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Abstract. Brain plasticity refers to brain’s ability to change neuronal
connections, as a result of environmental stimuli, new experiences, or
damage. In this work, we study the effects of the synaptic delay on
both the coupling strengths and synchronization in a neuronal net-
work with synaptic plasticity. We build a network of Hodgkin—Huxley
neurons, where the plasticity is given by the Hebbian rules. We ver-
ify that without time delay the synapses become regulated by both
the nature (excitatory or inhibitory) and the frequency of the presy-
naptic and postsynaptic neuron. A presynaptic excitatory (inhibitory)
neuron with higher (lower) frequency enhances the synaptic strength if
the postsynaptic excitatory (inhibitory) neuron has lower (higher) fre-
quency. When the delay is increased the network presents a non-trivial
topology. Regarding the synchronization, only for small values of the
synaptic delay this phenomenon is observed.

1 Introduction

Neuroplasticity, also known as brain plasticity, refers to brain’s ability to change neu-
ronal connections, as a result of environmental stimuli, new experiences, or damage
[1]. The brain plasticity can be functional or structural. The functional plasticity
occurs when functions are moved from a damaged to other undamaged areas, and
structural plasticity is associated with changes in the physical structure [2]. On this
regard, Borges et al. [3,4] studied the effects of the spike timing-dependent plasticity
(STDP) on the neuronal synchronization. They observed that the transition between
desynchronized and synchronized states depends on the external perturbation level
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and the neuronal architecture. It is know that neuronal synchronization is important
in information binding [5] and cognitive functions [6]. Nevertheless, synchronization
can be related to brain disorders such as Parkinson’s disease [7] and seizures [8]. This
way, there have been many researches about not only neuronal synchronization [9],
but also suppression of synchronous behavior [10].

We focus here on the effects of the synaptic delay on a neuronal network with
STDP. Information transmission delay is inherent due to both the delays in synaptic
transmission and the finite propagation velocities in the conduction of signals [11].
Hao et al. [12] studied synchronization transitions in a modified Hodgkin—Huxley
neuronal network with time delay. They found multiple synchronization transitions
when the time delay is considered.

Experimental evidence of neuroplasticity was provide by Lashely in 1923 [13]. He
identified high evidence of changes in neural pathways by means of experiments on
rhesus monkeys. More significant evidence began to be observed in the 1960s. In 1964,
Diamond et al. [14,15] published research about neuroplasticity, which is considered
as the first evidence of anatomical brain plasticity. Bach-y-Rita [16] created a machine
that helped blind people not only to distinguish objects, but also to read. In 1949, the
neuropsychologist Donald Olding Hebb [17] wrote a book entitled “The organization
of behavior”, where he proposed that neurons which fire together, also wire together.
The Hebbian plasticity model led to a spike timing-dependent plasticity (STDP).
The STDP function for excitatory and inhibitory synapses were showed by Bi and
Poo [18] and Haas et al. [19], respectively.

In this work, our results suggest that alterations in the synchronization and con-
nectivity in a plastic network depend on the synaptic delay. Without time delay
synchronization is promoted and the network’s topology becomes strongly structured,
where the synapse that link the pre and postsynaptic neuron becomes enhanced
or not depending on the nature of the neuron synaptic propensity (excitatory or
not) and the neuron frequency. When time-delay is turned on the networks topology
becomes highly non-trivial, and leading to a weak form of synchronization. We con-
sider a Hodgkin—Huxley neuronal network with inhibitory and excitatory neurons.
The Hodgkin—Huxley model [20] was proposed in 1952, and it is given by coupled
differential equations that explains the ionic mechanisms.

This paper is organized as follows: Section 2 introduces the Hodgkin—Huxley neu-
ral network with synaptic delay. In Section 3, we introduce the synaptic plasticity. In
Section 4, we show our results about synaptic weights and neuronal synchronization.
In Section 5, we draw the conclusions.

2 Hodgkin—Huxley neural network with synaptic delay
In the neuronal network we consider as local dynamics the neuron model proposed

by Hodgkin and Huxley in 1952 [20]. The individual dynamics of each neuron in the
network is given by

OV; = I — gxn} (Vi — Fx) — gNam?’h-(v — Fxa)
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My = Q, (Vi) (1 —my) — B, (Vi)ms, (3)
hi = an, (Vi)(1 — hy) — Bn, (Vi) i, (4)

where C' (uF/cm?) is the membrane capacitance and V; (mV) is the membrane
potential of neuron ¢ (i = 1,...,N). I; represents a constant current density that
is randomly distributed in the interval [9.0;10.0], wgx. (excitatory) and winnib
(inhibitory) are the average degree connectivities, ¢;; and o;; are the excitatory
and inhibitory coupling strengths from the presynaptic neuron j to the postsynap-
tic neuron ¢. Ngyxc and Niphip are the number of excitatory and inhibitory neurons,
respectively. The parameters gx, gno and gy, are the conductances of the potassium,
sodium and leak ion channels, respectively. Fx, En, and Ep, are the reversal poten-
tials for these ion channels. The functions m(V;) and n(V;) represent the activation
for sodium and potassium, respectively. h(V;) is the function for the inactivation of
sodium. The functions au,, By, Qumn, Bm,h, Bn are given by

By(v) = 0.125 exp (‘”8_065> , (6)
am(v) = 77 ex(;l(v—;—.fv —4y @)
fn(e) = doxp (). ©)
an(v) = 0.07exp (_“2_065> , )
Bu(v) ! (10)

T 1texp (—0.1v — 3.5)’

where v = V/[mV]. The neuron can present periodic spikings or single spike activity
as a result of the variation of the external current density I; (uA/cm?). The frequency
of the periodic spikes increases if the constant I; increases.

In equation (1) the term f;(¢) is a function which represents the strength of an
effective synaptic (output) current and it is given by

—(t—t;—7)

fi)=e" 7, (11)

where 7, is the synaptic time constant and ¢; is the most recent firing instant of
the neuron j. The parameter 7 is the time delay and consequently the time that the
current f;(t) spends to achieve the postsynaptic neuron [12]. Figures la and lc show
the time evolution of the action potential V;(t) for 7 = 0 and 7 = 3 ms, respectively.
The action potential starts at —70 mV and when a stimulus is applied it spikes
upward. After the peak potential, the action potential falls to the resting potential.
In Figures 1b and 1d we calculate f;(t) for the respective Figures la and lc. We see
by means of the dashed green line that the transmission of the synaptic current to
the postsynaptic is not instantaneous for 7 = 3 ms.

In our simulations, we consider C' = 1 uF/cm?, Ex, = 50mV, Ex = —77mV,
Fr, = —54.4mV, gna = 120mS/cm?, gg = 36 mS/cm?, gr, = 0.3mS/cm? and 7, =
2.728 ms. The neurons are excitatorily coupled with a reversal potential VEx¢ =
20mV, and inhibitorily coupled with a reversal potential V"M = —75mV [4].
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Fig. 1. Time evolution of the action potential V;(¢) of a presynaptic neuron j and the respec-
tive synaptic current (output) f;(t) that achieves the postsynaptic neuron i. We consider
7=0.0ms in (a) and (b), and 7 = 3.0ms in (c) and (d).

3 Synaptic plasticity

Synaptic plasticity is the process that produces changes in the synaptic strength,
namely it is the strengthening or weakening of synapses over time. In 1998, the neuro-
scientists Bi and Poo [18] characterized the dependence of the long-term potentiation
and depression on the order and timing of pre and postsynaptic spikes, named spike
time dependent plasticity (STDP). The plasticity dynamics is given by the update
value of the synaptic weight AI', and a mathematical definition of this function is
given by [21]

%1;“) = y(ALV,1). (12)

Kalitzin and collaborators [21] showed that the function y depends on the membrane
potential of the postsynaptic neuron, the activation of the synapse, and the thresholds
for switching on long-term potentiation and the long-term depression. We consider
an approximation of y in the linear form y(AT,t) = (a + ¢/t)AI" [4]. The function
AT = bt¢exp(at) is the solution of equation (12), where a, b, and ¢ are constants.
For ¢ = 0, we obtain the update value for excitatory synapses Ae (eSTDP), and for
¢ # 0, we find the update value for inhibitory synapses Ao (iISTDP). The plasticity
dynamics introduced by means of this linear approximation is not related to physi-
ological processes [22], however, with this function we can find a fit which describes
experimental results of eSTDP and iSTDP, as showed in References [18,19].

Figure 2a exhibits the eSTDP function for excitatory synapses, where the presy-
naptic neuron j and the postsynaptic neuron i are forced to spike at time ¢; and ¢;,
respectively. There is a change in the synaptic weights Ae;; due to the time difference
between the spikes At;; =t; —t;. The eSTDP function is given by [23]

| Avexp(—=Aty/m), if At;; >0
AE’LJ - { —A2 eXp(Atij/Tg), if Atl] <0 (13)

where Ay =1, Ay = 0.5, 1 = 1.8ms, and 72 = 6ms. The synaptic weights are
updated according to equation (13), where e;; — €;; + 10’3A5¢j. The black line
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Fig. 2. Comparison between absolute values of potentiation (black curves) versus depres-
sion (blue curves) in synaptic weights. STDP function for (a) excitatory and (b) inhibitory
synapses.

in Figure 2a shows the potentiation of excitatory synaptic weights for A¢;; > 0 and
the blue line the depression in synaptic weights for At;; < 0.

In Figure 2b, we see the iSTDP function for inhibitory synapses. The weights are
increased based on the following equation

AO’ij = go 05’8|Atij|Atijﬁ_1 eXp(—a|Atij|), (14)

norm

where go = 0.02, 8 =10, a = 0.94 if At;; > 0, o = 1.1 if At;; < 0 and gnorm =
B8 exp(—pB) [24,25]. The inhibitory synaptic weights are updated according to
equation (14), where 0;; — 05 + 1073 Acy;.

In our neural network model, the time interval between spikes At;; and the
plasticity rules are calculated and applied every time the postsynaptic neuron ¢ fires
and can present different values depending on when the presynaptic neuron j had
the last spike.

4 Synaptic weights and synchronization

In our simulations, aiming to understand the alterations in network connectivity,
we consider a neuronal network with 100 Hodgkin—Huxley. This number of neurons
was chosen to facilitate a visual analysis of the coupling matrices without loosing
main dynamics properties. Our network has 80% of excitatory and 20% of inhibitory
synapses according to anatomical estimates for the neocortex [26]. The neurons are
initially globally coupled and the initial synaptic weights are normally distributed
with mean 0.25 and standard deviation equal to 0.02. In this approach, to understand
the impact of the delay in the system, we will consider that all the synapses have the
same delay. In Figure 3, we see the coupling matrices, where the color bar represents
the synaptic weights. The coupling matrix is separated into excitatory (1 < 1,5 < 80)
and inhibitory (81 < ¢,j < 100) neurons. The excitatory neurons i are organized from
the lowest frequency ¢ = 1 to the highest frequency 7 = 80, and the inhibitory neurons
from the lowest frequency ¢ = 81 to the highest frequency ¢ = 100.
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Fig. 3. Coupling matrices for excitatory and inhibitory neurons. Figure (a) shows the initial
synaptic weights. We consider (b) 7 = 0ms, (¢) 7 = 3ms and (d) 7 = 6 ms at 400s. In four
cases the color bar represents the synaptic weights.

Figure 3a exhibits the initial synaptic weights separated into 4 regions. In the
regions I and IT the synapses from the pre to the postsynaptic neurons are excitatory.
The region IIT and IV have inhibitory synapses from the pre to postsynaptic neurons.
For 7 = 0 ms, we observe in Figure 3b that the coupling matrix shows a triangular
shape, due to the fact that the synapses become regulated by both the nature (exci-
tatory or inhibitory) and the frequency of the presynaptic and postsynaptic neuron.
A presynaptic excitatory (inhibitory) neuron with higher (lower) frequency enhances
the synaptic strength if the postsynaptic excitatory (inhibitory) neuron has lower
(higher) frequency. When the time delay is 7 = 3ms and also 7 = 6 ms, as shown in
Figures 3c and 3d, respectively, the coupling matrices have a non-trivial configuration
of connections, presenting a greater agreement with real neuronal networks [27-29].
Therefore, the time delay has a significant influence on the synaptic weights in a
neuronal network with plasticity, resulting in non-trivial configurations and synap-
tic weights with greater variability in their values if compared to the case without
delay.

We analyze the time evolution of instantanecous average of excitatory e(t) and
o (t) inhibitory coupling strengths for different time delay values. Without time delay
7 =0 (Fig. 4a), € (black line) has value greater than o (red line). Whereas for
7 = 3ms (Fig. 4b) and 7 = 6ms (Fig. 4c) both ¢ and o oscillate in the interval
[0.2;0.3].

We study the effects of the time delay on the neuronal synchronization. To do
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Fig. 4. In this set of figures we show the time evolution of £(¢) (black line) and o(t) (red
line) for (a) 7 = 0ms, (b) 7 = 3ms, and (¢) 7 = 6 ms, as well as the time evolution of the
Kuramoto’s order parameter R(t) for (d) 7 = 0ms, (e) 7 = 3ms, and (f) 7 = 6 ms.

that, we use the Kuramoto order parameter as diagnostic tool, that is given by [30]

N
Z p(ig;(t))|, (15)

and the time averaged order parameter

R= tf — Z Zexp i9;(t))], (16)

where ¢;(t) is the phase associated with the spikes,

t—t;
¢;(t) = 2mm + 2p ——— 2 (17)
tjm+1 — tjim

where t¢ — t; is the time window set to measure the phases, t;,, is the time when
a spike m (m =0,1,2,...) in the neuron j happens (¢;.,, <t < tjm+1). The order
parameter magnitude tends to unity when the network has a globally synchronized
behavior. For uncorrelated spiking phases, the order parameter is nearly 0.

Figures 4d-4f exhibit the order parameter for (d) 7 =0, (e) 7 = 3ms, and (f)
7 = 6ms. Our neuronal network does not exhibit complete synchronization due to
the fact that the neurons are not identical. Nevertheless, for R > 0.9 the neuronal
network shows strong synchronization behavior. In Figure 4d, we see a synchronous
state for 7 = 0. There is no synchronization states observed for 7 = 3 ms and 7 = 6 ms,
as shown in Figures 4e and 4f, respectively. This result shows that the delay is an
important mechanism in the network dynamics in order to avoid synchronization.

In Figure 5a, we calculate the time averaged excitatory and inhibitory coupling
strengths as a function of the time delay for 10 different initial conditions. The &
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Fig. 5. (a) Average values of excitatory &, inhibitory & synaptic weights, and (b) mean order
parameter R as a function of synaptic time delay 7. The bars show the standard deviation
from the mean values.

values present a small variation as the delay 7 is increased. However, £ is more
sensitive and for small delay values 7 < 1.5 ms we observe € > ¢ and the network
is more excitable. As a result the neurons in the network are strongly synchronized
(Fig. 5b). When we increase the delay for 7 > 1.5 ms the values of & starts to decrease
in a second-order-like transition. Simultaneously the order parameter R decreases
showing its dependence with the excitatory coupling strength . Finally, for 7 > 2.5 ms
we observe that £ and & oscillates in the interval [0.2;0.3] and the network are no
longer synchronized. These results show us that synchronization in a neuronal network
with plasticity and synaptic delay is closely linked to the intensity of excitatory
couplings, i.e., the more excitable the network (¢ > &) the more synchronous the
neurons will be.

5 Conclusion

We study a neural network with plasticity and synaptic delay, where we consider
the Hodgkin-Huxley model as local dynamics. The Hodgkin—-Huxley neuron is a
mathematical model described by coupled differential equations that exhibits spiking
dynamics. We build a network with an initial all-to-all topology and analyze the time
evolution of the connectivity and synchronization.

We carry out simulations considering a coupling matrix with initial synaptic
weights normally distributed. Without time delay, the coupling matrix evolves to
a triangular shape, where the synapses become regulated by both the nature (excita-
tory) and the frequency of the presynaptic and postsynaptic neuron. A presynaptic
excitatory (inhibitory) neuron with lower (higher) frequency enhances the synaptic
strength if the postsynaptic excitatory (inhibitory) neuron has higher (lower) fre-
quency. The coupling matrix exhibits non-trivial configuration when the time delay
is increased.

We also show that the time delay plays an important role in the neural
synchronization. Increasing the time delay, we verify that the time averaged exci-
tatory coupling strength decrease and it becomes approximately equal to the
averaged inhibitory coupling strength. As a consequence, this decrease suppresses
the synchronous behavior of the neural network.
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The results related to what is being shown in Figures 3c and 3d show that time
delay induces a plastic brain with a non-trivial topology that promotes weak forms
of synchronization, as it is to be expected in the brain. However, on the other hand,
the brain is only sparsely connected. The evolved network has a higher rate between
the actual connections and the number of neurons than this rate for the real brain.
We believe that there could be 3 reasons for this which deserves further investiga-
tion. This non-sparsity of our evolved network could have been the consequence of
some chosen parameters which are not optimally tunes to reproduce brain behav-
ior. Another hypothesis could be that this non-sparsity is the result of our network
being small, as compared to the real brain. Finally, it could be that the brain has a
mechanism to constrain or eliminate connections in an attempt to optimize the costs
associated to synapses.

This work was possible by partial financial support from the following Brazilian government
agencies: CNPq (154705/2016-0, 311467/2014-8), CAPES, Fundagido Araucdria, and Sao
Paulo Research Foundation (processes FAPESP 2011/19296-1, 2015/07311-7, 2016/23398-8,
2017/13502-5, 2017/20920-8, 2017/18977-1). Research supported by grant 2015/50122-0 Sao
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