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ABSTRACT

We investigate theoretically the nonlinear dynamics and the emergence of chaos in suspended beam
micro/nanoelectromechanical (MEMS/NEMS) resonators actuated by two-sided electrodes. Through the
analysis of phase diagrams we have found that the system presents a rich and complex nonlinear
behavior. Multistability is observed in a significant region of the relevant parameter space, involving
periodic and chaotic attractors. Complex and varied routes to chaos were also found. Basins of attraction
with strongly intermingled attractors provide further evidence of multistability. The basins are analyzed
in greater detail. Their fractal dimensions and uncertainty exponent are calculated using the well known
box counting and uncertainty methods. The results for the uncertainty exponent are compared with
those obtained with yet another approach, based on the recently proposed basin entropy method. The
comparison provides a test for the new approach, which we conclude that is a reliable alternative
method of calculation. Very low uncertainty exponents have been obtained, indicating that some basins
have extremely intermingled attractors, what may have significant influence in the experimental inves-
tigation and practical applications of the resonators. We also conclude that the observation of chaos in
this system is favored by lower frequencies of excitation and comparatively small quality factors (larger

dissipation).

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

MEMS/NEMS resonators based on suspended beams are one of
the most investigated micro/nanodevices, both theoretically and
experimentally [1,2]. They have many potential applications, for in-
stance, as high quality factor filters for electronic signals, ultra-
stable reference clocks and a variety of physical and chemical sen-
sors, that rely upon their operation in a linear regime [1,2]. For
a long time the ease with which these small systems can enter
the nonlinear regime, due to the electrostatic force and midplane
stretching, was seen as a significant problem. However, more re-
cently, some strategies to take advantage of the nonlinear behavior
have been proposed to improve signal amplification [3] and fre-
quency stability [4], among other applications [5]. The existence of
chaos in suspended beam resonators was predicted theoretically
in several works [6-10] and verified experimentally for two cou-
pled nanomechanical beam resonators [11]. So far, the potential

* Corresponding author: Departamento de Ciéncias Exatas-EEIMVR, Universidade
Federal Fluminense, Volta Redonda, R] 27255-125, Brazil.
E-mail address: andregusso@id.uff.br (A. Gusso).

https://doi.org/10.1016/j.chaos.2019.03.004
0960-0779/© 2019 Elsevier Ltd. All rights reserved.

use of the chaotic regime of these systems was only briefly inves-
tigated theoretically [8]. However, as already proposed for other
configurations of MEMS/NEMS resonators [12], suspended beam
resonators have the potential to be used as sources of chaotic
signals for applications in chaos based secure communications,
cryptography and random number generation. Because of their
smallness, high frequency of vibration and low power consump-
tion, suspended beam MEMS/NEMS resonators are ideal candidates
as a physical source of continuous chaotic signal or entropy in mo-
bile devices.

Motivated by these reasons, some aspects of the chaotic dynam-
ics of a doubly clamped (bridge) suspended beam MEMS/NEMS
resonator actuated by two lateral electrodes were investigated by
Dantas and Gusso [10]. This particular system was considered be-
cause its is frequently found in the investigation of potential ap-
plications of suspended beam MEMS/NEMS resonators [2] and be-
cause chaos can be more easily obtained with a two electrodes
configuration [8]. We note that other similar systems, particu-
larly the case of a plate suspended between two electrodes, have
also had its nonlinear and chaotic dynamics investigated [13,14].
However, there is still a great deal to be understood about the
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nonlinear and chaotic dynamics of such systems. A thorough
theoretical understanding is necessary for the experimental in-
vestigation and practical application of such devices. For this
reason, in this work we extended the previous analysis which
focused mostly on the chaotic regime of a doubly clamped sus-
pended beam MEMS/NEMS resonator actuated by two-sided elec-
trodes [10]. We investigate the regions in the relevant parame-
ter space where periodic behavior, chaos and pull-in (the snap
down and stiction of the beam onto the electrodes) can occur,
and present phase diagrams for the system. We reveal the com-
plex structure of attractors around the regions with chaos which
had not been investigated previously. We find significant regions
with signs of multistability, a relevant fact, with potentially signif-
icant practical implications, which have not been reported to this
system in the literature. Because the initial conditions of the sys-
tem can be strongly affected by noise and, in the case of a sys-
tem with double-well potential, by the instabilities inherent to the
system, we have investigated the basins of attraction along sev-
eral regions indicated in the phase diagrams. Such analysis was
completely missing in [10] and in the known literature. Analyzing
the basins of attraction we have been able to confirm the mul-
tistability indicated in phase diagrams. We obtain interesting re-
sults regarding their structure, fractal dimension and uncertainty
exponent.

The work is organized as follows. In Section 2 we present the
physical and mathematical model of the MEMS/NEMS resonator.
Phase diagrams are presented in Section 3, and basins of attraction
are presented in Section 4 and analyzed in Section 5. We discuss
the results obtained and summarize our conclusions in Section 6.

2. Physical and mathematical model

The device we are going to investigate is comprised of a slender
beam with length | and with a rectangular cross section of width b
and thickness h. The beam is clamped at both ends and there are
electrodes parallel to its width placed a distance d at both sides
of the beam. This arrangement is depicted schematically in Fig. 1.
As done in [10,15] we are going to consider a device with realistic
dimensions and physical properties.

The beam is considered to have homogeneous and isotropic
elastic properties, and due to its slenderness the Euler-Bernoulli
beam theory can be used to model the beam. Because in the strong
nonlinear regime that we investigate here the beam can be sub-
ject to large transversal displacements, compared to its thickness,
we have to include the effect of the midplane stretching [16]. It is
responsible for a nonlinear hardening effect of the elastic restor-
ing force. Because we are going to consider a beam with d «h,
the beam bending is going to small and the electrostatic force can
be modeled assuming that the beam is piecewise plane. Also, we
consider that the beam will be sufficiently wide that the parallel
plate approximation for the electrostatic force can be used and the
fringing effect ignored. Finally, assuming as usually done that dis-
sipation occurs due to a viscous damping, the partial differential

Electrode
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Fig. 1. Schematic diagram of the doubly clamped suspended beam resonator (gray)
with two lateral electrodes (black).

equation modeling the system results to be [10]
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In this equation w(x, t) corresponds to the vertical displacement
along the beam, subject to the boundary conditions w(0,t) =
w(l,t) =w'(0,t) =w/(I,t) = 0. It is comprised between x = 0 and
x=1 and is placed a distance d from both electrodes. The over-
dots and primes represent derivatives with respect to time t, and
space x, respectively. E denotes the Young modulus and p the den-
sity of the beam material. I = bh3/12 corresponds to the geometric
moment of inertia, A = bh to its cross-sectional area, and c to the
linear damping coefficient. The beam is subject to the electrostatic
potentials V; and V5, and €; = 8.85 x 10~12 F/m corresponds to the
vacuum permittivity.

As explained in details in [10] the first two terms in Eq. (1) cor-
respond to the elastic and inertia terms of the Euler-Bernoulli
beam theory, and the third term to the viscous damping. The term
proportional to w” corresponds to the nonlinear restoring force
due to the midplane stretching. The last term gives the contri-
bution of the electrostatic force, which is obtained assuming that
the beam is piecewise plane. We note that we are ignoring the
fringing effect because, as already argued in [10], the correction
for the particular system that we consider is expected to be small
compared to the main effects already taken into account in our
model.

We do not solve Eq. (1) directly, instead, we resort to the
Galerkin method to reduce this equation to a single nonlinear
ordinary differential equation (NLODE). Using a single mode ap-
proximation we take w(x, t) = u(t)¢; (x), where ¢(x) denotes the
base function which corresponds to the first modeshape of a dou-
bly clamped beam described mathematically by the Euler-Bernoulli
beam equation [16]. This approximation is justified, among other
reasons, because we are interested in the description of the dy-
namics of the beam oscillating in its first mode of vibration. This
mode is preferred in practical applications because it results in the
best read-out of the oscillations, providing a better information
about the position of the beam during vibration. The use of the
modeshape of an Euler-Bernoulli beam to approximate the nonlin-
ear beam shape is adequate for frequencies below and around the
first resonance frequency. Furthermore, the use of a single mode
approximation to describe the temporal dynamics of the chaotic
regime of beams and cables is well justified in the literature, both
theoretically and experimentally (see the discussion in [10] and
references therein).

Following the Galerkin method, we can obtain a NLODE for the
coordinate u(t) which, upon suitable rescaling, results in the equa-
tion

$+Bs+s+as®+F(s,7)=0. (2)

In this NLODE s = s(t) is the nondimensional displacement of the
beam center. More specifically, $(7) = u(T)Wmax/d, where wmpax =
w(x = 0.51, T) corresponds to the maximum beam displacement
that occurs at x = 0.51. Time ¢ is replaced by the nondimensional
time T =t/w;, where w; denotes the natural frequency of the first
mode. The strength of the cubic nonlinearity is o = 0.719(d/h)2,
and the damping factor B8 = c/pbhw; can be shown to be related
to the quality factor Q simply by 8 =Q1.

The last term in Eq. (2) corresponds to the effective electrostatic
force, and is given by
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where B = 0.609¢gbl/(kspd*). and k,sp = 384El/I*> denotes the ef-
fective elastic constant of the beam and the new variable X’ is the
normalized length position x’ = x/1.

Eq. (2) is, therefore, an integro-differential equation, whose di-
rect numerical solution is computationally quite demanding be-
cause it involves to solve two integrals numerically. In order to
solve this NLODE in a efficient manner, we follow the procedure
adopted in [7,10,15] and replace Fé(s, T) by a function of the form

Fe(s. 1) = 1218 [
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which we can recognize as a Padé approximant of order 1/3. The
coefficients a; and b; are obtained using the least squares fit so that
I§(s) is close enough to the value of I°(s) obtained by numerical in-
tegration within a suitable interval in the variable s. In the present
analysis we have to warrant a sufficiently high accuracy for I£(s)
in the range —0.8 < s < 0.8, which encompasses the initial condi-
tions (ICs) used in the basins of attraction we have investigated.
We have also to take into account that the solutions cannot be
outside the interval |s| <1, because the electrodes are located at
s =+1, and if s comes sufficiently close to the electrodes the sys-
tem will fatally stop to oscillate due to the dynamical pull-in (the
beam is attracted and gets attached to one of the electrodes due to
the electrostatic force caused by the applied DC bias voltage, Vpc).
In practice, we stop the numerical calculations when |[s| exceeds
a certain value, which we take to be |s| = 0.9 (the results involv-
ing the pull-in do not change if we take a larger threshold). Using
the Padé approximant of order 1/3 it is possible to obtain a maxi-
mum error of about 0.1% in the approximation to the function I(s)
within the interval |s| < 0.8, the average error being much smaller
than that. The approximation is still quite reliable outside this in-
terval up to the point where the system is considered to have suf-
fered pull-in.

The applied voltages V;(t) and V,(t) are responsible for the re-
sulting effective static potential of the system. Constant (DC) volt-
ages applied to the electrodes have the important effect of alter-
ing the effective spring constant. Due to this effect, the resulting
effective static potential has a single stable minimum, for small
applied DC voltages, but develops a potential with two minima
for sufficiently high voltages [8,10]. This is illustrated by the po-
tentials in Fig. 2. The voltages are also used to drive the system.
In this work we consider the case in which the driving alternat-
ing (AC) voltage is applied to only one of the electrodes. This is
what is generally done in practical systems because the resulting
oscillations are read out through the second electrode. For def-
initeness we are going to consider that the applied voltages are
Vi (t) = Vb + Vac COS(gT) and Vs (t) = Vbe.

With the applied voltages the resulting dynamical system has
interesting features. They can be more easily observed if we
consider the limit of small amplitude of oscillation and expand
Eqg. (2) in a Taylor series in s up to third order. The result is

§+ Bs+ki(T)s+ka(1)s? + ks (7)s> + F(t) =0, (5)
where
ki () = 1+ y[(a1 — aob1) (Vac(T) + Vie)? — a1 (b + an)Vic ],
ky(t) = y{-[ao(b} - ba2) — arb1 ] (Vac(T) + Vic)?
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Fig. 2. Representative examples of the effective potential energy U (arbitrary units)
as a function of the beam displacement s for the case of (a) one-well and (b)
double-well potentials.

ka(e) = oy { ~[a0(6% ~ 2bab1 + ba) - a1 (b3 ~ b) | (Vac (7)

+Vpc)? — a1b3Vie + ar (b3 + 2byby — by — b3)Vch} . (6)

and
F(t) = y[a1V3e — ao(Vac () + Vbe)?] . (7)
The parameter y is defined as
1.21860 hl
= —. 8
2d3k, ¢ (8)

What we have obtained in Eq. (5) is a Helmholtz-Duffing like equa-
tion, but with time dependent coefficients. The time dependence
is due to the applied AC voltage, Vyc(t) = Vaccos(¢ T). Therefore,
the system is parametrically excited through all of its linear and
nonlinear coefficients of the restoring force. However, the system is
also excited by an external force term, F(7). This mixing of external
and parametric excitation may explain the rich and complex non-
linear dynamics that we present in the next section. It is important
to note that, while the idea of the system having an effective static
potential due to the applied voltages is useful to understand some
aspects of its dynamics [10], the system does not have a definite
potential energy due to the parametric excitation.

3. Phase diagrams

In this and the next sections we present results for the nonlin-
ear dynamics of a nanoresonator, characterized by having two of
its dimensions in the submicrometer range. We consider a realistic
device with dimensions [ = 5um, b = 0.8um and h = 0.05um. The
gap is chosen based upon a criteria that facilitates the appearance
of a double-well potential [8,10], which favors a chaotic dynam-
ics, and is taken to be d = 0.15pm. The device is considered to be
made of polysilicon, whose Young modulus is E = 170 GPa and the
density p = 2.3 x 103 kg m~3 [16]. With these dimensions and ma-
terials, the predicted natural frequency of the first mode is f = 17.7
MHz, in the absence of any applied voltage.
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We have to note that for gaps in the submicrometer range it
has been customary to take into account the effects of the Casimir
force in the modelling of the system [7,16]. However, it was already
shown that this quantum mechanical force is relevant only for sim-
ilar systems with gaps of the order of a few tens of nanometers
[7], therefore, much smaller than the one considered in our case.
We also note that for such a small device, surface elasticity effects
could contribute [9]. However, the exact effect depends crucially
on the elastic properties of the surface and the model of size ef-
fects. Furthermore, the contributions of surface roughness and the
presence of oxides have been ignored in the models presented in
the literature. Because significant surface roughness and oxides,
or other surfaces contaminants, are almost always present, any
surface modelling would result imprecise or unrealistic. For these
reasons, and because the surface effects are expected to be par-
ticularly small for silicon beams [17], we also ignore its possible
contribution.

The rich and complex nonlinear dynamics of this system is ev-
idenced in the phase diagrams presented in Fig. 3. These diagrams
show in the V,- — V¢ plane the periodic (see color code in the fig-
ure caption) and chaotic attractors (black regions), and the pull-in
states (purple and red). The results are presented for three repre-
sentative frequencies ¢ =0.2,0.4, and 0.6 and two damping coef-
ficients 8 = 0.01 and 0.001. The larger damping coefficient is rep-
resentative of devices operating in air, while the lower dissipation
is more easily found in devices operating in vacuum.

The region chosen in the Vyc —Vpc plane is the one contain-
ing the more interesting features of the dynamics. It is domi-
nated by periodic dynamics, mostly with period-1 attractors. We
can see that there are sub-regions with smooth boundaries be-
tween the different attractors. However, there are regions where
the boundaries are very complex and those where the attractors
are strongly intermingled. This is clearly exemplified by the region
close to the black cross in Fig. 3 (c¢) containing a region with mixed
period-1 and period-3 attractors. This mixing of the attractors is
stronger for lower dissipation and higher frequencies, as evidenced
in Figs. 3 (d),(e) and (f). We note that the mixing for the lower
dissipation has remained stronger in spite of the fact that the re-
sults presented in Figs. 3 (d),(e) and (f) have been obtained after
a long transient of 7000 times the period of the driving frequency,
while the results for higher dissipation have been obtained for a
transient of 3500 periods. The observed mixing of the attractors
is reflected in the basins of attraction, as we are going to present
in more detail later. These results indicate the existence of mul-
tistability in these regions. The multistability may have significant
consequences such as noise-induced jumps between different at-
tractors, what prevents the predictability of the final state along
these regions in the presence of noise [18].

For this system there are comparatively large regions with
chaos for low frequencies, as illustrated for ¢ =0.2 in Fig. 3(a),
independently of 8. However, these regions tend to decrease and
disappear as the frequency increases. For instance, only a small iso-

~10.2 02

02 02

02 02

Fig. 3. Phase diagrams in the Vyc — Vpc plane for different frequencies ¢, showing the periodic, chaotic and pull-in attractors. The phase diagrams (a), (b), and (c) have been
calculated for B = 0.01 while (d), (e), and (f) have been calculated for 8 = 0.001. The white line is the separatrix between the regions with one-well potential to the left
and double-well effective potential to the right. The color code is the following. For the periodic attractors: yellow (period T), green (2T), orange (3T), blue (4T), cyan (5T),
magenta (6T), white (7T), brown (8T). Periods above 9T are colored gray. The pull-in to the electrode located at s = —1(s = 1) is colored red(purple), and chaos is presented
in black. The crosses denote points whose basins of attraction are presented in Sections 4 and 5 (see text for more details). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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lated island is left for ¢ = 0.6 for the larger dissipation 8 = 0.01,
and no chaos is observed for 8 = 0.001.

In the phase diagrams we have drawn the line separating the
regions in which the effective potential has one and two local min-
ima around the central region. We can see that most of the regions
with chaos are located in the double-well region, as it was ex-
pected [8] due to cross-well chaos. However, there are also regions
with chaos in the one-well region, particularly for low frequencies.

It is also possible to see from the phase diagrams that for g =
0.01 and for the lower frequencies, the prevailing route to chaos is
period doubling, but other routes are also present. For lower dissi-
pation, the multistability prevents the observation of sharp bound-
aries between attractors and the routes to chaos are far less evi-
dent.

The role of dissipation is not restricted to increase the regions
with possible multistability and blur the boundaries between the
different attractors as it decreases. It also reduces the required
voltages for the system to suffer pull-in, as it is evidenced by the
displacement of the boundaries between the periodic and chaotic
attractors and the region with pull-in. This effect results in the
larger areas with pull-in obtained for 8 = 0.001 as compared with
B =0.01. From Figs. 3 (d), (e), and (f) we can see that a smaller
dissipation also results in an increase of the regions where higher
periods are observed for all frequencies.

From the analysis of the phase diagrams we can conclude that
experiments aiming at finding chaos in this NEMS resonator and
for its practical applications as a source of chaotic signal, the sys-
tem should be driven preferentially at frequencies ¢ < 0.4, where
the chances of finding a region with chaos is larger. Also, a higher
dissipation, around S = 0.01, favors the existence of regions with
chaos which do not contain significant signs of multistability, that
could inadvertently turn chaos into an undesirable periodic behav-
ior.

4. Basins of attraction

As illustrated in Fig. 2, the nanoresonator can be subject to ei-
ther a one-well or double-well effective potential, depending on
the applied Vpc and Vyc voltages. Let us consider that the DC volt-
age is applied before the AC voltage. That is a likely scenario in
an actual system, since the AC voltage would be generated by an
external oscillator that should have its voltage amplitude and fre-
quency stabilized before it could drive the MEMS/NEMS resonator.
In the absence of an applied AC voltage, the minimum of the one-
well potential is located very close to s =0, coinciding with the
rest position in the absence of any external forces. In this case, the
IC at T =0, the time the AC voltage starts driving the system is
close to s(0) = v(0) = 0. We say that it is close to these values be-

cause, for instance, fabrication tolerances can result in small gap
asymmetries and, consequently, asymmetries in the initial poten-
tial energy that affect the location of the potential minimum. More
importantly, thermal noise and external vibrations cause s and v to
fluctuate around the minimum of the static potential before the
Vyac is applied [19]. These fluctuations can be rather large as Vpc
approaches the voltage required to have two minima in the poten-
tial. In this case the one-well potential develops a flat bottom, as
illustrated by the potential in Fig. 2(a) and, consequently, the effec-
tive linear elastic constant, given by the curvature of the potential
bottom, can be rather small allowing large fluctuations of s and v.
The scenario for the ICs can be even more complex for a double-
well potential. In this case, a resonator initially at the rest position
at s =0, now an unstable local maximum, under the influence of
thermal noise and external vibrations, would tend to slide to one
of the two potential minima. Therefore, the most likely ICs for the
system are those with s close to either one of the two minima,
the specific value also fluctuating due to noise. For the voltages
we consider in our analysis, in the absence of an applied V4, one
of two minima is usually between s~ 0.2 and 0.5 and the other be-
tween s ~ —0.2 and —0.5. Because the ICs in an actual device can
assume different values in a significant range of s and v, the inves-
tigation of the basins of attraction of the nanoresonator are jus-
tified not only by pure theoretical reasons, but also because they
can have implications to the real systems.

To investigate the basins of attraction we started by generat-
ing hundreds of basins in the parameter space region defined by
16V <Vpc<19 V, 02V <Vupec<12 V, and 0.2 <¢ <0.6. The ICs
were in the range —0.8 <s,v < 0.8, which encompasses a region
with practical and theoretical relevance. For larger absolute values
of these parameters, most of the final states correspond to pull-in.

In the region of the parameter space (Vac, Vpc ¢) that we
have investigated, most of the basins present only three attrac-
tors, namely, pull-in to the electrode at s = —1, pull-in to the elec-
trode at s=1, and a periodic or chaotic attractor. These basins
present a simple topology with the periodic and chaotic attractors
encompassing a continuous region having smooth boundaries de-
fined by the two pull-in attractors. Two such basins are exempli-
fied in Figs. 4(a) and (b). They have been obtained for the parame-
ters corresponding to the points indicated by the black and orange
crosses in Fig. 3(b), respectively. Also, a very small fraction is found
that mixes more than three attractors in a comparatively simple
topology, like the one illustrated by Fig. 4(c). Basins such as these
in Fig. 4 are found in the regions in the phase diagrams that are
not close to or within the regions where basins are intermingled.

We have also found a significant fraction of more complex
basins, with intermingled periodic and/or chaotic attractors. Quite
generally, such basins are found close to or within the regions

a -0.8 0 . b -0.8
0.8ff : 10.8 0.8}
Vooor 0 V. ooor
0.8k - 408 0.8t
-0.8 0 0.8 -0.8

S

0
N

0.8 ¢ -0.8 0 0.8
70.8 0.8} ‘ 70.8
0 Voo 10
408 —0.8& H4-0.8

0.8 -0.8 0.8

0
N

Fig. 4. Basins of attraction for varying initial conditions s and v. (a) Vac =0.4 V, Vpc =17.5 V and ¢ = 0.4, (b) V4c =0.67 V, Vpc =18 V and ¢ = 0.4, and (c) Vyc = 0.651 V,
Vpc =17.4 V and ¢ = 0.88. In all cases 8 = 0.01. The color code is the same as that presented in the caption of Fig. 3.
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in the phase diagram where the attractors are also intermingled.
One such basin is presented in Fig. 5(a). It was obtained for pa-
rameters in a region with mixed attractors, indicated by the red
cross in Fig. 3(b). In this basin we have period-1 and period-3 at-
tractors which are mixed in a complex manner within the region
surrounded by the pull-in attractors. The two periodic attractors
seems to form a fractal basin. The fractality of the attractor is evi-
denced in Figs. 5(b) and (c) where we present magnified views of
the basin. While other basins have been found that have a struc-
ture suggestive of an usual fractal basin, most of the basins con-
taining mixed periodic or chaotic attractors had a topology that
is exemplified by the basins presented in Figs. 6 and 7. What we
see are strongly intermingled basins. Their fractality was checked
through the numerical calculation of the stable and unstable mani-
folds of saddle fixed points. The two manifolds have been found to
have homoclinic intersection points that form a chaotic invariant
set which imply in a fractal basin boundary defined by the stable
manifold [20,21]. However, while for the basin in Fig. 6 we can see
some structures in the form of small islands, lines and curves, that
rapidly vanish due to the finite resolution of the grid used for the
calculations, the basin in Fig. 7 has shown no such structures. That
is the reason why we have shown a single larger magnification of
a smaller region in Fig. 7(b).

The existence of such basins, with strongly mixed attractors,
confirms the existence of multistability in the system. Multistabil-
ity is an interesting phenomenon appearing in nonlinear systems
that can be explored for certain applications [3], but can also pre-

vent the correct operation of the system. For example, that could
be the case if the NEMS resonator was operated as a source of
chaotic signals close to or at a region with multistability. Due to
noise, the system could constantly shift from a chaotic to a pe-
riodic state [18]. This could happen due to fabrication tolerances,
that may lead the system to operate in a region of the parameter
space that was not initially intended.

So far, we have discussed only qualitative aspects of the frac-
tal basins found in the regions of the phase space with mixed at-
tractors. However, the observed strong mixing between attractors
within the region surrounded by the pull-in attractors deserves to
be quantified. We can get information regarding how intermingled
are the attractors and what is the uncertainty in the final state due
to uncertainties in the ICs. In the next section, we quantify the un-
certainty in the final state of the system calculating the fractal di-
mension and uncertainty exponent of the basins of attraction using
different methods.

5. Fractal dimension and uncertainty exponent

We have further investigated the basins to better characterize
their properties as fractal basins. Focusing on the region of the
basins with the intermingled attractors, we have determined the
fractal dimension D [20] and the uncertainty exponent « [22]. The
fractal dimension was calculated directly, using the box counting
method [20], and indirectly, from its relation to «.
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0.8f3 : 70.8
Voo 0
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-0.8 0 0.8 -04

0.4

Fig. 5. (a) Basins of attraction for varying initial conditions s and v. Results for the parameters Vyc =0.8 V, Vpc =17.9 V, £ = 0.6, and B =0.01. In (b) it is shown a
magnification of the area delimited by the black square in (a), while (c) corresponds to a magnification of the black square in (b), both showing intermingled attractors of

periods one and three. Color code is the same as that presented in the caption of Fig. 3.
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Fig. 6. (a) Basins of attraction for varying initial conditions s and v. Results for the parameters Vyc =0.3 V, Vpc =17.5 V, £ =0.3, and B =0.01. In (b) it is shown a
magnification of the area delimited by the black square in (a), while (c) corresponds to a magnification of the black square in (b), both showing intermingled attractors of

periods one and two. Color code is the same as that presented in the caption of Fig. 3.



12 A. Gusso, RL. Viana and A.C. Mathias et al./Chaos, Solitons and Fractals 122 (2019) 6-16

0
Ky
b -0.08 0 0.08
0.08 ; 0.08
vV o 0
—0.08 £ 4-0.08
-0.08 0 0.08

S

Fig. 7. (a) Basins of attraction for varying initial conditions s and v. Results for the
parameters Vyc =1.0 V, Vpc =185 V, { =04, and B =0.01. In (b) it is shown a
magnification of the area delimited by the black square in (a) showing intermingled
attractors of period one and chaos. Color code is the same as that presented in the
caption of Fig. 3.

The box counting dimension (BCD) was calculated considering
that the area of interest is formed by a regular grid of M xM
points. We take 2D boxes (squares) with lateral size € =n/M,
where n is a natural number that results in an integer value for
1/€, so that the 2D boxes cover the area completely. We then count
the number N of boxes required to cover either of the basins or
the basin boundary, depending on the region for which we want
to determine D. The BCD is defined by

DBC = lim w, (9)

€—>0 In (%)
and Dgc is obtained as the angular coefficient of the linear least
squares fit (LLSF) of a first order polynomial to the pair of points
(In(1/€), InN(¢e)) for the smallest possible values of €. The dimen-
sion is obtained in the form Dpc+ 8Dpgc, where the uncertainty is
that from the least squares fit.

The uncertainty exponent was calculated using two different
methods. One is the original uncertainty method proposed by Mc-
Donald et al. [22]. Following this method, within the region of in-
terest we find a total of 10.000 randomly chosen ICs that lead to
one of the attractors in the basin. Within a circle of small radius
8 =+/ds? +dv2, centered at each one of the ICs in the form (s;, v;),
withi=1,...,10.000, two other ICs are chosen randomly. If either
one of these new ICs lead to a different attractor, then the corre-
sponding original IC is counted as uncertain. After all 10.000 ICs

are tested a fraction f{§) results to be uncertain. These calculations
are repeated 10 times for each §, which varied from 10~! down to
10-10, Since « is defined by

o Inf(s)
o =lim =5

the uncertainty exponent and its error are obtained from the LLSF
of a first order polynomial to the pairs of points (Ind, Inf(§)), with
the estimated uncertainty on f(§) at each point taken into account.

We have also employed a new approach to calculate «. It is
based on the recently proposed method for the calculation of basin
entropy [23]. This entropy is calculated assuming that the basin is
formed by a regular grid of M x M points. Each point can corre-
spond to one of the N4 attractors in the basin. Similarly to what
is done in the box counting method, the basin is covered with a
regular grid of N 2D boxes with lateral size € = n/M, with n a nat-
ural number. The fraction of the points pertaining to the attractor
Jj (J=1,...,Ny) in the ith box, p;;, is then evaluated for each box.
The basin entropy is then given by [23]

1 LM 1

i=1 j=1

(10)

Sp was originally conceived to quantify the complexity of basins
of attraction. However, it was argued in [23] that for basins with
a single boundary between attractors, as it is the case for the re-
gions of the basins we want to characterize which have only two
attractors, we can expect the following relation

In[S,(€)] = age In(€) + In (%mz). (12)

In this expression, the ratio % is proportional to the basin bound-
ary and is expected to be a constant, while g is the uncertainty
exponent, which we distinguish with the subscript BE to indicate
that it is calculated from the basin entropy.

The above relation was obtained by Daza et al. [23] from
Eq. (11) as a special case (that of a single boundary) of a more gen-
eral relation derived assuming that for boundaries between differ-
ent basins of attraction the p;; for the boxes covering the bound-
aries occur much more frequently with values around p; j = 1/m,
with m the number of attractors within a box. Therefore, it is as-
sumed that the case of an equiprobable distribuition of attractors
within a box prevails in the distribution of the p;;. Specializing
to the case of only two distinct basins of attraction and follow-
ing Daza et al. [23], we consider that out of the N boxes covering
the basin only N, boxes are covering the boundary between to at-
tractors (j = 1,2 in this case). Taking the approximation that they
all have the same p; ; = 1/2, we arrive at S, = (Np/N) In2. Because
N, scales as ne~P and N as fie~¢, where n and i are constants of
proportionality, D the dimension of the boundary and d that of the
basin, Eq. (12) follows trivially as &« =d — D [22].

As the result in Eq. (12) is based on an approximation that
was not fully justified in [23], we have checked if it is a good
approximation. Taking the basins for which we calculate the fractal
dimension of the basin boundaries (see Section 5.1) we performed
the statistics of the values of the p;; (j =1,2) within the boxes
containing points pertaining to the two attractors. That means,
boxes with p; ;=0 or p; ;=1 are excluded, living only boxes
containing points pertaining to the boundary. We observed that
the p;; and p;, follow Gaussian-like distributions that are highly
concentrated around its mean values p;; and p;,. In fact, because
pi1+ bi2 =1, the two distributions are not independent. Because
the two basins do not occur at equal proportions, the mean is not
equal to 1/2, but assume values that are close to it. Nonetheless,
as long as the p;; are concentrated around the given averages, we
can extend the reasoning of Daza et al. [23] and conclude that
Sp = (N2/N)(Pi1 In(1/p; 1) + pi2 In(1/p;2)) = (N2/N) x constant.



A. Gusso, R.L. Viana and A.C. Mathias et al./Chaos, Solitons and Fractals 122 (2019) 6-16 13

This more realistic approximation to S, still results in a linear
relation between In(S,) and In(€) having o as its angular coef-
ficient. It is interesting to note, however, that we can always write
the basin entropy in the form S, = (N/N) x constant, which as-
sures the expected linear relation, independently of the statistical
distribution of the p;;. This is shown in Appendix A.

The expected linear relation between In(Sy) and In(e) in
Eq. (12) can be used to calculate agr from S, evaluated for vari-
ous €’s using a LLSF. As in the case of Dgc, the error estimate for
oge comes from the uncertainty in the least squares fit.

This last method, which we refer as the basin entropy method, is
a new approach to estimate «. So far, it has been used only to es-
timate « for a non-fractal basin of attraction, in which case o =1
[23]. Here, we compare the results obtained using the box counting
method and the uncertainty method with the basin entropy method.
We can thus check the reliability of the new method. The com-
parison between the three methods is possible because of the ex-
pected relation between « and the dimension of the basin bound-
ary, D = d — «, where d is the dimension of the space in which the
fractal structure is embedded [22]. In our case d = 2.

5.1. Results

The calculations of D and « have been performed for the three
basins of attraction presented in Figs. 5-7. More specifically, we
have restricted the analysis to the region with the mixed attrac-
tors, and ignored the region with pull-in, because the ICs of real
systems are almost certainly restricted to this region. The BCD
and apg were, therefore, calculated for the regions presented in
Figs. 5(b) and (c), 6(b) and (c), and 7(b). Both Dgc and agr were
calculated using grids of resolution 800 x 800. We also performed
calculations for some grids of resolution 1600 x 1600, which take
much more computational time to be evaluated, that we compare
with the results for the grids with lower resolution. The exponent
o was calculated using the uncertainty method restricting the re-
gion where the random pairs of ICs were generated to that en-
compassed by the regions in Figs. 5(b) and 6(b), and to the square
—0.3 <5, v < 0.3 for the basin depicted in Fig. 7(a). We are assum-
ing that these areas are representative of the whole region where
the periodic and chaotic basins are intermingled. The calculations

over the smaller regions, that correspond to a larger magnification,
have been done to check the scale invariance expected for frac-
tal basins. In the next sub-sections we present the results for each
basin separately.

5.1.1. Case Ve =08 V, Vpc =179 V, and { = 0.6

The BCD for the period-1 and period-3 basins in Fig. 5(b) are,
respectively, Dpc = 1.88 +0.03 and Dgc = 1.94 + 0.01. A similar re-
sult is obtained for the magnified region in Fig. 5(c), in which
case we obtain Dg- = 1.88 4 0.03 (period-1) and Dg- = 1.96 + 0.01
(period-3). The BCD for the basin boundary was Dpc = 1.80 4 0.04
and Dgc = 1.84 £ 0.04, for the regions in Figs. 5(b) and (c), respec-
tively. The fact that Dgc <2 for the period-1 and period-3 basins
and significantly larger than 1 for the basin boundary and the con-
sistency between the results for the larger area and its magnified
portion are results expected for a fractal basin.

Using the uncertainty method we obtained « = 0.078 4-0.001
which corresponds to a basin boundary dimension of Dyy =
1.921 £0.001. This value for « is small, and can be interpreted as
reflecting a significant uncertainty regarding which could be the
periodic state assumed by the system for uncertain initial condi-
tions. We note that Dy, is significantly larger than the dimension
of the basin boundary obtained using the box counting method. The
apparent discrepancy can be attributed to the inherent imprecision
of the last method to determine the fractal dimension of curves
and boundaries. The BCD calculated numerically for one or two di-
mensional systems frequently results in dimensions that are wrong
by an actual error that is more than twice the error estimated from
the least squares fit [24]. The actual discrepancy tends to be partic-
ularly large in the calculation of the dimension for curves in a 2D
space, as it is the case of the basin boundary [24]. The estimated
Dpc can be easily reconciled with the more precise result obtained
using the uncertainty method taking into account the extra uncer-
tainty.

In the course of the analysis to obtain app from Eq. (12) we
have found that some care must be taken for the extraction of cor-
rect results. Eq. (12) suggests a linear relation between In[Sy(€)]
and In(e), however, quite generally, we have found that the data
does not fit well to a straight line when the results for small ¢ are
included. This is illustrated by the results presented in Fig. 8(a),

C
e
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Fig. 8. In (a), (c), and (e) the circles (squares) correspond to points obtained for different box sizes € corresponding a lateral size ranging from n = 4(8) up to n = 100(200)
pixels for a grid of 800 x 800(1600 x 1600) pixels. The line is the result of the least squares fit for the circles. In the lower panels we have the same as in (a), (c), and (e)
but for € corresponding to boxes with lateral size ranging from n =10 up to n = 25 pixels ((b) and (d)) and n =40 up to n = 100 (f). From the left to the right panels the
results are for the basins analyzed in Sections 5.1.1, 5.1.2, and 5.1.3.
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(c), and (e). The reason for such nonlinear behavior and how it is
circumvented is addressed at the Section 6. What we concluded
is that when intermediate values of € are used, we obtain either
good or very good fits, depending on the basin being analyzed. In
all cases, the magnitude of the obtained values for ogg represent a
good estimate for the uncertainty exponent, as we are going to see
next.

To determine oge for the basin analyzed in this subsection, we
have ignored the smallest €'s, and included in the fit the points re-
sulting in a sufficiently small fitting error. In this case we consid-
ered the points obtained for boxes with size 10 x 10 up to 25 x 25
pixels, obtaining the fitted line shown in Fig. 8(b). The resulting
uncertainty exponent is agg = 0.112 £ 0.002 for the basin in 5(b).
In this case, the line fitting is very good and the result is in fair
agreement with o = 0.078 + 0.001 obtained using the uncertainty
method. It is worth to note that, for this basin, if we include larger
€ in the fitting, a smaller agg is obtained, leading to a slightly bet-
ter agreement with «, but the fitting error increases significantly,
indicating that the result may be less reliable. We have also ap-
plied the basin entropy method to the magnified region shown in
5(c). For this basin we observe a larger influence of a nonlinear
dependence on Ine¢, and the line fitting is not so accurate. How-
ever, performing the fitting within the same range of € we obtain
oge = 0.048 4 0.004. This result still reflects the significant uncer-
tainty expected for this region of the basin.

5.1.2. Case V3¢ =03V, Vpc =17.5 V,and ¢ =0.3

The BCD for the period-1 and period-2 basins in Fig. 6(b) are,
respectively, Dgc = 1.97 +0.01 and Dgc = 1.95 4+ 0.02. For the mag-
nified region in Fig. 6(c), we obtain Dgr = 1.96 £0.01 (period-1)
and Dpc = 1.95 £ 0.02 (period-2). For the basin boundary we ob-
tain Dpc =1.93+£0.03 and Dpc =1.92 £0.03, for the regions in
Figs. 6(b) and (c), respectively. Again, the value of the dimensions
and the consistency between the results for the larger area and
its magnified portion indicates that the region with intermingled
basins has a fractal structure. However, in this case, the dimension
of the basins and the basin boundary are significantly closer to 2,
a result that reflects the qualitative observation that the basin has
two attractors that are strongly intermingled.

Using the uncertainty method we obtained o = 0.0085 £ 0.0001
which corresponds to a basin boundary dimension of Dyy =
1.9915 £ 0.0001. This value of « is significantly smaller than that
of the previous basin. It reflects the even larger uncertainty regard-
ing which could be the periodic state assumed by the system for
uncertain initial conditions.

While for the previous basin of attraction we obtained a very
good line fitting to the data for Fig. 5(b), for both the basin in
Fig. 6(b) and the magnified area in (c), there is a stronger nonlin-
ear contribution. From the fit to the points obtained for boxes with
size of 10 x 10 up to 25 x 25 pixels shown in Fig. 8(d), we obtained
oge = 0.010 + 0.001 for the basin in 5(b). In this case, the line fit-
ting is good, as can be seen in Fig. 8(d), and the result is in fair
agreement with o obtained using the uncertainty method. For the
magnified region we obtain agg = 0.015 £+ 0.001, which is close to
the exponent obtained for the larger area, and a reasonable result
that reflects the significant uncertainty of the basin.

5.13. Case Vo =10V, Vpc =185V, and ¢ =0.4

The BCD for the period-1 and chaotic basins in Fig. 7(b) are, re-
spectively, Dgc = 1.97 +0.01 and Dgc = 1.95 + 0.02. For the basin
boundary we obtain Dgc = 1.93 + 0.03. While this basin of attrac-
tion seems to have a stronger mixing of the two attractors, the
BCDs are the same as those obtained for the previous basin. There-
fore, we can see that while the box counting method has the ad-
vantage of providing the fractal dimension of the basins of each

Table 1

Fractal dimension of the basin boundaries obtained using box counting,
uncertainty method, and basin entropy, for the basins depicted in the
figures listed below.

Basin Box counting  Uncertainty Basin entropy

Fig. 5(b)  1.80+0.04 1.921+0.001 1.888 +0.002

Fig. 6(b)  1.93+0.03 1.9915 £ 0.0001 1.990 + 0.001

Fig. 7(b)  1.93+0.03 1.9997 £0.0001 1.99959 + 0.00004

attractor, this result shows the limitations of the method to char-
acterize the fractal properties of a basin of attraction, and the need
to complement the information using the other methods we are
considering.

Using the uncertainty method we obtained o = 0.0003 & 0.0001
which corresponds to a basin boundary dimension of Dyy =
1.9997 £ 0.0001. This « is very small, characteristic of a basin with
extremely intermingled attractors, and reflects the extreme uncer-
tainty regarding the final state assumed by the system for uncer-
tain initial conditions.

As for the basin in Section 5.1.2, there is a comparatively strong
nonlinear dependence on € observed in the calculation using the
basin entropy method. From the fit to the points obtained for boxes
with the same size considered previously of 10 x 10 up to 25 x 25
pixels, we obtained agr = 0.0070 + 0.0013. Differing from the pre-
vious results, which where in reasonable numerical agreement
with o obtained using the uncertainty method, in this case the
basin entropy method misses the actual value by an order of mag-
nitude. The result obtained using this range of box dimensions also
has a significant uncertainty of about 20%. The results presented in
Fig. 8(e) indicate that for larger € (less negative In(¢)) the points
tend to be more aligned. In fact, using the range of points cor-
responding to larger boxes of size 40 x40 up to 100 x 100 pix-
els results in a best fit, shown in Fig. 8(f). In this case we obtain
oge = 0.00041 & 0.00004. Therefore, the error has been reduced to
10% and the result agrees very well with « obtained using the un-
certainty method.

For the sake of clarity, we present in Table 1, the fractal di-
mension obtained using the three different methods for the basins
analyzed in the Section 5.1.

6. Discussion and conclusions

MEMS/NEMS resonators have many potential applications of
their nonlinear behavior [3,4,8,12]. However, these applications and
possibly new applications, require an adequate understanding of
the nonlinear behavior of such systems. Compared to the results
presented in [10] in this work we have presented new results, in
the form of phase diagrams, that help to better understand what
nonlinear behavior to expect for doubly clamped suspended beam
MEMS/NEMS resonators. We have determined that the most rich
dynamics starts to show up when the effective potential comes
closer to the separatrix between one and double-well regions. The
phase diagrams have revealed the existence of an intricate depen-
dence of the dynamics on the relevant control parameters Vjc,
Vpe, and ¢, showing the complex regions with periodic behaviour,
chaos and pull-in, which have not been investigated in [10]. The
observed dependence is even more complex for lower dissipation,
with the different attractors getting more intermingled. This makes
it much more difficult to predict the final state of the system. Also,
the lower dissipation favors the appearance of more complex dy-
namics farther away from the separatrix, in the region with smaller
values of Vp.

Also, a better definition of the regions with chaos, compared
with the results presented in [10], have been obtained. This infor-
mation is relevant, for instance, for applications of this system as
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a source of chaotic signals. With the analysis in the present work
we have been able to concluded that chaos is more easily obtained
for lower excitation frequencies and higher dissipation.

We have performed a detailed investigation of the basins of at-
traction of this system that was missing in previous works in the
literature. We found that in the regions with evidences of multi-
stability basins of attraction with fractal structures occur quite fre-
quently. The fractality was confirmed through the calculation of
the chaotic saddle and quantified through the calculation of the
fractal dimensions of the basins and its boundary, and the uncer-
tainty exponent. The high fractal dimensions found for the basins
investigated in Sections 5.1.2 and 5.1.3, close to D = 2, and the very
low « indicate that we have found extremely intermingled basins.
This results, in practical implementations of the system, in an ab-
solute uncertainty regarding the final state of the system if care is
not taken to be away from the regions were such basins exist.

In the analysis of the basins we have used a new method
to determine the uncertainty exponent, namely, the basin entropy
method. This method was originally conceived to quantify the com-
plexity of the basins of attraction. Larger entropies S;, are expected
to indicate more complex basins, with consequent larger uncer-
tainties regarding the final state of the system. This expectation
is confirmed by the results presented in Fig. 8 (a), (c), and (e). In
such figures S, obtained for a given € is much large for the two
basins with visibly more intermingled basins (note that a less neg-
ative In(Sp) corresponds to a larger S,). The entropies in Fig. 8(e)
are also slightly larger than that depicted in Fig. 8(c) as it would
be expected based on the results of Sections 5.1.2 and 5.1.3.

An important fact, regarding the use of S, to estimate «, is the
observation of a nonlinear dependence between In[S,(€)] and Ine,
instead of the linear dependence expected according to Eq. (12).
We have found that the origin of this nonlinearity is the finite res-
olution of the grid. The expected linear relation in Eq. (12), as-
sumes, implicitly, an infinite resolution in the calculation of Sp.
That means, the areas of each basin contained within a 2D box of
lateral side € are known with infinite precision. However, the ac-
tual calculations are based on areas estimated with a coarseness.
In order to address the effect of the finite resolution we have gen-
erated the basins analyzed in Sections 5.1.1 and 5.1.2 with a finer
grid with resolution 1600 x 1600 pixels. What we observed is that
for the smaller range of €’s the entropy estimated with lower res-
olution is significantly smaller than that obtained with a finer grid
resolution. As € increases, the discrepancy between the calcula-
tions with different resolutions becomes very small. This effect is
illustrated by comparing the points obtained with the two resolu-
tions in Figs. 8(a) and (c). The points for the finer grid resolution
come much closer to expected linear distribution. Therefore, in or-
der to get a correct estimate of apg using grids with lower reso-
lution, what is desirable since the computational times is smaller,
small €’s must be disregarded. As a practical rule, we suggest that
the lateral size of the 2D boxes must be at least of 10 pixels for
basins covered with a grid of 800 x 800 pixels, as we have consid-
ered in our calculations of agg.

Using intermediate values of € we have obtained very good es-
timates of o with the basin entropy method using basins calculated
with a grid resolution that demands a reasonable computational
time. We conclude, therefore, that it is an adequate alternative
method to calculate «. The new approach deserves a more sys-
tematic study in order to further investigate its reliability and
precision, and to address its computational efficiency compared to
other methods, which is beyond the scope of the present work.

Further theoretical and experimental investigation of the sys-
tem we investigated is required for a complete understanding of
its dynamics. The effect of longitudinal prestress on the phase di-
agram and basins would be interesting to be analyzed, since small
stresses are usually present in micro and nanofabricated devices.

However, as the approximate dynamical equation describing the
system retains the same form, similar results should be expected
for small prestress. The influence of noise, which can be significant
for the smaller NEMS resonators [19], has not been studied so
far. Also, recent experimental [25] and theoretical [26,27] results
indicate that nonlinear damping can be large in such systems. As
the nonlinear damping generally increases with the amplitude of
vibration, it could play a significant role in the total dissipation
in the strong nonlinear regime that we have investigated in this
work, where the amplitudes of vibration are high compared to
the beam thickness. The recent theoretical prediction that two-
frequency excitation can result in robust chaos in this system
[15] should also motivate further theoretical investigations of
MEMS/NEMS resonators.
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Appendix A. Proof of a general linear relation between InS,
and In ¢, with angular coefficient ogg

In this proof we consider that the region containing the two
basins of attraction is covered with a regular grid of N square boxes
of side €.

We start the proof by noting that since we have only two at-
tractors (1 and 2) and the p;; in Eq. (11) must satisfy p; 1 + p;» =1,
the basin entropy can be written as

1 N
S5=-x > (pialnpir+ pizInpiy)
i=1

Il
2=
.MZ

Il
—_

N
5 Apdinp; ~In(1 — p)] +In(1 — pp)} = -

i=1

Si,

(A1)

where, for simplicity, we have taken p; = p; ;.

Now, we take into account that in any real computation the
basin is discretized into pixels. We consider pixels with equal size,
and each square box containing Nf, pixels, where N, is the number
of pixels comprised in the length €. Consequently, for any given
box the p; can only assume one out of a set of discrete values
pi=0,1/N2,2/N3,....1—1/N3 1. The boxes with p;=0 or 1 do
not contribute to Sp, because S; =0 in such cases. What is left is
the contribution of the boxes at the boundary, those containing
pixels of both attractors. Therefore, the possible values of the p;
for the remaining N, boxes are

m

N

Noting that it is always true that a certain fraction g, of the N,
boxes covering the boundary has a basin probability pn,, the basin
entropy can be written as

P m=1,....N;—1. (A.2)

N5-1 N2 -1
1 Ny N,
sb:_ﬁrgqmmsm:_ﬁn;qmsm:—ﬁxc. (A.3)
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The constant C appearing in the last expression depends upon
the particular distribution gp;. In the case of the fractal basins we
have investigated, the g, concentrate around a mean value with
a Gaussian-like distribution. It is interesting to note, however, that
for the more regular basins of attraction for the damped Duffing
oscillator investigated by Daza et al. [23] (see their Fig. 3 (a)-(c))
the pn, are distributed more evenly, independently of the box res-
olution Np.

To complete the proof we can now simply follow the reasoning
used by Daza et al. [23] and consider that N, scales as ne~? and
N as fie=9, where D and d are, respectively, the dimensions of the
basin boundary and that of the basin. Therefore,

Sy = %ed‘[’ x constant = %e“ﬂf x C, (A4)
and a generalized linear relation follows
In[Sy (€)] = @ge x In(€) + In (%c) . (A5)

We have thus concluded that for basins containing only two at-
tractors we can always expect a linear relation between In[Sy(€)]
and In(e), in which the angular coefficient can be interpreted as
the uncertainty exponent.
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