit of Fig. 1, composed by reactive elements
(inductor L, capacitors C1 and C2), linear resistors (R and R 0), and by a negative non-linear resistive element (RNN).

The differential equation that describes this system is of third order, being the phase space defined by the variables
vC1

(tension on the capacitor C1), vC2
(tension on the capacitor C2), and iL (current for the inductor L) [12,15].

Depending on the parameters, related to the values of the elements that compose the circuit, solutions after transient
correspond to periodic or chaotic attractors.

Fig. 2 shows the electronic circuit used to implement the experimental Chua circuit.
The element RNN (non-linear negative resistor) shown in Fig. 2, and with the parameter values indicated there, pos-

sesses the characteristic curve i · v presented in Fig. 3.
To select one orbit the resistor R 0 value (Fig. 2) is modified during the OPF control [7] by a fuzzy error controller [10]

according a software developed in C++ (DOS). These R 0 changes are implemented by hardware from outputs of the PC
computer parallel interface (see Appendix A.1).

Varying R 0 (Fig. 2) changes the characteristic curve (Fig. 3) of the non-linear negative element (RNN), and varying R

changes the oscillations amplitude of the variables vC1
, vC2

and iL. Moreover, adjusting R 0 or R it results in the attractor
alteration. Thus, in this work, R value adjustments determine the attractor, while short time alterations of the R 0 values
were used to control the chaotic attractor.

The inductor used in CHC was implemented by a gyrator circuit (block marked by L in Fig. 2 – see Appendix A.2)
that allowed the simple adjustment of values in an extensive range. It was fixed C02 ¼ C2 ¼ 3:3lF . In this case,
C1 = 33lF resulted in a characteristic time of about 100 ms (attractor loop).

The signals vC1
and vC2

sampling period (Ta) were fixed in 1 ms, what corresponds to about 100 samples for each
attractor loop, being the resolutions of 256 levels for the excursions in each one of the coordinates axes, vC1

and vC2
.

A low cost AD converter was developed, to read the dynamical variable signals vC1
and vC2

, being such readings carried
through in sequence to each 1 ms and transferred to the computer through its parallel interface.

A low resolution (8 bits) AD converter was chosen despite the quantization noise level comparable to the system
sensibility to small variations [2]. The following strategy was tested to treat the error: the signals vC1

and vC2
are filtered

by a lowpass filter implemented by software with 10 Hz of cutoff frequency.
The used gyrator circuit and the interface with the computer are detailed in Appendix A.
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Fig. 1. Chua circuit.
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Fig. 2. Physical implementation of the Chua circuit.
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3. Lowpass filter

To reduce the discrete noise, the lowpass filter was implemented by software as indicated in Fig. 4. The samples are
carried through to each sampling period Ta.

The filtered signal corresponds to the arithmetic average of the last m samples
yn ¼
xn þ xnþ1 þ . . .þ xnþðm�1Þ

m
¼ xn þ xnz�1 þ . . .þ xnz�ðm�1Þ

m
: ð1Þ



Fig. 4. Lowpass filter.

2172 M.A. Garms et al. / Chaos, Solitons and Fractals 39 (2009) 2169–2178
Applying the Discreet Fourier Transform [16] in expression (1) and using the following property of this transform
F fxz�kg ¼ F fxge�jkX ¼ X ðXÞe�jkX with X ¼ xT a;
results
F fyng ¼ Y ðXÞ ¼ F
xn þ xnz�1 þ . . .þ xnz�ðm�1Þ

m

� �
¼¼

F xn
Pm�1

k¼0

z�k

� �

m
¼ X ðXÞ

Pm�1

k¼0

e�jkX

m
:

From this last expression one concludes that the transfer function of the filter results in
HðXÞ ¼ Y ðXÞ
X ðXÞ ¼

Pm�1

k¼0

e�jkX

m
: ð2Þ
The sum in Eq. (2) gives the value
Pm�1

k¼0 r�k ¼ ðrm � 1Þ=ðr � 1Þ with r = e�jX. Thus, H can be written as
HðXÞ ¼ 1

m
e�jmX � 1

e�jX � 1
¼ 1

m
e�jmX=2

e�jX=2

e�jmX=2 � ejmX=2

e�jX=2 � ejX=2
¼ 1

m
e�jmX=2

e�jX=2

sinðmX=2Þ
sinðX=2Þ : ð3Þ
The transfer function absolute value is obtained from (3)
jHðXÞj ¼ 1

m
sinðmX=2Þ
sinðX=2Þ

����
����: ð4Þ
The graph of this function is presented in Fig. 5 for m = 24, being Ta = 1 ms. In these conditions the bandpass is
approximately 10 Hz.

The quantization noise of an AD conversion of n bits is given by [17]: SNR ffi �6n dB equal to �48 dB for n = 8. On
the other hand, the band of this noise is equal to [17]: B ffi 1/2Ta = 500 Hz. Therefore, one can write (considering the
planed noise power spectrum in the range from 0 to 500 Hz):
Fig. 5. Transfer function jHðXÞj ¼ Y ðXÞ
X ðXÞ

��� ���.
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SNRFPB ffi SNRþ 10 log
10 Hz

500 Hz
ffi �48� 17 ¼ �65 dB:
From that one concludes that the equivalent number of bits after the filtering is equal to
neq ¼ �ð�65Þ=6 ffi 11 bits:
In agreement with [8], this resolution is within the typical limit of the sensibility of a chaotic system to small
variations.
4. Chua circuit characterization

The Chua circuit can present chaotic behavior and, in this case, being a dissipative system, the trajectory in phase
space tends to a trajectory limit that is a chaotic attractor [12].

Adjusting the value of R 0 (Fig. 1), one gets attractors in several forms. Fig. 6 presents the two kinds of chaotic attrac-
tors known as the Rössler and double scroll, resulting of the tests.
5. Control fuzzy of Chua circuit

Basically, a fuzzy error controller simulates human actions so that the error is minimized [10]. The application of the
used control algorithm is represented in Fig. 7, whenever vC1

crosses a given reference value vref1
, the R 0 value is altered to

force vC2
to reach a value near vref2

. This control is applied during a time period s after which R 0 return to its original value.
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Fig. 6. Orbits of the Chua circuit.
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The function f (error), used in the step (ii) of the algorithm indicated in Fig. 7, to calculate the control correction R 0

is implemented by using the concept of normalized fuzzy characteristic function (FCF) [18,19] presented in Fig. 8.
To stabilize a chaotic orbit, the FCF was defined experimentally, adjusting the pertinence function pair of the

employed variables (center of the triangles in Fig. 8) through fuzzy rules.
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Fig. 8. Fuzzy characteristic function (normalized) for the control of the Chua circuit.
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An example of this procedure is shown in Fig. 9 for a chaotic oscillation corresponding to the attractor of Fig. 10a.
The periodic attractor obtained by controlling this oscillation is shown in Fig. 10b.

The oscillating voltages vC1
and vC2

are in Fig. 9a and b while in Fig. 9c is the sequence of the applied control param-
eter variations of R 0. The R 0 pulses indicate the short time intervals when the control was applied. The control is rapidly
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achieved as we can observe examining the real values indicated in Fig. 9. Similarly, the observed result of this fuzzy
control has also been verified for several others examples.
6. Conclusions

Seeking a larger flexibility as well as the storage and to the treatment of orbits in chaotic systems, a computational
fuzzy control of the Chua circuit was developed. The sampling was carried through by an AD converter of eight bits,
following by a lowpass filter to compensate this low resolution.

Moreover, in this project integrated circuits CMOS were used to interconnect the Chua circuit to a PC compatible,
through its parallel interface. The implemented program is executed in the operating system DOS, being developed in
the language C++.

Due to its low cost, as also for not requiring any special software or hardware resources, it is feasible to implement
this project for several applications or didactic purposes.
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Appendix A. Implementations

A.1. Interface for PC

Seeking the application of the tests related to the fuzzy control of the Chua circuit, in Fig. A1 the interface here
developed is presented. The described elements and signals refer to this figure.
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Through this control interface it takes place the reading and generation of signals to sample the capacitors tensions
vC1

and vC2
, as well as to impose the value of R 0 (see Fig. 2).

To read the signals vC1
and vC2

the following elements are used: counter (CI 4040), DA converter, Mux1 (CI 4066)
and comparator (CI LM311). These readings are made to each 1 ms and transferred through Mux 2 (CI 4019). To do
that, the signals STRB (strobe) and ACK (acknowledged) are changed by the control block (CNTRL) and the program
executed in PC.

Using the PC parallel interface the signal TYPE is generated to select which of the signals vC1
or vC2

will be read. The
circuit CNTRL controls these signals reading and transferring for PC. It also implements the finite automat, repre-
sented explicitly in Fig. A1 which generates the necessary processing.

The signals of the capacitors are represented, in the computer screen in real time, using cartesian graphs, as Figs. 6, 9
and 10, and the control takes place in agreement with the Algorithm described in Section 5.

The way of changing the resistor R 0, here proposed, is presented in Fig. A2: 4066 bilateral keys are used, controlled
by binary signs generated by the program, and through the PC parallel interface, to obtain for this resistor a range var-
iation of 10 kX to 137.5 kX with jumps of DR = 500 X.

A.2. Circuit gyrator as inductor

It is presented in Fig. A3 the circuit gyrator that was used in the simulation of the inductor in the Chua circuit.
Considering the ideal operational amplifiers, the electrical currents in their input branches are null, as well as then

electrical potential difference.
From this condition and starting from the Kirchoff laws, it can be written
i ¼ i1; i01 ¼ i1 þ i2; i03 ¼ i3 þ i4; i4 ¼ i5;

v1 ¼ v2; v3 ¼ v4; v5 ¼ v:
ð5Þ
Using expressions (5), of v5 = v we have i5 ¼ v
R5
¼ i4 from where v4 ¼ R4i4 ¼ R4

v
R5
¼ v3 and i3 ¼ v3

R3
¼ R4v

R5R3
¼ i2.

Therefore, v2 ¼ i2
sC0

2
¼ R4v

R5R3

1
sC2
¼ v1 of which results: i1 ¼ v1

R1
¼ R4v

R5R3

1
sC0

2

1
R1
¼ i and finally
v
si
¼ L ¼ R1C02R3R5

R4

: ð6Þ
One concludes that the electrical potential and current in the output of the operational amplifier A1 are given by
vs1 ¼ v5 þ v4 � v3 � v2 ¼ v5 � v2 ¼ v 1� 1

s
R4

R5R3C02

� �
; ð7Þ

is1 ¼ �i01 ¼ �i1 � i2 ¼ �v
R4

R3R5

1þ 1

sR1C02

� �
: ð8Þ
In similar way, the electrical potential and current in the output of the operational amplifier A2 follow the
expressions:
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vs2 ¼ v5 þ v4 ¼ v 1þ R4

R5

� �
; ð9Þ

is2 ¼ i03 ¼ i3 þ i4 ¼
v

R5

1þ R4

R3

� �
: ð10Þ
Using expressions (7) to(10) is possible to project the range of these signals in terms of the chosen amplifier limits.
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