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ABSTRACT

The study of billiards investigates the trajectories of particles that move freely in a region and reflect elastically at boundaries. Although there
is already considerable understanding about invariant spanning curves, also known as whispering gallery orbits in the context of billiards,
their determination in the phase space of the system, in addition to the analysis of their existence is still an open question. Our proposal
is to present a numerical method based on Slater’s theorem, capable of determining the location of these curves in phase space, as well as
finding the critical parameter at which these curves are no longer observed. In this work, we apply this method to determine the location
of a set of invariant spanning curves in an oval billiard for different parameter values. Furthermore, we identified the critical parameter at
which the phase space no longer presents these curves and local chaos becomes global. We compared our numerical results with analytical
results present in the literature, proving the effectiveness of the proposed method. By studying the rotation number, we obtain additional
information about the behavior of these curves and also of the systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0250725

In this paper, we present a numerical method based on Slater’s
theorem to investigate invariant curves in oval billiards, address-
ing a challenge that remained without clear evidence in the lit-
erature: the precise location of these curves in phase space and
the determination of the critical parameter εc at which they are
destroyed. Although previous studies have predicted the destruc-
tion of these curves, concrete evidence to validate these predic-
tions has not yet been provided. The proposed method combines
high accuracy with computational efficiency, revealing the posi-
tion of the curves and confirming the validity of the theoretical
predictions. Furthermore, the analysis of the rotation number
provides details on the transition dynamics between periodic and
chaotic regions in phase space. This work not only fills impor-
tant gaps in the understanding of billiard dynamics but also offers
a robust tool for the analysis of invariant structures and their
implications in nonlinear dynamical systems.

I. INTRODUCTION

The dynamics of billiards have proven to be a captivating field
of study, providing valuable perceptions not only for the theory of
dynamic systems but also for numerous practical applications. The
investigation of these systems offers a unique perspective on the
complexity of particle trajectories interacting with rigid boundaries,
presenting intriguing challenges and motivating further exploration.

Billiards, as idealized systems of particles reflecting off
boundaries,1,2 play a crucial role across various domains, from
fundamental physics to practical problem-solving applications.
They serve as simplified models to comprehend complex phe-
nomena, finding widespread applications in areas such as optics,3

acoustics,4 superconducting,5 and studies involving mesoscopic
quantum dots.6

Within the realm of billiards, invariant curves emerge as fun-
damental elements.7,8 These curves, which remain unchanged over
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time, play a vital role in characterizing and understanding the over-
all behavior of the system. In particular, invariant spanning curves
are crucial in separating regions with different dynamical behaviors,
serving as barriers that confine trajectories and prevent the global
diffusion of phase space. They dictate a scaling property that leads to
critical exponents analogous to those observed in phase transitions.
Their significance extends beyond billiards, as they are fundamental
structures in nonlinear dynamical systems, including Hamiltonian
systems,9 plasma confinement,10 and celestial mechanics.11 The pres-
ence or destruction of these curves directly influences the long-term
stability of a system, impacting the predictability and transport
properties of dynamical trajectories.

Specifically, determining invariant curves in oval billiards
represents a significant and essential challenge to elucidate the
complexity of these systems. Previous studies have substantially
contributed to understanding billiards, showcasing important dis-
coveries such as the expression for the critical parameter for global
chaos.12 However, despite these advances, a crucial aspect remains
unexplored: the precise determination of the positions of invari-
ant curves. Our work aims to fill this gap, providing an innovative
approach that allows for the accurate determination of these curves
in oval billiards.

Furthermore, our study incorporates Slater’s theorem,13,14 a
fundamental result in the theory of dynamic systems, stating that in
a quasiperiodic orbit, there are at most three recurrence times, with
the largest being equal to the sum of the other two. This theory plays
a crucial role in our work, providing a solid theoretical framework
for the analysis of invariant curves in oval billiards.

Thus, the relevance of this study extends beyond the mere
determination of invariant curves in oval billiards; it contributes
to advancing the understanding of complex dynamic systems and
applying this knowledge in various fields. We hope that this work
not only addresses gaps in existing knowledge but also inspires
future research, contributing to the continuous development of the
theory of dynamic systems and its practical applications.

This paper is organized as follows: in Sec. II, we present the bil-
liard model used in this study, describing its properties. In Sec. III,
we detail the method based on Slater’s theorem, explaining its appli-
cation in determining invariant spanning curves. In Sec. IV, we
show the results obtained through the application of this method,
highlighting the location of the curves in phase space, the determi-
nation of the critical parameter and comparing them with the results
present in the literature. In Sec. V, we perform a rotation number
analysis, providing an additional understanding of the behavior of
invariant spanning curves. Finally, in Sec. VI, we present our final
considerations, summarizing the main conclusions.

II. THE MODEL

The dynamics of a billiard essentially consist of the evolving
of a classical particle in a closed region delimited by a rigid bound-
ary, with which the particle collides and is reflected specularly (the
incidence angle at the collision point is equal to the reflected one).
When the boundary is assumed as static over time and the collisions
are of the elastic type, the particle experiences the conservation of its
energy throughout the entire evolution of dynamics.12

FIG. 1. Schematic draft for a collision (red line) of a particle in an oval billiard.

If we assume a generic billiard with a static boundary described
in the polar form by Rb(θ), then it is possible to describe the parti-
cle dynamics for the nth collision inside of the system through the
angular variables (θn, αn), where the dynamical variable θn repre-
sents the position of the particle along the boundary and αn indicates
the angle formed by the trajectory of the particle and a tangent line
to the boundary at position θn (see Fig. 1). Assuming the absence
of potential acting within the billiard and a scenario of elastic colli-
sions, the particle will then exhibit a motion with a constant velocity
(in magnitude) along a straight line between the collisions in the sys-
tem (free motion). In such case, we can write the radial position of
the particle at time t inside the billiard as

Rp(t) =
√

X2
p(t) + Y2

p(t), (1)

where Xp(t) and Yp(t) are, respectively, the rectangular coordinates
of the particle, i.e.,

Xp(t) = X(θn) + | EVn| cos(αn + φn)[t − tn], (2)

Yp(t) = Y(θn) + | EVn| sin(αn + φn)[t − tn], (3)

with | EVn| indicating the speed of the particle and φn = arctan
[

Y′(θn)

X′(θn)

]

, where X′(θn) = dX(θn)/dθn and Y′(θn) = dY(θn)/dθn.

Numerically, we define a new collision θn+1 of the parti-
cle with the boundary solving the implicit equation Rp(θn+1, tn+1)

= Rb(θn+1), with time tn+1 given by

tn+1 = tn +

√

1X2
p + 1Y2

p

| EVn|
, (4)

where 1Xp = Xp(θn+1, tn+1) − X(θn) and 1Yp = Yp(θn+1, tn+1)

− Y(θn).
Through the conservation of the momentum, we can find the

reflection laws for the collision of the particle with the boundary.
Taking into account that the billiard in the presented formalism
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exhibits a static shape over time, then the velocity of the particle after
the n + 1 collision can be described along the tangent and normal
components as

EVn+1 · ETn+1 = EVn · ETn+1, (5)

EVn+1 · ENn+1 = − EVn · ENn+1, (6)

where ETn+1 = cos(φn+1)î + sin(φn+1)ĵ and ENn+1 = − sin(φn+1)î

+ cos(φn+1)ĵ are, respectively, the tangent and normal unit vectors.
Naturally, the velocity of the particle in magnitude after the

n + 1 collision is given by

| EVn+1| =
√

[

EVn+1 · ETn+1

]2

+
[ EVn+1 · ENn+1

]2
, (7)

while the reflection angle αn+1 is

αn+1 = arctan

[

EVn+1 · ENn+1

EVn+1 · ETn+1

]

. (8)

As already known, the dynamic exhibited by a particle in a bil-
liard is totally connected with the shape of the system, i.e., depending
on the geometry of the boundary, the billiard might present different
types of structures, such as integrable,12,15 ergodic,16,17 or mixed.18,19

The last case can be considered the richest one for billiards, once
from a dynamic point of view the phase space for the mixed case
might present the coexistence of stability islands and invariant span-
ning curves that delimit regions of chaos. In this work, the model we
will address is known as the oval billiard,12,20,21 which falls under the
mixed-type structure. The boundary of this billiard is described in
polar coordinates by the equation

R(θ , ε, p) = 1 + ε cos(pθ), (9)

where ε is the nonlinearity parameter corresponding to the pertur-
bation amplitude of the circle. For ε = 0, we recover the circular
billiard, which is integrable. On the other hand, if ε 6= 0, the phase
space exhibits regular regimes, invariant curves, and chaos. The
parameter p controls the deformation of the boundary, which is a
positive integer value. Such parameters play a crucial role in bil-
liard dynamics, since, depending on the combination of the ε and
p parameters, the billiard boundary can be concave or convex. Fur-
thermore, the concavity of the border is directly related to invariant
spanning curves (whispering gallery orbits), which can be defined as
a set of quasi-periodic curves that continue bordering along the bil-
liard wall. A border with concave curvature ends up favoring orbits
with these characteristics, as exemplified in Fig. 2(a). However, for a
convex boundary, as shown in Fig. 2(b), the curvature of the wall
itself prevents the particles from maintaining trajectories that go
around the entire billiard wall, resulting in the extinction of this type
of orbit that borders the boundary of the billiard. Thus, when the
billiard boundary has a concave (positive) curvature, invariant span-
ning curves are observed, on the other hand, if the border is convex
(negative), there are no curves of this type.

Due to the significant influence of the parameters ε and p on
the dynamics of the system, works such as Ref. 12 were dedicated to
finding an expression that relates these parameters and determines

FIG. 2. Representation of a particular trajectory for two distinct boundaries:
(a) p = 2 and ε = 0.1 that corresponds to a concave boundary and (b) p = 2
and ε = 0.3 that corresponds to a convex boundary.

the critical value of ε from which invariant spanning curves. This
expression is given by

εc = 1

1 + p2
, p ≥ 1, (10)

where, for values of ε smaller than εc, the boundary becomes con-
cave, while for values greater than εc, the concavity of the bound-
ary is convex. Illustrating this situation, we have Fig. 3(a), where
ε = 0.1 and p = 2. We observe that according to Eq. (10), εc = 0.2.
Therefore, in this case, ε < εc, and in the phase space shown in
Fig. 3(a), it is possible to notice the presence of invariant span-
ning curves, located in both the lower and upper parts of the phase
space. Furthermore, we highlight in red the orbit shown in Fig. 3(a),
confirming that this trajectory corresponds to a whispering gallery
orbit, that is, to an invariant spanning curve. On the other hand,
in Fig. 3(b), we have the phase space for ε = 0.3 and p = 2, that is,
ε > εc. In this case, it is possible to notice the absence of invariant
spanning curves, and the chaos that was local in Fig. 3(a) becomes
global, see Fig. 3(b).

In Sec. III, we will present a numerical method capable of deter-
mining the critical value of ε with good precision and also accurately
determining the location of the invariant spanning curves in the
phase space.

III. THE METHOD

Many studies have been dedicated to investigating invariant
spanning curves in various models of dynamical systems, since these
curves play a crucial role in the dynamics of these systems, acting as
barriers in the process of particle diffusion and transport, delimiting
the sea of chaos. However, in the context of billiards, there is a con-
siderable gap, especially with regard to the location of these curves
in phase space.

A notable work in this area is the study conducted by Oliveira
et al.,12 in which the authors managed to determine the criti-
cal parameter at which all invariant curves are destroyed. They
exploited the concavity of the boundary to obtain such a result.
However, this work focuses mainly on the behavior of the last curve,
in addition to presenting a complex mathematical approach that
requires laborious development. Moreover, their results provide an
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FIG. 3. Phase space for the oval billiard for p = 2 and different values of ε. (a) ε = 0.1 and the red curve corresponds to the orbit highlighted in Fig. 2(a), this curve
corresponds to the First Invariant Spanning Curve (FISC). (b) ε = 0.3 where all invariant spanning curves have been destroyed.

estimate for the critical parameter but do not include numerical ver-
ification. In our work, we aim to complement this analysis by pro-
viding numerical evidence to confirm the destruction of invariant
curves, reinforcing the validity of their theoretical predictions.

Our proposal aims to utilize Slater’s theorem13 to identify mul-
tiple invariant curves within the phase space of an oval billiard. The
implementation of the method is relatively straightforward, boasting
a low computational cost when compared to alternative techniques.
Nevertheless, this approach enables precise localization of these
curves within the phase space. Additionally, it facilitates the determi-
nation of the critical parameter value associated with the destruction
of the last curve. This method has previously demonstrated suc-
cess in applications to the Standard Map,22 Fermi–Ulam model,23

and a family of Hamiltonian maps.24 Such successful applications
underscore the method’s reliability and accuracy.

Slater’s theorem13 states that, for any interval of size δ of a
quasi-periodic trajectory, there are at most three different recur-
rence times: 01, 02, and 03 = 01 + 02. In other words, for an
invariant curve with an irrational rotation number, only three recur-
rence times are observable, the largest of which is equal to the sum
of the other two. To illustrate, consider a point moving along a cir-

cle with an irrational rotation number (e.g.,
√

2 module 1). If we
mark a small interval on the circle and track when the point revisits
it, we will find that the time intervals between successive visits are
constrained to exactly three distinct values, obeying 03 = 01 + 02.

Applying the method involves checking whether or not a coor-
dinate (θ , α) belongs to the invariant curve, which is done by check-
ing whether there are only three recurrence times. Thus, for each
pair (θ , α), we apply Slater’s theorem, calculating the number of iter-
ations that an orbit takes to return to an interval δ close to where it
started. If there are only three distinct times, as predicted by Slater’s

theorem, we conclude that the point (θ , α) belongs to an invariant
curve. Otherwise, we advance one step 1α in variable α and repeat
the procedure until the theorem is satisfied, identifying the point
(θ , α) for which the condition was met as belonging to an invariant
spanning curve.

Now, to determine the critical parameter εc after which all
curves are destroyed, we proceed by gradually increasing the param-
eter ε and searching for invariant curves. Whenever we identify a
coordinate (θ , α) that satisfies Slater’s criterion, this indicates the
presence of at least one invariant curve. Thus, when going through
the entire range of phase space and not finding a pair (θ , α) that
satisfies Slater’s criterion, we conclude that all curves have been
destroyed. The last value of ε for which we still identify some curve is
then considered the critical parameter εc. In Sec. IV, we will present
some results from the implementation of this method.

IV. NUMERICAL RESULTS

Based on the methodology presented in Sec. III, we determined
a set of invariant curves that satisfy Slater’s theorem. Four of these
curves are highlighted in Fig. 4, which represents the upper part of
the phase space, showing the locations of the invariant curves. It is
important to note that there are many invariant curves in this region,
and the four highlighted are provided only as representative exam-
ples. In Table I, each of these curves is identified, along with the
recurrence times corresponding to each one, confirming that all sat-
isfy Slater’s theorem, with the largest recurrence time equal to the
sum of the other two. Furthermore, the table provides the initial
coordinates (θ , α) analyzed and associated with each curve, allowing
for the precise location of each curve on the graph in Fig. 4.
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FIG. 4. Enlargement of the upper region of the phase space for p = 2 and
ε = 0.1. The highlighted curves correspond to the curves found using the Slater
criterion whose information is found in Table I.

Using this technique, we can identify specific curves, such as
the First Invariant Spanning Curve (FISC). This curve plays a cru-
cial role, since the critical exponents, which describe the transition
from integrability to non-integrability in a two-dimensional non-
linear map, are obtained by locating the first invariant spanning
curve in phase space. In a general class of systems, the position of
the first invariant spanning curve is estimated by reducing the sys-
tem mapping to the standard mapping, where there is a transition
from local chaos to global chaos. However, this procedure is not

TABLE I. Recurrence times for δ = 10−4 and coordinates for identified invariant

spanning curves in Fig. 4.

01 02 03 (θ , α)

Curve 4 14 718 2059 16 777 (π , 3.0974)
Curve 3 5815 6511 12 326 (π , 2.9914)
Curve 2 12 356 7419 19 775 (π , 2.8943)
FISC 5205 9713 14 918 (π , 2.8378)

viable for billiards, as it would lead to the resolution of transcenden-
tal equations. However, when using Slater’s theorem, determining
this curve becomes feasible and highly accurate. This curve is high-
lighted in red (FISC) in Fig. 4. It is possible to observe the presence
of a chain of islands both above and below the curve, with a vast
sea of chaos being bounded by the first curve. Therefore, an initial
condition given below the curve cannot penetrate the region of sta-
bility above it, just as an initial condition given above the curve never
visits the chaotic region below it. These results illustrate the signifi-
cant influence of the first invariant curve on the dynamic of systems,
highlighting its importance in understanding the transition between
different dynamic regimes.

As mentioned, the proposed method determines the critical
parameter at which the last invariant spanning curve is destroyed,
marking the point beyond which no spanning curve is observed in
the system. We apply this analysis to the proposed billiards, start-
ing with p = 2. According to Eq. (10), for p = 2, εc = 0.2. Using
our method, based on Slater’s theorem, we found εc = 0.195 777 2,

FIG. 5. (a) Phase space for ε = εc = 0.195 777 2 and p = 2. (b) Enlargement of the upper part of the phase space of (a) where the last curve found by Slater’s criterion
is highlighted in red.
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FIG. 6. (a) Phase space for ε = 0.05 and p = 3, where the First Invariant Spanning Curve (FISC) and three other curves are represented. (b) Enlargement of the upper
part of the phase space for ε = εc = 0.195 777 2 and p = 3, where the last curve found by Slater’s criterion is highlighted in red.

a value very close to that predicted in Ref. 12, with a relative error
(percent) RE(%) = 2.1%. These results demonstrate the method’s
effectiveness in accurately identifying the transition point for the
destruction of invariant curves, aligning with theoretical expecta-
tions and reinforcing its reliability.

To corroborate this, Fig. 5 presents the phase space for
ε = 0.195 777 2 and p = 2 from two perspectives. In Fig. 5(a), a large
chaotic sea is visible, with many structures, including the invari-
ant spanning curves, destroyed. Figure 5(b) provides an enlarged
view of the upper region, highlighting the near-total destruction
of invariant curves. The last remaining curve, identified using
Slater’s theorem, is marked in red. The analyzed point of this curve
was (π , 3.138 114 857 512 855 2), with recurrence times 01 = 982,
02 = 1982, and 03 = 2964 (for δ = 10−3), satisfying Slater’s
criterion.

We now extend our analysis to other values of the parameter p
in order to verify the validity of the expression for εc. In Fig. 6(a), we
present the phase space for p = 3, where again we observe a mixed
phase space. Again, we highlight four curves found using Slater’s
criterion. Table II shows the position of each of them, as well as
recurrence times found for each case. Note that it is still possible to
observe a large number of invariant curves in the upper part of the
phase space, indicating that the ε value used is smaller than the criti-
cal εc. Therefore, applying the proposed method, we determined that
εc = 0.0935 (RE(%) = 6.5%), which again is very close to the value
predicted by Eq. (10). In Fig. 6(b), an enlargement of the region close
to the invariant spanning curves is shown, confirming that for this
value of ε the vast majority of curves have already been destroyed.

In the same figure, we highlight in red the last invariant spanning
curve found using Slater’s criterion.

So far, we have applied the method to even and odd values
of p, and in both cases it was possible to determine the position
of the curves in the phase space, as well as find the critical param-
eter for the respective value of p. In Fig. 7, we show the results
obtained for higher values of p. In this figure, the solid line is
given by Eq. (10), while the points represent the numerical results
obtained with the proposed method. It is possible to notice the
correspondence between the numerical results and the expected
value.

In oval billiards, the presence or absence of comprehensive
invariant curves marks the transition to chaos, which may not occur
in other billiards models.25 Nevertheless, our method remains a use-
ful tool for analyzing the phase space structure in mixed-chaotic
systems. Even when there are no global invariant curves separat-
ing chaotic and regular regions, Slater’s theorem can still be applied

TABLE II. Recurrence times for δ = 10−4 and coordinates for identified invariant

spanning curves in Fig. 6(a).

01 02 03 (θ , α)

Curve 4 4493 9660 5167 (π , 3.0735)
Curve 3 2647 5019 2372 (π , 3.0674)
Curve 2 1269 6277 7546 (π , 3.0299)
FISC 2510 5499 2989 (π , 3.0105)
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FIG. 7. Comparison between the expected εc result, given by Eq. (10), and the
result found using the method based on Salter’s theorem.

within islands of stability immersed in the chaotic sea. In such cases,
it allows the identification and study of the invariant curves within
these isolated islands, providing insights into their rupture and the
local transition to chaos. While in this work we have specifically
used the method to study invariant spanning curves, it could also be
applied to other types of invariant structures, such as islands, further
broadening its applicability in the analysis of complex dynamical
systems.

V. ROTATION NUMBER

An observable that also provides relevant information about
invariant spanning curves is the rotation number ω. It quantifies the
periodic or quasi-periodic behavior of a trajectory around a fixed
point or a closed curve in a dynamical system, measuring the aver-
age angular displacement per iteration. In other words, ω indicates
how the phase variable θ evolves over time relative to the total num-
ber of iterations, capturing the global behavior of an orbit. An orbit
{(θt, αt) : t ∈ Z}, has rotation number ω if the limit

ω = lim
N→∞

1

N

N
∑

t=0

�(θt) (11)

exists.26 The function �(θt) defines how the collision angle or tra-
jectory direction changes with each collision. Thus, in Eq. (11),
∑N

t=0 �(θt) = θN − θ0 and N corresponds to the number of
iterations.

The rotation number plays a fundamental role in distinguish-
ing different dynamical regimes. When ω is a rational number, the
trajectory is periodic, meaning the orbit eventually repeats itself after
a finite number of iterations. Conversely, if ω is irrational, the orbit
is quasi-periodic, densely filling a toroidal surface without repeating
exactly. In Fig. 8(b), we show the profile of the rotation number ω,
calculated along the red dashed line in Fig. 8(a). For chaotic regions,
the rotation number does not converge, which is represented by
the cloud of points in Fig. 8(b). On the other hand, for periodic

FIG. 8. (a) Phase space for ε = 0.1 and p = 2. (b) Rotation number profile
calculated by the long red dashed line in (a).

or quasi-periodic regions, this number converges, corresponding to
the plateaus in Fig. 8(b), highlighting the large chain of islands with
a rotation number equal to π . This characterization allows us to
detect invariant spanning curves since these curves act as barriers in
phase space, preventing global chaos. When an invariant spanning
curve exists, the rotation number remains constant along the curve,
reinforcing its role as an effective transport barrier in the system.

Regarding the invariant spanning curves, the result presented
in Fig. 8(b) shows that the rotation number goes continuously to 0
as α tends to π (upper part of the phase space) or as α tends to 0
(lower part phase space). We believe that this behavior occurs due
to the fact that ω corresponds to the average variation of the θ vari-
able and as seen previously, an invariant curve borders the billiard
wall, making the distance traveled from one collision to another very
small and, consequently, the variation of θ is also small. Further-
more, these curves are quasi-periodic and have irrational rotation
numbers. The irrational rotation number ensures that the orbit does
not repeat exactly, but fills the curve densely.

In addition to the rotation number profile, we constructed the
rotation number space shown in Figs. 9 and 10. This space corre-
sponds to a region of the model’s phase space, where the color is
related to the rotation number. Black and blue colors correspond to
rotation number values approximately between 0 and 1, while warm
colors such as yellow, orange, and red correspond to values ranging
between 2.5 and π . Intermediate values are represented in shades of
green.

In Fig. 9, we have a central region highlighted in red, which
corresponds to a chain of islands with a rotation number equal to π ,
evidenced by the largest plateau in Fig. 8(b). Still in Fig. 9, we observe
two regions located at the bottom and top edges of the figure,
with rotation numbers between 0 and 1, which correspond to the
regions where the invariant spanning curves are located. Note that
in these regions there is a transition from blue to black, again indi-
cating that the rotation number tends to 0 when α → 0 (or α → π).
Finally, between these two regions, we have a large predominantly
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FIG. 9. Rotation number space for ε = 0.1 and p = 2, the color scale corre-
sponds to the rotation number ω. Chaos is in the large predominantly area.

orange area, where there is no convergence of the rotation number,
characterizing a chaotic region.

For a more detailed analysis of the border between the blue
and green regions, we made an enlargement, as shown in Fig. 10. In
this figure, we highlight the first invariant spanning curve, marked
in red. Above this curve, we notice a smooth transition from blue
to black, reinforcing the presence of other spanning curves and the
absence of chaos in this region. On the other hand, below the first
invariant spanning curve, it is possible to notice a dense layer where
the rotation number is very close to that of the curve, at least for a
certain time interval. Further down, it is already possible to notice
the presence of islands and chaotic regions, consequently presenting
a greater variation in the rotation number.

FIG. 10. Enlargement of the upper region of the rotation number space in Fig. 9.
The First Invariant Spanning Curve (FISC), highlighted in red, highlights its role
as a barrier.

VI. CONCLUSIONS

In this study, we investigated the dynamic properties of an
oval billiard, with emphasis on determining the invariant span-
ning curves, which delimit regions of chaos in phase space. We use
Slater’s theorem as a theoretical basis for developing a numerical
method capable of accurately locating these curves and determin-
ing the critical value of the parameter ε, from which the invariant
curves are destroyed.

Furthermore, rotation number analysis provided additional
information not only about the behavior of the invariant spanning
curves but also about the dynamics of the system as a whole. Indi-
cating the transition between periodic and chaotic regions in phase
space. The visualization of the rotation number space revealed the
influence of invariant spanning curves on the system dynamics and
their role as a barrier in the phase space.

The results obtained demonstrate the effectiveness of the pro-
posed method, evidenced by the agreement with the analytical
results present in the literature. We identified the invariant span-
ning curves for different values of the parameter p and verified the
validity of the expression for the critical parameter εc, comparing the
theoretical values with those obtained numerically. We believe this
is a robust tool for finding invariant curves and determining critical
parameters.
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