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a b s t r a c t 

We investigate theoretically the nonlinear dynamics and the emergence of chaos in suspended beam 

micro/nanoelectromechanical (MEMS/NEMS) resonators actuated by two-sided electrodes. Through the 

analysis of phase diagrams we have found that the system presents a rich and complex nonlinear 

behavior. Multistability is observed in a significant region of the relevant parameter space, involving 

periodic and chaotic attractors. Complex and varied routes to chaos were also found. Basins of attraction 

with strongly intermingled attractors provide further evidence of multistability. The basins are analyzed 

in greater detail. Their fractal dimensions and uncertainty exponent are calculated using the well known 

box counting and uncertainty methods. The results for the uncertainty exponent are compared with 

those obtained with yet another approach, based on the recently proposed basin entropy method. The 

comparison provides a test for the new approach, which we conclude that is a reliable alternative 

method of calculation. Very low uncertainty exponents have been obtained, indicating that some basins 

have extremely intermingled attractors, what may have significant influence in the experimental inves- 

tigation and practical applications of the resonators. We also conclude that the observation of chaos in 

this system is favored by lower frequencies of excitation and comparatively small quality factors (larger 

dissipation). 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

MEMS/NEMS resonators based on suspended beams are one of

the most investigated micro/nanodevices, both theoretically and

experimentally [1,2] . They have many potential applications, for in-

stance, as high quality factor filters for electronic signals, ultra-

stable reference clocks and a variety of physical and chemical sen-

sors, that rely upon their operation in a linear regime [1,2] . For

a long time the ease with which these small systems can enter

the nonlinear regime, due to the electrostatic force and midplane

stretching, was seen as a significant problem. However, more re-

cently, some strategies to take advantage of the nonlinear behavior

have been proposed to improve signal amplification [3] and fre-

quency stability [4] , among other applications [5] . The existence of

chaos in suspended beam resonators was predicted theoretically

in several works [6–10] and verified experimentally for two cou-

pled nanomechanical beam resonators [11] . So far, the potential
∗ Corresponding author: Departamento de Ciências Exatas-EEIMVR, Universidade 

Federal Fluminense, Volta Redonda, RJ 27255-125, Brazil. 
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se of the chaotic regime of these systems was only briefly inves-

igated theoretically [8] . However, as already proposed for other

onfigurations of MEMS/NEMS resonators [12] , suspended beam

esonators have the potential to be used as sources of chaotic

ignals for applications in chaos based secure communications,

ryptography and random number generation. Because of their

mallness, high frequency of vibration and low power consump-

ion, suspended beam MEMS/NEMS resonators are ideal candidates

s a physical source of continuous chaotic signal or entropy in mo-

ile devices. 

Motivated by these reasons, some aspects of the chaotic dynam-

cs of a doubly clamped (bridge) suspended beam MEMS/NEMS

esonator actuated by two lateral electrodes were investigated by

antas and Gusso [10] . This particular system was considered be-

ause its is frequently found in the investigation of potential ap-

lications of suspended beam MEMS/NEMS resonators [2] and be-

ause chaos can be more easily obtained with a two electrodes

onfiguration [8] . We note that other similar systems, particu-

arly the case of a plate suspended between two electrodes, have

lso had its nonlinear and chaotic dynamics investigated [13,14] .

owever, there is still a great deal to be understood about the

https://doi.org/10.1016/j.chaos.2019.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2019.03.004&domain=pdf
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onlinear and chaotic dynamics of such systems. A thorough

heoretical understanding is necessary for the experimental in-

estigation and practical application of such devices. For this

eason, in this work we extended the previous analysis which

ocused mostly on the chaotic regime of a doubly clamped sus-

ended beam MEMS/NEMS resonator actuated by two-sided elec-

rodes [10] . We investigate the regions in the relevant parame-

er space where periodic behavior, chaos and pull-in (the snap

own and stiction of the beam onto the electrodes) can occur,

nd present phase diagrams for the system. We reveal the com-

lex structure of attractors around the regions with chaos which

ad not been investigated previously. We find significant regions

ith signs of multistability, a relevant fact, with potentially signif-

cant practical implications, which have not been reported to this

ystem in the literature. Because the initial conditions of the sys-

em can be strongly affected by noise and, in the case of a sys-

em with double-well potential, by the instabilities inherent to the

ystem, we have investigated the basins of attraction along sev-

ral regions indicated in the phase diagrams. Such analysis was

ompletely missing in [10] and in the known literature. Analyzing

he basins of attraction we have been able to confirm the mul-

istability indicated in phase diagrams. We obtain interesting re-

ults regarding their structure, fractal dimension and uncertainty

xponent. 

The work is organized as follows. In Section 2 we present the

hysical and mathematical model of the MEMS/NEMS resonator.

hase diagrams are presented in Section 3 , and basins of attraction

re presented in Section 4 and analyzed in Section 5 . We discuss

he results obtained and summarize our conclusions in Section 6 . 

. Physical and mathematical model 

The device we are going to investigate is comprised of a slender

eam with length l and with a rectangular cross section of width b

nd thickness h . The beam is clamped at both ends and there are

lectrodes parallel to its width placed a distance d at both sides

f the beam. This arrangement is depicted schematically in Fig. 1 .

s done in [10,15] we are going to consider a device with realistic

imensions and physical properties. 

The beam is considered to have homogeneous and isotropic

lastic properties, and due to its slenderness the Euler-Bernoulli

eam theory can be used to model the beam. Because in the strong

onlinear regime that we investigate here the beam can be sub-

ect to large transversal displacements, compared to its thickness,

e have to include the effect of the midplane stretching [16] . It is

esponsible for a nonlinear hardening effect of the elastic restor-

ng force. Because we are going to consider a beam with d � h ,

he beam bending is going to small and the electrostatic force can

e modeled assuming that the beam is piecewise plane. Also, we

onsider that the beam will be sufficiently wide that the parallel

late approximation for the electrostatic force can be used and the

ringing effect ignored. Finally, assuming as usually done that dis-

ipation occurs due to a viscous damping, the partial differential
ig. 1. Schematic diagram of the doubly clamped suspended beam resonator (gray) 

ith two lateral electrodes (black). 
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quation modeling the system results to be [10] 

Iw 

′′′′ + ρA ̈w + c ˙ w −
(

EA 

2 l 

∫ l 

0 

w 

′ 2 dx 

)
w 

′′ 

+ 

ε0 b 

2 

[
V 1 (t) 2 

(d + w ) 2 
− V 2 (t) 2 

(d − w ) 2 

]
= 0 . (1) 

n this equation w ( x, t ) corresponds to the vertical displacement

long the beam, subject to the boundary conditions w (0 , t) =
 (l, t) = w 

′ (0 , t) = w 

′ (l, t) = 0 . It is comprised between x = 0 and

 = l and is placed a distance d from both electrodes. The over-

ots and primes represent derivatives with respect to time t , and

pace x , respectively. E denotes the Young modulus and ρ the den-

ity of the beam material. I = bh 3 / 12 corresponds to the geometric

oment of inertia, A = bh to its cross-sectional area, and c to the

inear damping coefficient. The beam is subject to the electrostatic

otentials V 1 and V 2 , and ε0 = 8 . 85 × 10 −12 F/m corresponds to the

acuum permittivity. 

As explained in details in [10] the first two terms in Eq. (1) cor-

espond to the elastic and inertia terms of the Euler-Bernoulli

eam theory, and the third term to the viscous damping. The term

roportional to w 

′′ corresponds to the nonlinear restoring force

ue to the midplane stretching. The last term gives the contri-

ution of the electrostatic force, which is obtained assuming that

he beam is piecewise plane. We note that we are ignoring the

ringing effect because, as already argued in [10] , the correction

or the particular system that we consider is expected to be small

ompared to the main effects already taken into account in our

odel. 

We do not solve Eq. (1) directly, instead, we resort to the

alerkin method to reduce this equation to a single nonlinear

rdinary differential equation (NLODE). Using a single mode ap-

roximation we take w (x, t) = u (t) φ1 (x ) , where φ1 ( x ) denotes the

ase function which corresponds to the first modeshape of a dou-

ly clamped beam described mathematically by the Euler-Bernoulli

eam equation [16] . This approximation is justified, among other

easons, because we are interested in the description of the dy-

amics of the beam oscillating in its first mode of vibration. This

ode is preferred in practical applications because it results in the

est read-out of the oscillations, providing a better information

bout the position of the beam during vibration. The use of the

odeshape of an Euler-Bernoulli beam to approximate the nonlin-

ar beam shape is adequate for frequencies below and around the

rst resonance frequency. Furthermore, the use of a single mode

pproximation to describe the temporal dynamics of the chaotic

egime of beams and cables is well justified in the literature, both

heoretically and experimentally (see the discussion in [10] and

eferences therein). 

Following the Galerkin method, we can obtain a NLODE for the

oordinate u ( t ) which, upon suitable rescaling, results in the equa-

ion 

¨
 + β ˙ s + s + αs 3 + F e (s, τ ) = 0 . (2)

n this NLODE s = s (τ ) is the nondimensional displacement of the

eam center. More specifically, s (τ ) = u (τ ) w max /d, where w max =
 (x = 0 . 5 l, τ ) corresponds to the maximum beam displacement

hat occurs at x = 0 . 5 l. Time t is replaced by the nondimensional

ime τ = t/ω 1 , where ω 1 denotes the natural frequency of the first

ode. The strength of the cubic nonlinearity is α = 0 . 719(d/h ) 2 ,

nd the damping factor β = c/ρbhω 1 can be shown to be related

o the quality factor Q simply by β = Q 

−1 . 

The last term in Eq. (2) corresponds to the effective electrostatic

orce, and is given by 
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Fig. 2. Representative examples of the effective potential energy U (arbitrary units) 

as a function of the beam displacement s for the case of (a) one-well and (b) 

double-well potentials. 
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F e (s, τ ) = 1 . 218 

ε0 bl 

2 k e f f d 
3 

[ 
V 

2 
1 (τ ) 

∫ 1 

0 

φ1 (x ′ ) 
(1 + φ1 (x ′ ) s/d) 2 

dx ′ 

−V 

2 
2 (τ ) 

∫ 1 

0 

φ1 (x ′ ) 
(1 − φ1 (x ′ ) s/d) 2 

dx ′ 
] 

= B 

[
V 

2 
1 (τ ) I e (s ) − V 

2 
2 (τ ) I e (−s ) 

]
, (3)

where B = 0 . 609 ε0 bl/ (k e f f d 
3 ) , and k e f f = 384 EI/l 3 denotes the ef-

fective elastic constant of the beam and the new variable x ′ is the

normalized length position x ′ = x/l. 

Eq. (2) is, therefore, an integro-differential equation, whose di-

rect numerical solution is computationally quite demanding be-

cause it involves to solve two integrals numerically. In order to

solve this NLODE in a efficient manner, we follow the procedure

adopted in [7,10,15] and replace F e ( s, τ ) by a function of the form

I e a (s ) = 

a 0 + a 1 s 

(1 + 

∑ 3 
i =1 b i s 

i ) 
, (4)

which we can recognize as a Padé approximant of order 1/3. The

coefficients a i and b i are obtained using the least squares fit so that

I e a (s ) is close enough to the value of I e ( s ) obtained by numerical in-

tegration within a suitable interval in the variable s . In the present

analysis we have to warrant a sufficiently high accuracy for I e a (s )

in the range −0 . 8 ≤ s ≤ 0 . 8 , which encompasses the initial condi-

tions (ICs) used in the basins of attraction we have investigated.

We have also to take into account that the solutions cannot be

outside the interval | s | < 1, because the electrodes are located at

s = ±1 , and if s comes sufficiently close to the electrodes the sys-

tem will fatally stop to oscillate due to the dynamical pull-in (the

beam is attracted and gets attached to one of the electrodes due to

the electrostatic force caused by the applied DC bias voltage, V DC ).

In practice, we stop the numerical calculations when | s | exceeds

a certain value, which we take to be | s | = 0 . 9 (the results involv-

ing the pull-in do not change if we take a larger threshold). Using

the Padé approximant of order 1/3 it is possible to obtain a maxi-

mum error of about 0.1% in the approximation to the function I e ( s )

within the interval | s | < 0.8, the average error being much smaller

than that. The approximation is still quite reliable outside this in-

terval up to the point where the system is considered to have suf-

fered pull-in. 

The applied voltages V 1 ( τ ) and V 2 ( τ ) are responsible for the re-

sulting effective static potential of the system. Constant (DC) volt-

ages applied to the electrodes have the important effect of alter-

ing the effective spring constant. Due to this effect, the resulting

effective static potential has a single stable minimum, for small

applied DC voltages, but develops a potential with two minima

for sufficiently high voltages [8,10] . This is illustrated by the po-

tentials in Fig. 2 . The voltages are also used to drive the system.

In this work we consider the case in which the driving alternat-

ing (AC) voltage is applied to only one of the electrodes. This is

what is generally done in practical systems because the resulting

oscillations are read out through the second electrode. For def-

initeness we are going to consider that the applied voltages are

 1 (τ ) = V DC + V AC cos (ζ τ ) and V 2 (τ ) = V DC . 

With the applied voltages the resulting dynamical system has

interesting features. They can be more easily observed if we

consider the limit of small amplitude of oscillation and expand

Eq. (2) in a Taylor series in s up to third order. The result is 

s̈ + β ˙ s + k 1 (τ ) s + k 2 (τ ) s 2 + k 3 (τ ) s 3 + F (τ ) = 0 , (5)

where 

k 1 (τ ) = 1 + γ
[
( a 1 − a 0 b 1 ) (V AC (τ ) + V DC ) 

2 − a 1 (b 1 + a 1 ) V 

2 
DC 

]
, 

k 2 (τ ) = γ
{
−
[
a 0 

(
b 2 1 − b 2 

)
− a 1 b 1 

]
(V AC (τ ) + V DC ) 

2 

+ a 1 (b 2 1 − b 2 − b 1 ) V 

2 
DC 

}
, 
 3 (τ ) = α + γ
{ 

−
[
a 0 

(
b 3 1 − 2 b 2 b 1 + b 3 

)
− a 1 

(
b 2 1 − b 2 

)]
(V AC (τ ) 

+ V DC ) 
2 − a 1 b 

3 
1 V 

2 
DC + a 1 (b 2 1 + 2 b 2 b 1 − b 2 − b 3 ) V 

2 
DC 

} 

, (6)

nd 

 (τ ) = γ
[
a 1 V 

2 
DC − a 0 (V AC (τ ) + V DC ) 

2 
]
. (7)

he parameter γ is defined as 

= 

1 . 218 ε0 hl 

2 d 3 k e f f 

. (8)

hat we have obtained in Eq. (5) is a Helmholtz-Duffing like equa-

ion, but with time dependent coefficients. The time dependence

s due to the applied AC voltage, V AC (τ ) = V AC cos (ζ τ ) . Therefore,

he system is parametrically excited through all of its linear and

onlinear coefficients of the restoring force. However, the system is

lso excited by an external force term, F ( τ ). This mixing of external

nd parametric excitation may explain the rich and complex non-

inear dynamics that we present in the next section. It is important

o note that, while the idea of the system having an effective static

otential due to the applied voltages is useful to understand some

spects of its dynamics [10] , the system does not have a definite

otential energy due to the parametric excitation. 

. Phase diagrams 

In this and the next sections we present results for the nonlin-

ar dynamics of a nanoresonator, characterized by having two of

ts dimensions in the submicrometer range. We consider a realistic

evice with dimensions l = 5 μm, b = 0 . 8 μm and h = 0 . 05 μm. The

ap is chosen based upon a criteria that facilitates the appearance

f a double-well potential [8,10] , which favors a chaotic dynam-

cs, and is taken to be d = 0 . 15 μm. The device is considered to be

ade of polysilicon, whose Young modulus is E = 170 GPa and the

ensity ρ = 2 . 3 × 10 3 kg m 

−3 [16] . With these dimensions and ma-

erials, the predicted natural frequency of the first mode is f = 17 . 7

Hz, in the absence of any applied voltage. 
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We have to note that for gaps in the submicrometer range it

as been customary to take into account the effects of the Casimir

orce in the modelling of the system [7,16] . However, it was already

hown that this quantum mechanical force is relevant only for sim-

lar systems with gaps of the order of a few tens of nanometers

7] , therefore, much smaller than the one considered in our case.

e also note that for such a small device, surface elasticity effects

ould contribute [9] . However, the exact effect depends crucially

n the elastic properties of the surface and the model of size ef-

ects. Furthermore, the contributions of surface roughness and the

resence of oxides have been ignored in the models presented in

he literature. Because significant surface roughness and oxides,

r other surfaces contaminants, are almost always present, any

urface modelling would result imprecise or unrealistic. For these

easons, and because the surface effects are expected to be par-

icularly small for silicon beams [17] , we also ignore its possible

ontribution. 

The rich and complex nonlinear dynamics of this system is ev-

denced in the phase diagrams presented in Fig. 3 . These diagrams

how in the V AC − V DC plane the periodic (see color code in the fig-

re caption) and chaotic attractors (black regions), and the pull-in

tates (purple and red). The results are presented for three repre-

entative frequencies ζ = 0 . 2 , 0 . 4 , and 0.6 and two damping coef-

cients β = 0 . 01 and 0.001. The larger damping coefficient is rep-

esentative of devices operating in air, while the lower dissipation

s more easily found in devices operating in vacuum. 
a b

ed

ig. 3. Phase diagrams in the V AC − V DC plane for different frequencies ζ , showing the per

alculated for β = 0 . 01 while (d), (e), and (f) have been calculated for β = 0 . 001 . The w

nd double-well effective potential to the right. The color code is the following. For the 

agenta (6T), white (7T), brown (8T). Periods above 9 T are colored gray. The pull-in to th

n black. The crosses denote points whose basins of attraction are presented in Sections 4

his figure legend, the reader is referred to the web version of this article.) 
The region chosen in the V AC − V DC plane is the one contain-

ng the more interesting features of the dynamics. It is domi-

ated by periodic dynamics, mostly with period-1 attractors. We

an see that there are sub-regions with smooth boundaries be-

ween the different attractors. However, there are regions where

he boundaries are very complex and those where the attractors

re strongly intermingled. This is clearly exemplified by the region

lose to the black cross in Fig. 3 (c) containing a region with mixed

eriod-1 and period-3 attractors. This mixing of the attractors is

tronger for lower dissipation and higher frequencies, as evidenced

n Figs. 3 (d),(e) and (f). We note that the mixing for the lower

issipation has remained stronger in spite of the fact that the re-

ults presented in Figs. 3 (d),(e) and (f) have been obtained after

 long transient of 70 0 0 times the period of the driving frequency,

hile the results for higher dissipation have been obtained for a

ransient of 3500 periods. The observed mixing of the attractors

s reflected in the basins of attraction, as we are going to present

n more detail later. These results indicate the existence of mul-

istability in these regions. The multistability may have significant

onsequences such as noise-induced jumps between different at-

ractors, what prevents the predictability of the final state along

hese regions in the presence of noise [18] . 

For this system there are comparatively large regions with

haos for low frequencies, as illustrated for ζ = 0 . 2 in Fig. 3 (a),

ndependently of β . However, these regions tend to decrease and

isappear as the frequency increases. For instance, only a small iso-
c

f

iodic, chaotic and pull-in attractors. The phase diagrams (a), (b), and (c) have been 

hite line is the separatrix between the regions with one-well potential to the left 

periodic attractors: yellow (period T ), green (2T), orange (3T), blue (4T), cyan (5T), 

e electrode located at s = −1(s = 1) is colored red(purple), and chaos is presented 

 and 5 (see text for more details). (For interpretation of the references to colour in 



10 A. Gusso, R.L. Viana and A.C. Mathias et al. / Chaos, Solitons and Fractals 122 (2019) 6–16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

a  

t  

i  

fl  

V

a  

t  

i  

t  

b  

T  

w  

a  

t  

o  

s  

t  

w  

o  

t  

a  

t  

t  

c

 

i  

1  

w  

w  

o  

 

h  

t  

t  

p  

e  

fi  

fi  

t  

c  

t  

t  

i  

n

 

b  

g  

V

lated island is left for ζ = 0 . 6 for the larger dissipation β = 0 . 01 ,

and no chaos is observed for β = 0 . 001 . 

In the phase diagrams we have drawn the line separating the

regions in which the effective potential has one and two local min-

ima around the central region. We can see that most of the regions

with chaos are located in the double-well region, as it was ex-

pected [8] due to cross-well chaos. However, there are also regions

with chaos in the one-well region, particularly for low frequencies.

It is also possible to see from the phase diagrams that for β =
0 . 01 and for the lower frequencies, the prevailing route to chaos is

period doubling, but other routes are also present. For lower dissi-

pation, the multistability prevents the observation of sharp bound-

aries between attractors and the routes to chaos are far less evi-

dent. 

The role of dissipation is not restricted to increase the regions

with possible multistability and blur the boundaries between the

different attractors as it decreases. It also reduces the required

voltages for the system to suffer pull-in, as it is evidenced by the

displacement of the boundaries between the periodic and chaotic

attractors and the region with pull-in. This effect results in the

larger areas with pull-in obtained for β = 0 . 001 as compared with

β = 0 . 01 . From Figs. 3 (d), (e), and (f) we can see that a smaller

dissipation also results in an increase of the regions where higher

periods are observed for all frequencies. 

From the analysis of the phase diagrams we can conclude that

experiments aiming at finding chaos in this NEMS resonator and

for its practical applications as a source of chaotic signal, the sys-

tem should be driven preferentially at frequencies ζ � 0.4, where

the chances of finding a region with chaos is larger. Also, a higher

dissipation, around β = 0 . 01 , favors the existence of regions with

chaos which do not contain significant signs of multistability, that

could inadvertently turn chaos into an undesirable periodic behav-

ior. 

4. Basins of attraction 

As illustrated in Fig. 2 , the nanoresonator can be subject to ei-

ther a one-well or double-well effective potential, depending on

the applied V DC and V AC voltages. Let us consider that the DC volt-

age is applied before the AC voltage. That is a likely scenario in

an actual system, since the AC voltage would be generated by an

external oscillator that should have its voltage amplitude and fre-

quency stabilized before it could drive the MEMS/NEMS resonator.

In the absence of an applied AC voltage, the minimum of the one-

well potential is located very close to s = 0 , coinciding with the

rest position in the absence of any external forces. In this case, the

IC at τ = 0 , the time the AC voltage starts driving the system is

close to s (0) = v (0) = 0 . We say that it is close to these values be-
a b

Fig. 4. Basins of attraction for varying initial conditions s and v . (a) V AC = 0 . 4 V, V DC = 17

 DC = 17 . 4 V and ζ = 0 . 88 . In all cases β = 0 . 01 . The color code is the same as that prese
ause, for instance, fabrication tolerances can result in small gap

symmetries and, consequently, asymmetries in the initial poten-

ial energy that affect the location of the potential minimum. More

mportantly, thermal noise and external vibrations cause s and v to

uctuate around the minimum of the static potential before the

 AC is applied [19] . These fluctuations can be rather large as V DC 

pproaches the voltage required to have two minima in the poten-

ial. In this case the one-well potential develops a flat bottom, as

llustrated by the potential in Fig. 2 (a) and, consequently, the effec-

ive linear elastic constant, given by the curvature of the potential

ottom, can be rather small allowing large fluctuations of s and v .

he scenario for the ICs can be even more complex for a double-

ell potential. In this case, a resonator initially at the rest position

t s = 0 , now an unstable local maximum, under the influence of

hermal noise and external vibrations, would tend to slide to one

f the two potential minima. Therefore, the most likely ICs for the

ystem are those with s close to either one of the two minima,

he specific value also fluctuating due to noise. For the voltages

e consider in our analysis, in the absence of an applied V AC , one

f two minima is usually between s ∼ 0.2 and 0.5 and the other be-

ween s ∼ −0 . 2 and −0 . 5 . Because the ICs in an actual device can

ssume different values in a significant range of s and v , the inves-

igation of the basins of attraction of the nanoresonator are jus-

ified not only by pure theoretical reasons, but also because they

an have implications to the real systems. 

To investigate the basins of attraction we started by generat-

ng hundreds of basins in the parameter space region defined by

6 V ≤ V DC ≤ 19 V, 0.2 V ≤ V AC ≤ 1.2 V, and 0.2 ≤ ζ ≤ 0.6. The ICs

ere in the range −0 . 8 ≤ s, v ≤ 0 . 8 , which encompasses a region

ith practical and theoretical relevance. For larger absolute values

f these parameters, most of the final states correspond to pull-in.

In the region of the parameter space ( V AC , V DC , ζ ) that we

ave investigated, most of the basins present only three attrac-

ors, namely, pull-in to the electrode at s = −1 , pull-in to the elec-

rode at s = 1 , and a periodic or chaotic attractor. These basins

resent a simple topology with the periodic and chaotic attractors

ncompassing a continuous region having smooth boundaries de-

ned by the two pull-in attractors. Two such basins are exempli-

ed in Figs. 4 (a) and (b). They have been obtained for the parame-

ers corresponding to the points indicated by the black and orange

rosses in Fig. 3 (b), respectively. Also, a very small fraction is found

hat mixes more than three attractors in a comparatively simple

opology, like the one illustrated by Fig. 4 (c). Basins such as these

n Fig. 4 are found in the regions in the phase diagrams that are

ot close to or within the regions where basins are intermingled. 

We have also found a significant fraction of more complex

asins, with intermingled periodic and/or chaotic attractors. Quite

enerally, such basins are found close to or within the regions
c

 . 5 V and ζ = 0 . 4 , (b) V AC = 0 . 67 V, V DC = 18 V and ζ = 0 . 4 , and (c) V AC = 0 . 651 V, 

nted in the caption of Fig. 3 . 
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n the phase diagram where the attractors are also intermingled.

ne such basin is presented in Fig. 5 (a). It was obtained for pa-

ameters in a region with mixed attractors, indicated by the red

ross in Fig. 3 (b). In this basin we have period-1 and period-3 at-

ractors which are mixed in a complex manner within the region

urrounded by the pull-in attractors. The two periodic attractors

eems to form a fractal basin. The fractality of the attractor is evi-

enced in Figs. 5 (b) and (c) where we present magnified views of

he basin. While other basins have been found that have a struc-

ure suggestive of an usual fractal basin, most of the basins con-

aining mixed periodic or chaotic attractors had a topology that

s exemplified by the basins presented in Figs. 6 and 7 . What we

ee are strongly intermingled basins. Their fractality was checked

hrough the numerical calculation of the stable and unstable mani-

olds of saddle fixed points. The two manifolds have been found to

ave homoclinic intersection points that form a chaotic invariant

et which imply in a fractal basin boundary defined by the stable

anifold [20,21] . However, while for the basin in Fig. 6 we can see

ome structures in the form of small islands, lines and curves, that

apidly vanish due to the finite resolution of the grid used for the

alculations, the basin in Fig. 7 has shown no such structures. That

s the reason why we have shown a single larger magnification of

 smaller region in Fig. 7 (b). 

The existence of such basins, with strongly mixed attractors,

onfirms the existence of multistability in the system. Multistabil-

ty is an interesting phenomenon appearing in nonlinear systems

hat can be explored for certain applications [3] , but can also pre-

m

a b

ig. 5. (a) Basins of attraction for varying initial conditions s and v . Results for the p

agnification of the area delimited by the black square in (a), while (c) corresponds to a

eriods one and three. Color code is the same as that presented in the caption of Fig. 3 . 

a b

ig. 6. (a) Basins of attraction for varying initial conditions s and v . Results for the p

agnification of the area delimited by the black square in (a), while (c) corresponds to a

eriods one and two. Color code is the same as that presented in the caption of Fig. 3 . 
ent the correct operation of the system. For example, that could

e the case if the NEMS resonator was operated as a source of

haotic signals close to or at a region with multistability. Due to

oise, the system could constantly shift from a chaotic to a pe-

iodic state [18] . This could happen due to fabrication tolerances,

hat may lead the system to operate in a region of the parameter

pace that was not initially intended. 

So far, we have discussed only qualitative aspects of the frac-

al basins found in the regions of the phase space with mixed at-

ractors. However, the observed strong mixing between attractors

ithin the region surrounded by the pull-in attractors deserves to

e quantified. We can get information regarding how intermingled

re the attractors and what is the uncertainty in the final state due

o uncertainties in the ICs. In the next section, we quantify the un-

ertainty in the final state of the system calculating the fractal di-

ension and uncertainty exponent of the basins of attraction using

ifferent methods. 

. Fractal dimension and uncertainty exponent 

We have further investigated the basins to better characterize

heir properties as fractal basins. Focusing on the region of the

asins with the intermingled attractors, we have determined the

ractal dimension D [20] and the uncertainty exponent α [22] . The

ractal dimension was calculated directly, using the box counting

ethod [20] , and indirectly, from its relation to α. 
c

arameters V AC = 0 . 8 V, V DC = 17 . 9 V, ζ = 0 . 6 , and β = 0 . 01 . In (b) it is shown a 

 magnification of the black square in (b), both showing intermingled attractors of 

c

arameters V AC = 0 . 3 V, V DC = 17 . 5 V, ζ = 0 . 3 , and β = 0 . 01 . In (b) it is shown a 

 magnification of the black square in (b), both showing intermingled attractors of 
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a

b

Fig. 7. (a) Basins of attraction for varying initial conditions s and v . Results for the 

parameters V AC = 1 . 0 V, V DC = 18 . 5 V, ζ = 0 . 4 , and β = 0 . 01 . In (b) it is shown a 

magnification of the area delimited by the black square in (a) showing intermingled 

attractors of period one and chaos. Color code is the same as that presented in the 

caption of Fig. 3 . 
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The box counting dimension (BCD) was calculated considering

that the area of interest is formed by a regular grid of M × M

points. We take 2D boxes (squares) with lateral size ε = n/M,

where n is a natural number that results in an integer value for

1/ ε, so that the 2D boxes cover the area completely. We then count

the number N of boxes required to cover either of the basins or

the basin boundary, depending on the region for which we want

to determine D . The BCD is defined by 

D BC = lim 

ε→ 0 

ln N(ε) 

ln 

(
1 
ε

) , (9)

and D BC is obtained as the angular coefficient of the linear least

squares fit (LLSF) of a first order polynomial to the pair of points

(ln (1/ ε), ln N ( ε)) for the smallest possible values of ε. The dimen-

sion is obtained in the form D BC ± δD BC , where the uncertainty is

that from the least squares fit. 

The uncertainty exponent was calculated using two different

methods. One is the original uncertainty method proposed by Mc-

Donald et al. [22] . Following this method, within the region of in-

terest we find a total of 10.0 0 0 randomly chosen ICs that lead to

one of the attractors in the basin. Within a circle of small radius

δ = 

√ 

d s 2 + d v 2 , centered at each one of the ICs in the form ( s i , v i ),

with i = 1 , . . . , 10 . 0 0 0 , two other ICs are chosen randomly. If either

one of these new ICs lead to a different attractor, then the corre-

sponding original IC is counted as uncertain. After all 10.0 0 0 ICs
re tested a fraction f ( δ) results to be uncertain. These calculations

re repeated 10 times for each δ, which varied from 10 −1 down to

0 −10 . Since α is defined by 

= lim 

δ→ 0 

ln f (δ) 

ln δ
, (10)

he uncertainty exponent and its error are obtained from the LLSF

f a first order polynomial to the pairs of points (ln δ, ln f ( δ)), with

he estimated uncertainty on f ( δ) at each point taken into account.

We have also employed a new approach to calculate α. It is

ased on the recently proposed method for the calculation of basin

ntropy [23] . This entropy is calculated assuming that the basin is

ormed by a regular grid of M × M points. Each point can corre-

pond to one of the N A attractors in the basin. Similarly to what

s done in the box counting method , the basin is covered with a

egular grid of N 2D boxes with lateral size ε = n/M, with n a nat-

ral number. The fraction of the points pertaining to the attractor

 ( j = 1 , . . . , N A ) in the i th box, p i,j , is then evaluated for each box.

he basin entropy is then given by [23] 

 b = 

1 

N 

N ∑ 

i =1 

N A ∑ 

j=1 

p i, j ln 

(
1 

p i, j 

)
. (11)

 b was originally conceived to quantify the complexity of basins

f attraction. However, it was argued in [23] that for basins with

 single boundary between attractors, as it is the case for the re-

ions of the basins we want to characterize which have only two

ttractors, we can expect the following relation 

n [ S b (ε) ] = αBE ln (ε) + ln 

(
n 

˜ n 

ln 2 

)
. (12)

n this expression, the ratio n 
˜ n 

is proportional to the basin bound-

ry and is expected to be a constant, while αBE is the uncertainty

xponent, which we distinguish with the subscript BE to indicate

hat it is calculated from the basin entropy. 

The above relation was obtained by Daza et al. [23] from

q. (11) as a special case (that of a single boundary) of a more gen-

ral relation derived assuming that for boundaries between differ-

nt basins of attraction the p i,j for the boxes covering the bound-

ries occur much more frequently with values around p i, j = 1 /m,

ith m the number of attractors within a box. Therefore, it is as-

umed that the case of an equiprobable distribuition of attractors

ithin a box prevails in the distribution of the p i,j . Specializing

o the case of only two distinct basins of attraction and follow-

ng Daza et al. [23] , we consider that out of the N boxes covering

he basin only N 2 boxes are covering the boundary between to at-

ractors ( j = 1 , 2 in this case). Taking the approximation that they

ll have the same p i, j = 1 / 2 , we arrive at S b = (N 2 /N) ln 2 . Because

 2 scales as nε−D and N as ˜ n ε−d , where n and ˜ n are constants of

roportionality, D the dimension of the boundary and d that of the

asin, Eq. (12) follows trivially as α = d − D [22] . 

As the result in Eq. (12) is based on an approximation that

as not fully justified in [23] , we have checked if it is a good

pproximation. Taking the basins for which we calculate the fractal

imension of the basin boundaries (see Section 5.1 ) we performed

he statistics of the values of the p i,j ( j = 1 , 2 ) within the boxes

ontaining points pertaining to the two attractors. That means,

oxes with p i, j = 0 or p i, j = 1 are excluded, living only boxes

ontaining points pertaining to the boundary. We observed that

he p i ,1 and p i ,2 follow Gaussian-like distributions that are highly

oncentrated around its mean values p̄ i, 1 and p̄ i, 2 . In fact, because

p i, 1 + p i, 2 = 1 , the two distributions are not independent. Because

he two basins do not occur at equal proportions, the mean is not

qual to 1/2, but assume values that are close to it. Nonetheless,

s long as the p i,j are concentrated around the given averages, we

an extend the reasoning of Daza et al. [23] and conclude that

 b = (N 2 /N)( ̄p i, 1 ln (1 / ̄p i, 1 ) + p̄ i, 2 ln (1 / ̄p i, 2 )) = (N 2 /N) × constant . 
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his more realistic approximation to S b still results in a linear

elation between ln ( S b ) and ln ( ε) having αBE as its angular coef-

cient. It is interesting to note, however, that we can always write

he basin entropy in the form S b = (N 2 /N) × constant, which as-

ures the expected linear relation, independently of the statistical

istribution of the p i,j . This is shown in Appendix A . 

The expected linear relation between ln ( S b ) and ln ( ε) in

q. (12) can be used to calculate αBE from S b evaluated for vari-

us ε’s using a LLSF. As in the case of D BC , the error estimate for

BE comes from the uncertainty in the least squares fit. 

This last method, which we refer as the basin entropy method , is

 new approach to estimate α. So far, it has been used only to es-

imate α for a non-fractal basin of attraction, in which case α = 1

23] . Here, we compare the results obtained using the box counting

ethod and the uncertainty method with the basin entropy method .

e can thus check the reliability of the new method. The com-

arison between the three methods is possible because of the ex-

ected relation between α and the dimension of the basin bound-

ry, D = d − α, where d is the dimension of the space in which the

ractal structure is embedded [22] . In our case d = 2 . 

.1. Results 

The calculations of D and α have been performed for the three

asins of attraction presented in Figs. 5–7 . More specifically, we

ave restricted the analysis to the region with the mixed attrac-

ors, and ignored the region with pull-in, because the ICs of real

ystems are almost certainly restricted to this region. The BCD

nd αBE were, therefore, calculated for the regions presented in

igs. 5 (b) and (c), 6 (b) and (c), and 7 (b). Both D BC and αBE were

alculated using grids of resolution 800 × 800. We also performed

alculations for some grids of resolution 1600 × 1600, which take

uch more computational time to be evaluated, that we compare

ith the results for the grids with lower resolution. The exponent

was calculated using the uncertainty method restricting the re-

ion where the random pairs of ICs were generated to that en-

ompassed by the regions in Figs. 5 (b) and 6 (b), and to the square

0 . 3 < s, v < 0 . 3 for the basin depicted in Fig. 7 (a). We are assum-

ng that these areas are representative of the whole region where

he periodic and chaotic basins are intermingled. The calculations
a c

db

ig. 8. In (a), (c), and (e) the circles (squares) correspond to points obtained for different

ixels for a grid of 800 × 800(1600 × 1600) pixels. The line is the result of the least squa

ut for ε corresponding to boxes with lateral size ranging from n = 10 up to n = 25 pixe

esults are for the basins analyzed in Sections 5.1.1, 5.1.2 , and 5.1.3 . 
ver the smaller regions, that correspond to a larger magnification,

ave been done to check the scale invariance expected for frac-

al basins. In the next sub-sections we present the results for each

asin separately. 

.1.1. Case V AC = 0 . 8 V, V DC = 17 . 9 V, and ζ = 0 . 6 

The BCD for the period-1 and period-3 basins in Fig. 5 (b) are,

espectively, D BC = 1 . 88 ± 0 . 03 and D BC = 1 . 94 ± 0 . 01 . A similar re-

ult is obtained for the magnified region in Fig. 5 (c), in which

ase we obtain D BC = 1 . 88 ± 0 . 03 (period-1) and D BC = 1 . 96 ± 0 . 01

period-3). The BCD for the basin boundary was D BC = 1 . 80 ± 0 . 04

nd D BC = 1 . 84 ± 0 . 04 , for the regions in Figs. 5 (b) and (c), respec-

ively. The fact that D BC < 2 for the period-1 and period-3 basins

nd significantly larger than 1 for the basin boundary and the con-

istency between the results for the larger area and its magnified

ortion are results expected for a fractal basin. 

Using the uncertainty method we obtained α = 0 . 078 ± 0 . 001

hich corresponds to a basin boundary dimension of D UM 

=
 . 921 ± 0 . 001 . This value for α is small, and can be interpreted as

eflecting a significant uncertainty regarding which could be the

eriodic state assumed by the system for uncertain initial condi-

ions. We note that D UM 

is significantly larger than the dimension

f the basin boundary obtained using the box counting method . The

pparent discrepancy can be attributed to the inherent imprecision

f the last method to determine the fractal dimension of curves

nd boundaries. The BCD calculated numerically for one or two di-

ensional systems frequently results in dimensions that are wrong

y an actual error that is more than twice the error estimated from

he least squares fit [24] . The actual discrepancy tends to be partic-

larly large in the calculation of the dimension for curves in a 2D

pace, as it is the case of the basin boundary [24] . The estimated

 BC can be easily reconciled with the more precise result obtained

sing the uncertainty method taking into account the extra uncer-

ainty. 

In the course of the analysis to obtain αBE from Eq. (12) we

ave found that some care must be taken for the extraction of cor-

ect results. Eq. (12) suggests a linear relation between ln [ S b ( ε)]

nd ln ( ε), however, quite generally, we have found that the data

oes not fit well to a straight line when the results for small ε are

ncluded. This is illustrated by the results presented in Fig. 8 (a),
e

f

 box sizes ε corresponding a lateral size ranging from n = 4(8) up to n = 10 0(20 0) 

res fit for the circles. In the lower panels we have the same as in (a), (c), and (e) 

ls ((b) and (d)) and n = 40 up to n = 100 (f). From the left to the right panels the 
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Table 1 

Fractal dimension of the basin boundaries obtained using box counting, 

uncertainty method , and basin entropy , for the basins depicted in the 

figures listed below. 

Basin Box counting Uncertainty Basin entropy 

Fig. 5 (b) 1.80 ± 0.04 1.921 ± 0.001 1.888 ± 0.002 

Fig. 6 (b) 1.93 ± 0.03 1.9915 ± 0.0 0 01 1.990 ± 0.001 

Fig. 7 (b) 1.93 ± 0.03 1.9997 ± 0.0 0 01 1.99959 ± 0.0 0 0 04 
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(c), and (e). The reason for such nonlinear behavior and how it is

circumvented is addressed at the Section 6 . What we concluded

is that when intermediate values of ε are used, we obtain either

good or very good fits, depending on the basin being analyzed. In

all cases, the magnitude of the obtained values for αBE represent a

good estimate for the uncertainty exponent, as we are going to see

next. 

To determine αBE for the basin analyzed in this subsection, we

have ignored the smallest ε’s, and included in the fit the points re-

sulting in a sufficiently small fitting error. In this case we consid-

ered the points obtained for boxes with size 10 × 10 up to 25 × 25

pixels, obtaining the fitted line shown in Fig. 8 (b). The resulting

uncertainty exponent is αBE = 0 . 112 ± 0 . 002 for the basin in 5 (b).

In this case, the line fitting is very good and the result is in fair

agreement with α = 0 . 078 ± 0 . 001 obtained using the uncertainty

method . It is worth to note that, for this basin, if we include larger

ε in the fitting, a smaller αBE is obtained, leading to a slightly bet-

ter agreement with α, but the fitting error increases significantly,

indicating that the result may be less reliable. We have also ap-

plied the basin entropy method to the magnified region shown in

5 (c). For this basin we observe a larger influence of a nonlinear

dependence on ln ε, and the line fitting is not so accurate. How-

ever, performing the fitting within the same range of ε we obtain

αBE = 0 . 048 ± 0 . 004 . This result still reflects the significant uncer-

tainty expected for this region of the basin. 

5.1.2. Case V AC = 0 . 3 V, V DC = 17 . 5 V, and ζ = 0 . 3 

The BCD for the period-1 and period-2 basins in Fig. 6 (b) are,

respectively, D BC = 1 . 97 ± 0 . 01 and D BC = 1 . 95 ± 0 . 02 . For the mag-

nified region in Fig. 6 (c), we obtain D BC = 1 . 96 ± 0 . 01 (period-1)

and D BC = 1 . 95 ± 0 . 02 (period-2). For the basin boundary we ob-

tain D BC = 1 . 93 ± 0 . 03 and D BC = 1 . 92 ± 0 . 03 , for the regions in

Figs. 6 (b) and (c), respectively. Again, the value of the dimensions

and the consistency between the results for the larger area and

its magnified portion indicates that the region with intermingled

basins has a fractal structure. However, in this case, the dimension

of the basins and the basin boundary are significantly closer to 2,

a result that reflects the qualitative observation that the basin has

two attractors that are strongly intermingled. 

Using the uncertainty method we obtained α = 0 . 0085 ± 0 . 0001

which corresponds to a basin boundary dimension of D UM 

=
1 . 9915 ± 0 . 0 0 01 . This value of α is significantly smaller than that

of the previous basin. It reflects the even larger uncertainty regard-

ing which could be the periodic state assumed by the system for

uncertain initial conditions. 

While for the previous basin of attraction we obtained a very

good line fitting to the data for Fig. 5 (b), for both the basin in

Fig. 6 (b) and the magnified area in (c), there is a stronger nonlin-

ear contribution. From the fit to the points obtained for boxes with

size of 10 × 10 up to 25 × 25 pixels shown in Fig. 8 (d), we obtained

αBE = 0 . 010 ± 0 . 001 for the basin in 5 (b). In this case, the line fit-

ting is good, as can be seen in Fig. 8 (d), and the result is in fair

agreement with α obtained using the uncertainty method . For the

magnified region we obtain αBE = 0 . 015 ± 0 . 001 , which is close to

the exponent obtained for the larger area, and a reasonable result

that reflects the significant uncertainty of the basin. 

5.1.3. Case V AC = 1 . 0 V, V DC = 18 . 5 V, and ζ = 0 . 4 

The BCD for the period-1 and chaotic basins in Fig. 7 (b) are, re-

spectively, D BC = 1 . 97 ± 0 . 01 and D BC = 1 . 95 ± 0 . 02 . For the basin

boundary we obtain D BC = 1 . 93 ± 0 . 03 . While this basin of attrac-

tion seems to have a stronger mixing of the two attractors, the

BCDs are the same as those obtained for the previous basin. There-

fore, we can see that while the box counting method has the ad-

vantage of providing the fractal dimension of the basins of each
ttractor, this result shows the limitations of the method to char-

cterize the fractal properties of a basin of attraction, and the need

o complement the information using the other methods we are

onsidering. 

Using the uncertainty method we obtained α = 0 . 0 0 03 ± 0 . 0 0 01

hich corresponds to a basin boundary dimension of D UM 

=
 . 9997 ± 0 . 0 0 01 . This α is very small, characteristic of a basin with

xtremely intermingled attractors, and reflects the extreme uncer-

ainty regarding the final state assumed by the system for uncer-

ain initial conditions. 

As for the basin in Section 5.1.2 , there is a comparatively strong

onlinear dependence on ε observed in the calculation using the

asin entropy method . From the fit to the points obtained for boxes

ith the same size considered previously of 10 × 10 up to 25 × 25

ixels, we obtained αBE = 0 . 0070 ± 0 . 0013 . Differing from the pre-

ious results, which where in reasonable numerical agreement

ith α obtained using the uncertainty method , in this case the

asin entropy method misses the actual value by an order of mag-

itude. The result obtained using this range of box dimensions also

as a significant uncertainty of about 20%. The results presented in

ig. 8 (e) indicate that for larger ε (less negative ln ( ε)) the points

end to be more aligned. In fact, using the range of points cor-

esponding to larger boxes of size 40 × 40 up to 100 × 100 pix-

ls results in a best fit, shown in Fig. 8 (f). In this case we obtain

BE = 0 . 0 0 041 ± 0 . 0 0 0 04 . Therefore, the error has been reduced to

0% and the result agrees very well with α obtained using the un-

ertainty method . 

For the sake of clarity, we present in Table 1 , the fractal di-

ension obtained using the three different methods for the basins

nalyzed in the Section 5.1 . 

. Discussion and conclusions 

MEMS/NEMS resonators have many potential applications of

heir nonlinear behavior [3,4,8,12] . However, these applications and

ossibly new applications, require an adequate understanding of

he nonlinear behavior of such systems. Compared to the results

resented in [10] in this work we have presented new results, in

he form of phase diagrams, that help to better understand what

onlinear behavior to expect for doubly clamped suspended beam

EMS/NEMS resonators. We have determined that the most rich

ynamics starts to show up when the effective potential comes

loser to the separatrix between one and double-well regions. The

hase diagrams have revealed the existence of an intricate depen-

ence of the dynamics on the relevant control parameters V AC ,

 DC , and ζ , showing the complex regions with periodic behaviour,

haos and pull-in, which have not been investigated in [10] . The

bserved dependence is even more complex for lower dissipation,

ith the different attractors getting more intermingled. This makes

t much more difficult to predict the final state of the system. Also,

he lower dissipation favors the appearance of more complex dy-

amics farther away from the separatrix, in the region with smaller

alues of V DC . 

Also, a better definition of the regions with chaos, compared

ith the results presented in [10] , have been obtained. This infor-

ation is relevant, for instance, for applications of this system as
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 source of chaotic signals. With the analysis in the present work

e have been able to concluded that chaos is more easily obtained

or lower excitation frequencies and higher dissipation. 

We have performed a detailed investigation of the basins of at-

raction of this system that was missing in previous works in the

iterature. We found that in the regions with evidences of multi-

tability basins of attraction with fractal structures occur quite fre-

uently. The fractality was confirmed through the calculation of

he chaotic saddle and quantified through the calculation of the

ractal dimensions of the basins and its boundary, and the uncer-

ainty exponent. The high fractal dimensions found for the basins

nvestigated in Sections 5.1.2 and 5.1.3 , close to D = 2 , and the very

ow α indicate that we have found extremely intermingled basins.

his results, in practical implementations of the system, in an ab-

olute uncertainty regarding the final state of the system if care is

ot taken to be away from the regions were such basins exist. 

In the analysis of the basins we have used a new method

o determine the uncertainty exponent, namely, the basin entropy

ethod . This method was originally conceived to quantify the com-

lexity of the basins of attraction. Larger entropies S b are expected

o indicate more complex basins, with consequent larger uncer-

ainties regarding the final state of the system. This expectation

s confirmed by the results presented in Fig. 8 (a), (c), and (e). In

uch figures S b obtained for a given ε is much large for the two

asins with visibly more intermingled basins (note that a less neg-

tive ln ( S b ) corresponds to a larger S b ). The entropies in Fig. 8 (e)

re also slightly larger than that depicted in Fig. 8 (c) as it would

e expected based on the results of Sections 5.1.2 and 5.1.3 . 

An important fact, regarding the use of S b to estimate α, is the

bservation of a nonlinear dependence between ln [ S b ( ε)] and ln ε,

nstead of the linear dependence expected according to Eq. (12) .

e have found that the origin of this nonlinearity is the finite res-

lution of the grid. The expected linear relation in Eq. (12) , as-

umes, implicitly, an infinite resolution in the calculation of S b .

hat means, the areas of each basin contained within a 2D box of

ateral side ε are known with infinite precision. However, the ac-

ual calculations are based on areas estimated with a coarseness.

n order to address the effect of the finite resolution we have gen-

rated the basins analyzed in Sections 5.1.1 and 5.1.2 with a finer

rid with resolution 1600 × 1600 pixels. What we observed is that

or the smaller range of ε’s the entropy estimated with lower res-

lution is significantly smaller than that obtained with a finer grid

esolution. As ε increases, the discrepancy between the calcula-

ions with different resolutions becomes very small. This effect is

llustrated by comparing the points obtained with the two resolu-

ions in Figs. 8 (a) and (c). The points for the finer grid resolution

ome much closer to expected linear distribution. Therefore, in or-

er to get a correct estimate of αBE using grids with lower reso-

ution, what is desirable since the computational times is smaller,

mall ε’s must be disregarded. As a practical rule, we suggest that

he lateral size of the 2D boxes must be at least of 10 pixels for

asins covered with a grid of 800 × 800 pixels, as we have consid-

red in our calculations of αBE . 

Using intermediate values of ε we have obtained very good es-

imates of α with the basin entropy method using basins calculated

ith a grid resolution that demands a reasonable computational

ime. We conclude, therefore, that it is an adequate alternative

ethod to calculate α. The new approach deserves a more sys-

ematic study in order to further investigate its reliability and

recision, and to address its computational efficiency compared to

ther methods, which is beyond the scope of the present work. 

Further theoretical and experimental investigation of the sys-

em we investigated is required for a complete understanding of

ts dynamics. The effect of longitudinal prestress on the phase di-

gram and basins would be interesting to be analyzed, since small

tresses are usually present in micro and nanofabricated devices.
owever, as the approximate dynamical equation describing the

ystem retains the same form, similar results should be expected

or small prestress. The influence of noise, which can be significant

or the smaller NEMS resonators [19] , has not been studied so

ar. Also, recent experimental [25] and theoretical [26,27] results

ndicate that nonlinear damping can be large in such systems. As

he nonlinear damping generally increases with the amplitude of

ibration, it could play a significant role in the total dissipation

n the strong nonlinear regime that we have investigated in this

ork, where the amplitudes of vibration are high compared to

he beam thickness. The recent theoretical prediction that two-

requency excitation can result in robust chaos in this system

15] should also motivate further theoretical investigations of

EMS/NEMS resonators. 
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ppendix A. Proof of a general linear relation between ln S b 
nd ln ε, with angular coefficient αBE 

In this proof we consider that the region containing the two

asins of attraction is covered with a regular grid of N square boxes

f side ε. 

We start the proof by noting that since we have only two at-

ractors (1 and 2) and the p i,j in Eq. (11) must satisfy p i, 1 + p i, 2 = 1 ,

he basin entropy can be written as 

 b = − 1 

N 

N ∑ 

i =1 

( p i, 1 ln p i, 1 + p i, 2 ln p i, 2 ) 

= − 1 

N 

N ∑ 

i =1 

{ p i [ ln p i − ln (1 − p i )] + ln (1 − p i ) } = − 1 

N 

N ∑ 

i =1 

S i , 

(A.1) 

here, for simplicity, we have taken p i = p i, 1 . 

Now, we take into account that in any real computation the

asin is discretized into pixels. We consider pixels with equal size,

nd each square box containing N 

2 
p pixels, where N p is the number

f pixels comprised in the length ε. Consequently, for any given

ox the p i can only assume one out of a set of discrete values

p i = 0 , 1 /N 

2 
p , 2 /N 

2 
p , . . . , 1 − 1 /N 

2 
p , 1 . The boxes with p i = 0 or 1 do

ot contribute to S b , because S i = 0 in such cases. What is left is

he contribution of the boxes at the boundary, those containing

ixels of both attractors. Therefore, the possible values of the p i 
or the remaining N 2 boxes are 

p m 

= 

m 

N 

2 
p 

, m = 1 , . . . , N 

2 
p − 1 . (A.2)

oting that it is always true that a certain fraction q m 

of the N 2 

oxes covering the boundary has a basin probability p m 

, the basin

ntropy can be written as 

 b = − 1 

N 

N 2 p −1 ∑ 

m =1 

q m 

N 2 S m 

= −N 2 

N 

N 2 p −1 ∑ 

m =1 

q m 

S m 

= −N 2 

N 

× C . (A.3)

https://doi.org/10.13039/501100003593
https://doi.org/10.13039/501100001807
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The constant C appearing in the last expression depends upon

the particular distribution q m 

. In the case of the fractal basins we

have investigated, the q m 

concentrate around a mean value with

a Gaussian-like distribution. It is interesting to note, however, that

for the more regular basins of attraction for the damped Duffing

oscillator investigated by Daza et al. [23] (see their Fig. 3 (a)-(c))

the p m 

are distributed more evenly, independently of the box res-

olution N p . 

To complete the proof we can now simply follow the reasoning

used by Daza et al. [23] and consider that N 2 scales as nε−D and

N as ˜ n ε−d , where D and d are, respectively, the dimensions of the

basin boundary and that of the basin. Therefore, 

S b = 

n 

˜ n 

εd−D × constant = 

n 

˜ n 

εαBE × C , (A.4)

and a generalized linear relation follows 

ln [ S b (ε)] = αBE × ln (ε) + ln 

(
n 

˜ n 

C 

)
. (A.5)

We have thus concluded that for basins containing only two at-

tractors we can always expect a linear relation between ln [ S b ( ε)]

and ln ( ε), in which the angular coefficient can be interpreted as

the uncertainty exponent. 
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