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Nontwist area–preserving maps violate the twist condition at specific orbits, resulting in shearless invariant
curves that prevent chaotic transport. Plasmas and fluids with nonmonotonic equilibrium profiles may be
described using nontwist systems, where even after these shearless curves break up, effective transport barriers
persist, partially reducing transport coefficients. Some nontwist systems present multiple shearless curves in
phase space, increasing the complexity of transport phenomena, which have not been thoroughly investigated
until now. In this work, we examine the formation of effective transport barriers in a nontwist area–preserving
mapping with multiple shearless transport barriers. By quantifying the effectiveness of each transport barrier in
phase space, we identify two scenarios where particular barriers dominate over others. Our results also reveal
configurations where the interplay of two transport barriers creates regions in phase space with significant orbit
trapping, influencing overall transport dynamics.
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I. INTRODUCTION

Transport phenomena play a fundamental role in nature
and involve redistributing quantities such as particles, charge,
and energy. Different mechanisms are responsible for trans-
port processes, which can explain phenomena ranging from
microscopic interactions in semiconductors [1] to large-scale
planetary dynamics [2].

In dynamical systems, the problem of transport involves
quantifying the collective motion of an ensemble of orbits
between regions in phase space [3]. Hamiltonian systems
often represent models of physical significance, such as
fluid advection [4,5], structures in solid state [6], motion of
cold atoms in optical lattices [7], and magnetically confined
plasmas [8–11]. Featuring a mixed-phase space, Hamilto-
nian dynamics exhibit periodic, quasiperiodic, and chaotic
trajectories, with chaotic trajectories being responsible for
transport [12].

The intermixing of regular and chaotic orbits in phase
space complicates the transport problem in Hamiltonian sys-
tems. Certain structures in phase space can reduce or even
eliminate chaotic transport. For instance, considering two-
dimensional maps, quasiperiodic invariant curves act as total
barriers, eliminating transport through them [13]. Therefore,
the breakup of the last invariant curve is of great importance,
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and in twist systems, the Kolmogorov-Arnold-Moser (KAM)
theorem addresses this issue [14].

Nontwist systems violate the twist condition at some orbits,
forming the so-called shearless invariant curves. Although
the KAM theorem is not valid in these maps, analytical and
numerical results indicate that the shearless invariant curve
is among the last invariant tori to break up [15,16]. Fur-
thermore, nontwist systems have degenerate Hamiltonians,
leading to new topological processes involving isochronous
island chains, for example, periodic orbit collision and sepa-
ratrix reconnection [17,18].

Nontwist dynamics appear in various research areas, in-
cluding fluid advection [5,19], geophysical zonal flows [20],
and magnetically confined plasmas [21,22].

Even after their breakup, remnants of invariant curves, in-
cluding the shearless one, can reduce transport coefficients in
the region, forming a partial or effective transport barrier [3].
Furthermore, the effectiveness of these barriers is closely re-
lated to manifolds crossing of isochronous islands, which can
occur in homoclinic or heteroclinic topology [23–26].

Nontwist area–preserving maps have been used to inves-
tigate the general properties of such systems. The standard
nontwist map (SNM), for example, is a paradigmatic sys-
tem that captures the essential behavior of nontwist sys-
tems that violate the twist condition at only one invariant
curve [16,18,27]. Consequently, many works on effective
transport barriers in nontwist systems have utilized this
map [24–26,28,29].
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Recently, experimental evidence has indicated the ex-
istence of more than one transport barrier in nonmono-
tonic plasma equilibrium [30]. Additionally, plasma-transport
models have used nontwist systems to explain transport
reduction [31–33]. In such nontwist systems, more than
one orbit violates the twist condition, leading to com-
plex nontwist processes with unique characteristics, such
as reconnection-collision sequences [18,34]. Recently, the
biquadratic nontwist map (BNM) has been used to study bifur-
cation processes and shearless curve breakup in systems with
multiple shearless curves [35,36]. However, there has been
no study so far on how multiple effective barriers influence
transport in phase space.

In this work, we investigate the formation of an ef-
fective transport barrier in the BNM, a prototype system
with multiple shearless transport barriers. Using computa-
tional and theoretical tools, we quantify the effectiveness
of each barrier individually. Our results revealed scenarios
where a specific barrier dominates over the others. Fur-
thermore, the presence of two transport barriers can create
chaotic regions where orbits remain trapped for extended
periods.

The rest of the paper is organized as follows. Section II
presents the area-preserving map used in our analysis. The
theoretical background of transport analysis tools and quan-
tifiers is provided in Sec. III. Section IV applies these
quantifiers to the BNM, exploring how multiple transport
barriers affect low and high transport configurations. Finally,
Sec. V offers our conclusions.

II. MULTIPLE SHEARLESS CURVE SYSTEMS

Let us consider a two-dimensional area-preserving map
with a particular functional form, defined by the recurrence
relations

xn+1 = xn + ω(yn+1) (mod 1) (1a)

yn+1 = yn − f (xn), (1b)

where x ∈ [0, 1) and y ∈ R are a pair of canonical coordi-
nate and momentum. Its phase space is the infinite cylinder
S1 × R. Functions f and ω must be sufficiently differentiable.
Additionally, for such a system to be used as a model for
studying Hamiltonian dynamics, we require f to be a period-1
function with zero average [12].

The twist function ω gives the frequency of the orbits
in phase space when the system is integrable, that is, when
f (x) ≡ 0. If ω has no extreme point, the map (1) is called a
twist map, and satisfies the condition∣∣∣∣∂xn+1

∂yn

∣∣∣∣ = |ω′(yn+1)| > 0 (2)

for every point in phase space [37].
Maps that do not satisfy the twist condition are called

nontwist maps. Consequently, important results, such as the
KAM theorem, are not valid [38]. Significant nontwist sys-
tems, such as the SNM, violate the twist condition at only one
value ω(y∗), that is, at one value yn+1 = y∗ corresponding to a
curve yn = y∗ + f (xn), also called nonmonotone set [16,27].
However, general maps might violate the twist condition at

several nonmonotone sets, thereby increasing the complexity
of nontwist phenomena presented, such as reconnection of
separatrices [39].

A. The biquadratic nontwist map

It is suitable to use specific functional forms of ω and f for
the resultant map to possess useful properties. By choosing
the twist function ω(y) = a(1 − y2)(1 − εy2) and the pertur-
bation f (x) = b sin (2πx), we obtain the biquadratic nontwist
map (BNM) [35]

xn+1 = xn + a
(
1 − y2

n+1

)(
1 − εy2

n+1

)
(mod 1) (3a)

yn+1 = yn − b sin (2πxn). (3b)

It is a three-parameter family of area-preserving maps, with
the range of interest defined as a ∈ [0, 1), ε ∈ R+ and b ∈
R+. Dynamics outside this range are not relevant to this work,
as the system either exhibits the same behavior or features
only a single shearless curve. The parameters a and ε shape
the twist function, thereby altering the frequency profile of
orbits in phase space. These parameters play a key role in
controlling the positions of main resonances and nontwist
phenomena, such as separatrix reconnection and shearless
curve breakup. The amplitude of the perturbation is governed
by the parameter b, which is responsible for the amount of
chaos in the systems. Further details on the effects of each
parameter on reconnections and shearless curve breakup can
be found in Refs. [35,36].

When b = 0, the system is integrable and the phase
space contains only periodic and quasiperiodic (y = constant)
orbits. Near-integrability occurs for small-perturbation pa-
rameters (b � 1). Typical phase spaces of the BNM in this
regime are shown in Fig. 1. In this case, periodic orbits
give rise to resonance islands, and the quasiperiodic invariant
curves become distorted.

The BNM is a nontwist map because its twist function vio-
lates the twist condition, Eq. (2). For ε > 0, the map exhibits
three such orbits, known as shearless invariant curves. Each
of these shearless curves intersects one of the nonmonotone
sets

R0 : y = b sin (2πx), (4a)

R± : y = ±
√

1 + ε

2ε
+ b sin (2πx), (4b)

defined by the regions in phase space that violate the twist
condition [27]. In this paper, we call C0 the central shearless
curve, associated with R0. The same occurs to C±, named
external shearless curves, intersecting R±.

In Fig. 1(b), the red curve stands for C0, while C± are
marked in blue and green. For ε = 0, in Fig. 1(a), the BNM
twist function is parabolic and, in this case, the BNM re-
duces to the SNM [16], which has only a central shearless
curve.

Notice that the BNM has symmetry properties concerning
time evolution and spatial transformation. The time evolution
symmetry leads to the symmetry lines, useful to find periodic
orbits [40]. Letting D = S1 × R be the domain of the map,
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FIG. 1. Phase spaces of the biquadratic nontwist map, with
a = 0.3 and b = 0.05, with (a) ε = 0 and (b) ε = 0.4. Symmetry
lines are marked by dashed-dotted lines, while shearless curves ap-
pear in red, blue, and green lines.

the symmetry lines of the BNM are the four sets

s1 = {(x, y) ∈ D : x = 0}, (5a)

s2 = {(x, y) ∈ D : x = 1/2}, (5b)

s3 = {(x, y) ∈ D : x = a(1 − y2)(1 − εy2)/2}, (5c)

s4 = {(x, y) ∈ D : x = a(1 − y2)(1 − εy2)/2 + 1/2}. (5d)

For example, the intersections of symmetry lines corre-
spond to the fixed points of the BNM. Those lines are marked
by dashed-dotted lines in Fig. 1. Furthermore, the map has the
spatial symmetry

S(x, y) = (x + 1/2,−y), (6)

meaning that every orbit in phase space has an associated
symmetrical orbit with identical properties. For instance,
the external shearless curves are symmetric, as well as the
period-1 resonance islands. The only exception is the cen-
tral shearless curve C0, which is invariant under S, that is,
S(C0) = C0, therefore it is its own symmetric [27]. Such a
property ensures that the central shearless curve possesses
unique characteristics that are not shared with the external
shearless curves, as is discussed later.

FIG. 2. Phase spaces of the biquadratic nontwist map for
ε = 0.11 (a) with a = 0.4 and b = 0.3, and (b) a = 0.25 and
b = 0.7906. A partial barrier persists once a shearless curve is bro-
ken, preventing transport between the four regions of phase space,
marked by chaotic orbits of different colors.

The BNM has been used in previous studies concerning
nontwist systems with multiple shearless curves. Due to its
symmetry properties and the range of phenomena displayed, it
serves as a useful model for studying general nontwist systems
that present multiple shearless curves. Further characteriza-
tion and results for the BNM can be found in Refs. [35,36].

B. Effective transport barriers

At the range of moderate values of perturbation parameter
b ∼ 1, the BNM exhibits a mixed-type phase space. Along-
side regular orbits (resonances and invariant curves), irregular
(chaotic) orbits fill nonzero area regions in phase space, as
depicted in Fig. 2(a). These irregular orbits lead to chaotic
transport, that is, the motion of a collection of trajectories
across different regions of phase space. As the perturbation
parameter grows, invariant curves are broken, causing chaos
to spread throughout phase space. The remaining invariant
curves serve as barriers to transport, delineating boundaries
for chaotic orbits. Consequently, once the last rotational in-
variant circle is broken, chaotic orbits traverse all available
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space, which excludes the islands, leading to a scenario known
as global transport.

Invariant curves are total transport barriers since they
completely prevent transport along the momentum variable.
However, even after their breakup, transport in the region is
not diffusive. The remnants of the last invariant curve lead
to a reduction in transport coefficients at the region. Such
a reduction is attributed to long-time correlation functions,
a signature of chaotic orbits wandering along the transport
barrier in a phenomenon called stickiness [41]. These rem-
nants and their influence on transport have been studied in
twist [3,13] and nontwist systems [24,26,28,29].

Concerning nontwist systems, both analytical and numer-
ical evidence suggest that the shearless curve is one of the
last invariant curves to be broken [15,16]. In addition, the
arrangement of island chains around the shearless transport
barrier plays a crucial role in the effectiveness of these partial
barriers [20,26].

The BNM has three shearless curves that break up in dif-
ferent configurations, with the central and external transport
barriers breaking up independently [36]. Still, there are pa-
rameter sets where all shearless curves are broken.

In the BNM, orbits can mix between four distinct regions in
phase space. Figure 2(b) illustrates such a situation, where we
evolved a unique orbit in each region of phase space. These
four orbits are colored as follows: (1) above the top shear-
less transport barrier (blue), (2) between the top and central
barriers (purple), (3) between the central and lower barriers
(green), and (4) below the lower barrier (orange). Initially,
these orbits are trapped between the barriers. However, they
eventually cross the barrier, causing mixing between regions
of different colors.

III. TRANSPORT ANALYSIS FRAMEWORK

This section describes the methods used in this paper to
investigate transport in the BNM. Some dynamical quantifiers
have been used to evaluate transport properties in Hamilto-
nian systems. In this paper, we adopt the transmissivity of a
transport barrier, escape time of orbits, and manifold analysis.

A. Transmissivity

Transmissivity measures the effectiveness of a given trans-
port barrier in preventing orbits from crossing a given region
in phase space. In other words, it quantifies the strength of a
transport barrier. Given a set of initial conditions, and a maxi-
mum number of iterations N , we define the transmissivity of a
barrier as the fraction of orbits that cross the same barrier after
N iteration. To numerically obtain this fraction, we define the
circles

∂B± = {(x, y) ∈ S1 × R : 0 � x < 1, y = ±yB}, (7)

in phase space, where yB is a constant value. Computationally,
we randomly choose a large number of initial conditions on
the circle ∂B−, which are iterated N times. The fraction of
orbits that reach the circle ∂B+ after, at most, N iterations, is
assigned as the transmissivity of the partial transport barrier
within the region bounded by ∂B±. Therefore, the value of

FIG. 3. Transmissivity parameter space of the biquadratic non-
twist map, fixed ε = 0.11. Colors represent the barrier transmissivity,
with black being zero transmissivity.

yB determines which barriers of the BNM are considered, as
discussed in the next section.

Note that ∂B± are symmetric under the transformation (6)
such that S(∂B±) = ∂B∓. Therefore, due to the spatial sym-
metry of the map, the transmissivity is identical for upward
and downward fluxes in phase space considering these bound-
aries. However, in nonintegrable Hamiltonian systems lacking
spatial symmetry, the flux across a transport barrier may ex-
hibit a preferred direction. Such behavior was reported in an
asymmetrical Hamiltonian system under the name ratchet cur-
rents [42]. In the context of nontwist systems, ratchet currents
have been observed when the isochronous island chains are
asymmetric [43].

A total transport barrier, which completely prevents the
transport of orbits through it, has zero transmissivity indepen-
dent of the chosen maximum number of iteration N . Shearless
curves are examples of total transport barriers. Transmissivity
values marginally greater than zero indicate a strong transport
barrier while values closer to one indicate a weak capability
of preventing transport.

Applying transmissivity to the BNM requires a careful
choice of yB, as this determines which transport barrier is
considered. Results concerning transmissivity in the BNM are
presented in Figs. 3, 4, and 8.

B. Escape time

The escape time for each initial condition in phase space
can be used to investigate the stickiness of orbits on partial
transport barriers. While transmissivity provides relevant in-
formation, it does not offer data on the characteristic time
scales associated with the transport barrier. Therefore, deter-
mining the time required for an orbit to escape a certain region
of phase space enables us to verify the time that orbits spend
in each region of phase space. This tool helps identify regions
of stickiness and escape channels through which orbits leave
the transport barrier.

In this work, the escape time of initial conditions is ob-
tained by setting a regularly spaced grid of 2000 × 2000
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FIG. 4. Transmissivity of the biquadratic nontwist map as func-
tion of a, fixed b = 0.58 and ε = 0.11. Dashed-dotted and dashed
lines mark high- and low-transport configurations, respectively.

initial conditions, which are iterated a maximum of 2 × 106

times. We compute the number of iterations needed for the
corresponding orbits to exit a certain region of phase space
B, bounded by ∂B±, previously defined. The choice of the
constant yB, which defines the region boundary, determines
the transport barrier being considered. Results of the escape
time are shown in Figs. 5, 6, 9, and 10.

C. Stable and unstable manifolds

Here, we provide a brief introduction to invariant mani-
folds in dynamical systems. Since this work focuses on the
BNM, we restrict our discussion to two-dimensional area-
preserving maps.

Let P be a hyperbolic period-p orbit of a two-dimensional
area-preserving map M : z 	→ M(z), whose inverse is M−1.
Briefly, the stable manifold W P

s and the unstable manifold W P
u

associated with the hyperbolic orbit P are [14]

W P
s = {z ∈ D : Mn(z) → P, n → ∞}, (8a)

W P
u = {z ∈ D : M−n(z) → P, n → ∞}, (8b)

where D = S1 × R is the domain of the map. In the context
of our study, W P

s,u are one-dimensional sets comprising 2p
branches. The computational method to obtain such invariant
sets starts by choosing an appropriate linear segment, whose
direction is given by the eigenvectors of the associated hy-
perbolic orbit. This segment is then evolved under the map
dynamics to obtain the unstable manifold and under its inverse
to obtain the stable manifold [44].

Locally, the manifolds of a map give the direction of the
tangent space, indicating the direction in which nearby orbits
evolve. Furthermore, the configuration of the stable and un-
stable manifolds of hyperbolic orbits determines the behavior
of chaotic orbits and, consequently, transport in phase space.

IV. SCENARIOS OF DOMINANT TRANSPORT BARRIERS

This section examines how multiple transport barriers
in the BNM influence transport in phase space. Using the

FIG. 5. Escape time of the trajectories in phase space of the
biquadratic nontwist map with b = 0.58, ε = 0.11, (a) a = 0.80765,
and (b) a = 0.80837, corresponding to high- and low-transport con-
figurations of Fig. 4. Here we considered yB = 3.5.

techniques described in the previous section, we explore how
the central and external transport barriers impact low- and
high-transport scenarios on the map.

Since the BNM features three independent shearless
transport barriers, we can study the effect of each barrier
individually or their combined effect. Regarding the latter
case, the boundaries ∂B± [defined in Eq. (7)] must extend
beyond the external shearless transport barriers. Conversely,
to isolate the effect of the central transport barrier, the same
boundaries must be placed between the central and external
barriers.

Since the BNM has three parameters, being a and b directly
related to the SNM, we fix ε = 0.11 to enable a direct com-
parison of results between the two maps. For ε � 1, shearless
curves C± are located away from C0 and the dynamics closely
resembles the SNM. Conversely, for ε � 1 all the shearless
curves are brought very close together, potentially leading to
interactions. With the chosen ε value, the central and external
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FIG. 6. Escape time near the central transport barrier of the
biquadratic nontwist map for (a) high- and (b) low-transmissivity
regimes of Fig. 8, considering yB = 1.5. Magnifications of the high-
lighted regions are embedded in the corresponding panels.

barriers are close enough to influence the dynamics but their
effect on transport can be easily distinguished.

Details about the typical phase space of the BNM in
this configuration are shown in Figs. 2 and 5. The external
transport barriers, defined by Eq. (4), are located within the
region |y| � 3.35. Therefore, choosing yB = 5 ensures the
boundaries ∂B± are beyond the external shearless barriers. In
contrast, to focus on the transmissivity of the central barrier
alone, we set yB = 1.5, positioning the boundaries between
the central and external shearless barriers.

Taking into account the effect of all three shearless trans-
port barriers, we illustrate the dependence of transmissivity
on the parameters of the BNM in Fig. 3. We computed the
transmissivity using the method outlined in Sec. III A, with a
total of 104 initial conditions, iterated 104 times, considering
boundaries ∂B± where yB = 5.

Black regions in parameter space have zero transmissiv-
ity, that is, the phase space has at least one invariant curve

acting as a total transport barrier. Since we only iterated up
to 104 times, some numerical imprecision occurs, mostly at
the boundary of black regions. More precise methods can be
used to verify the existence of total transport barriers, but the
results are roughly the same. More details on these methods
and the scenarios with total transport barriers in the BNM can
be found in Ref. [36].

According to the transmissivity parameter space (Fig. 3),
transport is still reduced after all invariant curves have bro-
ken. Regions with zero transmissivity are surrounded by
low-transport zones, indicating that transport remains low
immediately after the shearless curve breakup. Additionally,
there is a notable sensitivity of transmissivity to the map
parameters, which can vary gradually or abruptly depending
on the region of the parameter space.

Certainly the calculated transmissivity in Fig. 3 is de-
pendent on the choice of maximum iteration number N . By
changing N , we offset the transmissivity value and modify the
gradient of the transmissivity in the parameter space. How-
ever, provided a sufficiently high N , these modifications will
not compromise the identification of low- and high-transport
configurations mentioned before. Such a value of N depends
on the escape time distribution in initial conditions, as we see
next.

Abrupt changes in transmissivity are attributed to topologi-
cal modifications in the remnants of the transport barriers [23].
Furthermore, in the BNM, those changes can be associated
with modification of the central or external transport barrier.
The first scenario is named the centrally dominant transport
barrier, while the last is the externally dominant transport
barrier. The characterization of the topological changes in
both dominant scenarios is detailed next.

A. Centrally dominant

In the centrally dominant scenario, nontwist processes in-
volving the central transport barriers dictate the effectiveness
of transport in the BNM. We compare the transmissivity
when considering only the central barrier (yB = 1.5) versus
considering all the barriers (yB = 3.5). Figure 4 displays the
transmissivity as a function of a, with fixed values of b and
ε. Here, the transmissivity is obtained using an ensemble of
105 initial conditions iterated 106 times, or until they reach
the boundary at y = yB.

We observe an abrupt change in transmissivity for both
values of yB. Two specific values of a are highlighted: the
dashed line marks a low transmissivity configuration, while
the dashed-dotted line marks a high transmissivity one.

We intentionally selected this set of parameters to demon-
strate that slight changes in parameter values can significantly
affect the transmissivity of the transport barriers. While other
configurations with low and high transmissivity exist, show-
ing larger or smaller transmissivity gradients, the fundamental
conclusions derived from this example remain unchanged. For
details on transmissivity variations over a broader parameter
range, see Fig. 3 or consult Fig. 7 in Ref. [36].

The results indicate that both low- and-high transport
regimes are evident for the two values of yB. Additionally,
the transmissivity considering all transport barriers is slightly
smaller compared with the effect of the central barrier alone.
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FIG. 7. Stable and unstable manifolds of the upper (W U
s and W U

u ) and lower (W L
s and W L

u ) periodic orbit, considering (a) high-transport
and (b) low-transport configurations of Fig. 4. Chaotic orbits near them are plotted in light gray.

Briefly, in the centrally dominant scenario, transmissivity is
primarily influenced by the central transport barrier. The ex-
ternal barriers tend to reduce transport, but their effect is
minimal, especially in regions of low transmissivity.

Figure 5 shows the number of iterations needed for an orbit
to escape the region of phase space bounded by ∂B±, where
yB = 3.5. The parameters used correspond to high [Fig. 5(a)]
and low [Fig. 5(b)] transmissivity configurations from Fig. 4.
In both configurations, all invariant curves were destroyed,
resulting in all chaotic orbits eventually escaping. However,
the required time for these escapes greatly varies.

In both high and low transmissivity scenarios, most orbits
escape after 103 iterations, particularly in the region bounded
by y ≈ ±2. Outside this portion of phase space, orbits typi-
cally take around 10 iterations to escape. The region where
the escape time changes abruptly delineates the external par-
tial transport barriers. Despite having different transmissivity
values, Figs. 5(a) and 5(b) do not show significant differences
in escape times.

Additionally, for these two representative parameter val-
ues, the majority of orbits cross the boundaries ∂B± within
104 iterations. This indicates that, considering the transmis-
sivity, N = 104 is sufficiently large to distinguish between
high-transport and low-transport configurations in the trans-
missivity parameter space.

Computing the escape time to yB = 1.5, which lies be-
tween the central and external barriers, Fig. 6 shows a phase
space with a considerably different escape time distribution.
The central transport barrier is formed by the manifolds asso-
ciated with a pair of period-11 twin island chains embedded

in the chaotic sea. Points inside these islands do not escape
since they correspond to invariant sets. However, examining
the escape times near the islands (highlighted rectangles in
Fig. 6), we observe that orbits adjacent to them linger longer
than the rest of the chaotic orbits.

In some way, these adjacent orbits resemble the periodic
behavior of the islands, causing them to remain trapped in
the region for extended periods. This dynamical trap of or-
bits, called stickiness, has been studied in both twist [3] and
nontwist systems [26].

A detailed examination of Figs. 6(a) and 6(b), which corre-
spond to high and low transmissivity cases, indicates distinct
escape times near the islands. In the low transmissivity sce-
nario, sticky orbits require approximately 105 iterations to
escape the central region, whereas in the high transmissivity
case, they take only about 104 iterations. Notably, for the same
parameters, the escape times considering the external trans-
port barriers remain roughly the same (see Fig. 5). Therefore,
the escape time analysis also indicates the dominance of the
central barrier over the external ones in this scenario.

As defined in Sec. III, manifolds dictate the behavior of
orbits in phase space. According to the Poincaré-Birkhoff the-
orem, island chains originate from a pair of stable and unstable
periodic orbits [38]. In turn, each unstable periodic orbit has
a stable and an unstable hyperbolic manifold. Specifically, the
island chains in the central transport barrier are denoted as
the upper and lower chains. The hyperbolic period-11 orbit of
the upper (lower) chain is marked by filled squares (triangles)
and denoted by U (L) in Fig. 7. The corresponding stable and
unstable manifolds are denoted by W U

s (W L
s ) and W U

u (W L
u ).
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The six panels of Fig. 7 are divided as follows. The upper
panels refer to the high transmissivity case while the lower
panels correspond to the low transmissivity regime. The left
(central) panels show the manifolds associated with the upper
(lower) periodic orbit, while the right panels exhibit stable and
unstable manifolds of different periodic orbits.

The stable and unstable manifolds associated with upper
and lower orbits intersect in a complex structure, determining
the motion of chaotic orbits and transport. Manifolds of the
same hyperbolic orbit intersect in a structure called homo-
clinic tangle [see, e.g., Figs. 7(b.1) and 7(b.2)]. In addition, the
heteroclinic tangle is defined by the intersection of manifolds
of different hyperbolic orbits [Fig. 7(a.1)]. These intersections
are closely related to the emergence of chaos in Hamiltonian
systems [37].

Both homoclinic and heteroclinic tangles are present
in the BNM. For example, considering the low-transport
configuration, Fig. 7(b.1) shows the stable and unstable man-
ifolds of the upper hyperbolic orbit in a homoclinic tangle.
Meanwhile, Fig. 7(b.3) shows a heteroclinic tangle, that is, the
intersections between the stable manifold of the upper orbit
and the unstable manifold of the lower orbit. In nontwist lit-
erature, homoclinic (heteroclinic) intersections are also called
intracrossing (intercrossing).

The turnstile mechanism explains how island chains act as
transport barriers based on the homoclinic tangle of the stable
and unstable manifolds. Fundamentally, the lobes, which are
regions through which orbits enter and leave the resonance
zone [3], dictate the effectiveness of such a transport barrier. A
homoclinic (resp. heteroclininc) lobe is a region between two
consecutive intersections of the stable and unstable manifolds
of a given periodic orbit (resp. of a given pair of periodic
orbits). In summary, the mechanism asserts that transport is
directly connected to lobe size: high transport occurs with
large lobe size while low transport is associated with small
lobes.

In the BNM, the homoclinic tangle differs significantly
between the low- and high-transport configurations shown in
Fig. 7. The lobe sizes are considerably larger in the high-
transport regime [Figs. 7(a.1) and 7(a.2)] compared with the
low-transmissivity configuration [Figs. 7(b.1) and 7(b.2)]. In
the high-transport regime, orbits can easily enter and leave the
resonance zone, as stated by the turnstile mechanism. Finally,
due to the symmetry due to the symmetry between upper and
lower orbits, lobe sizes are similar, resulting in equal upward
and downward transport.

The other transport mechanism results from the structure
and dominance of homoclinic and heteroclinic tangles. In
low-transport regimes, the homoclinic tangle dominates over
the heteroclinic tangle. Comparing Figs. 7(b.1) and 7(b.3),
we note a high concentration of homoclinic intersections, in
contrast to a few heteroclinic intersections. Conversely, in the
high-transport regime [Figs. 7(a.1) and 7(a.3)], both homo-
clinic and heteroclinic intersections are equally distributed.

The above mechanism is particularly relevant in non-
twist systems because they exhibit isochronous orbits whose
hyperbolic manifolds can undergo a reconnection process,
altering their topology. This process can change the manifold
intersections from predominantly homoclinic to a denser hete-
roclinic tangle. Since this topological modification is a global

FIG. 8. Transmissivity of the biquadratic nontwist map as func-
tion of a, fixed b = 0.77 and ε = 0.11. Dashed-dotted and dashed
lines mark high-transport and low-transport configurations, respec-
tively. We iterated 105 initial conditions up to 106 times, considering
boundaries at yB = 3.5.

bifurcation occurring at a critical parameter, it leads to an
abrupt increase in the transmissivity of the shearless transport
barrier.

As detailed in Ref. [26], heteroclinic tangles between
isochronous island chains form escape channels used by orbits
to leave the transport barrier region. In the high-transport
regime [Fig. 7(a.3)], there is a large number of heteroclinic
intersections compared with low transmissivity [Fig. 7(b.3)].
We stress that both the turnstile mechanism and heteroclinic
tangle are complementary in describing transport in nontwist
systems [24]. The turnstile mechanism dictates how orbits
enter and leave the resonance zone of a specific island chain.
However, since nontwist transport barriers are formed by a
pair of island chains, the heteroclinic tangle governs how
orbits transition between these island chains.

The manifold structure also dictates the escape channels
through which orbits leave the sticky region [45]. A detailed
look at Fig. 6 exhibits incursions of low escape time (dark
blue) among regions with significantly large escape times
(light blue and green). Since the escape channels coincide
with the lobes, these incursions are directly connected with
the manifold behavior shown in Fig. 7.

B. Externally dominant

In the externally dominant scenario, processes involving
the external transport barriers determine the transport prop-
erties in the BNM. Figure 8 shows the transmissivity of the
BNM as a function of the parameter a, considering the effect
of all transport barriers combined (yB = 3.5). Here, we ob-
serve a sudden change in the transmissivity, just like in Fig. 4.
The configuration of low (high) transmissivity is marked by a
dashed (dashed-dotted) line. As we will see, in both scenarios,
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FIG. 9. Escape time of the trajectories in phase space of the
biquadratic nontwist map with b = 0.77, ε = 0.11, (a) a = 0.1843,
and (b) a = 0.1849, corresponding to high- and low-transport con-
figurations of Fig. 8. Here we considered yB = 3.5.

the central barrier does not significantly affect the transport;
only the external barriers play an important role.

The escape times in the high- and low-transmissivity con-
figurations from Fig. 8 are displayed in Figs. 9(a) and 9(b),
respectively. In both configurations, the transport barrier is
characterized by an abrupt change in the average escape time,
present only in the regions around y ≈ ±2.5, corresponding
to the external barriers. Beyond the external barriers, orbits
escape after a few iterations, while between them, orbits linger
to escape. This orbit trapping is more effective in the low-
transmissivity scenario compared with the high-transmissivity
one, as evidenced by the average escape time of trapped orbits.

A detailed look at the escape times near the external
barriers is shown in Fig. 10, where we use the same parame-
ters of high-transmissivity [Fig. 10(a)] and low-transmissivity
[Fig. 10(b)] configurations. A pair of period-7 isochronous
island chains can be seen, whose remnants are responsible for
the transport barrier.

In opposition to the central transport barrier, the behavior
of the map near the external barrier is asymmetric. Differ-
ences in upper and lower islands and in the average escape

FIG. 10. Magnification of the highlighted rectangle in Fig. 9.

time are evident in Fig. 10. In both low-transport and high-
transport configurations, orbits take around 103 iterations to
escape, except in the lower chain of low-transport configura-
tion, Fig. 10(b).

The external shearless curves are not invariant under the
symmetry transformation S. Consequently, although the cor-
responding upper and lower island chains share the same
rotation number, they are not symmetric. This asymmetry gen-
erates preferred directions for chaotic transport, also known as
ratchet currents. We stress the BNM itself possesses the spatial
symmetry S, but it only guarantees equal fluxes considering
symmetric boundaries, such as ∂B±. When considering the
flux through only one of the external barriers, the associated
boundaries are not symmetric under S, locally breaking the
spatial symmetry. In this context, ratchet currents are possible.

The finger-like structures in the escape time are present,
dictating the escape channels of orbits. They are easily seen
in Fig. 10(a); however, in the low-transport regime [see
Fig. 10(b)], they are only visible in the upper island chain due
to the characteristic escape time of the region.

The associated hyperbolic manifolds also reflect the asym-
metry between the upper and lower chains concerning the
external barrier. Figure 11 shows the stable and unstable man-
ifolds of the upper and lower island chains in Fig. 10, denoted
by W U,L

s and W U,L
u .
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FIG. 11. Stable and unstable manifolds of the upper (W U
s and W U

u ) and lower (W L
s and W L

u ) periodic orbit, considering (a) high-transport
and (b) low-transport configurations of Fig. 8. Chaotic orbits near them are plotted in light gray.

Following the turnstile mechanism, manifolds typically
have larger homoclinic lobes in the high-transport regime.
Nevertheless, an asymmetric behavior is evident when com-
paring the lower and upper orbits. The lobes of the lower
manifolds have roughly the same size in both high- and
low-transport regimes, as seen in Figs. 11(a.2) and 11(b.2).
Additionally, within the highlighted rectangle in Fig. 11(b.2),
small-sized lobes are present. The unequal lobe sizes indicate
different upward and downward transmissivity of the transport
barrier.

In the externally dominant scenario, high and low trans-
missivity is completely determined by the heteroclinic tangle.
Comparing Figs. 11(a.3) and 11(b.3), we observed a preva-
lence of heteroclinic intersections in the high-transmissivity
regime. In this regime, the intersections of the hyperbolic
manifolds are predominantly heteroclinic. In such cases, the
upper (lower) manifolds intertwine with the lower (upper)
chain, facilitating the exchange of orbits between pairs of
isochronous island chains.

Examining manifold behavior (Fig. 11) and escape time
(Fig. 10) we conclude that, in the low-transport regime, orbits
easily enter and exit the resonance zone of the lower island
chain in the external barrier. However, due to the asymmetric
behavior of manifolds, the probability of these orbits finding
an escape channel leading from the lower to the upper chain
is low.

V. CONCLUSION

In this paper, we investigated the transport properties in
the BNM, a prototype of a nontwist system with multiple

shearless curves. Although robust to perturbations, shearless
curves eventually break up; however, their remnants continue
to reduce transport in the region, forming effective transport
barriers. The BNM presents three such regions of effective
barriers, referred to as the central and external transport
barriers.

We used two different dynamical quantifiers to characterize
the effectiveness of transport barriers: the barrier transmissiv-
ity and escape time of orbits. The first quantifier measures
the fraction of orbits that overcome the transport barrier, re-
gardless of the time needed. The second considers the time
required for each orbit to escape from the barrier region. Our
results indicate that the central and external transport barri-
ers in the BNM have distinct effectiveness in two identified
scenarios of dominance.

In the centrally dominant scenario, the transmissivity of the
central transport barrier dominates over the external barriers.
In this configuration, orbits shadow the behavior of island
chains, trapping them into the barrier region. Conversely, in
the externally dominant scenario, the central transport barrier
offers almost no resistance to transport, and the external trans-
port barriers play a major role. In this configuration, orbits
are trapped between the two external transport barriers, with
escape time substantially larger than untrapped orbits.

Complementarily, we examined manifold behavior in the
two dominant scenarios. As expected, the qualitative nature
of manifold crossing dictates the effectiveness of the partial
barriers. High transport configurations, in both scenarios, are
associated with manifold crossings of different island chains
(heteroclinic). However, since the map is asymmetric with
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respect to the external transport barriers, orbits crossing in this
region have a preferred direction. This behavior is reflected
in manifolds, which show varying-sized lobes. In future
investigations, a more detailed analysis of lobe sizes and
their dependence on the parameters shall provide valuable
insights into their influence on transport flux. Also, all the
analyses in this work were conducted considering transport
barriers associated with odd-period island chains. In the case
of even-periodic chains, the scenario of individual transport
barriers presents certain particularities [25], which could also
be explored in the context of multiple barriers.

In summary, our results indicate that the BNM exhibits
complex transport properties due to the presence of multi-
ple transport barriers. Each barrier has distinct transmissivity,
leading to scenarios where either the central or external bar-
riers dominate. The behavior of manifolds, especially their
heteroclinic tangle, plays a critical role in determining the

effectiveness of these barriers. Our findings suggest that, in
nontwist systems with multiple transport barriers, the inter-
play between these barriers creates regions in phase space
with significant orbit trapping, influencing overall transport
dynamics.
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