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ABSTRACT

Shearless curves are characteristic of nontwist systems and are not expected to exist in twist systems. However, the appearance of secondary
shearless curves in the central area of islands has been reported in a few studies where the twist condition is still satisfied. In addition to these
studies, we present a scenario in which secondary shearless curves emerge when two independent resonances interact on the same resonant
surface. By varying the magnitude of the perturbation parameters, we observe the emergence of multiple secondary shearless curves, which
can appear in pairs or individually. Our results are obtained for two discrete systems—the two-harmonic standard map and the Ullmann
map—as well as for the Walker–Ford Hamiltonian flow.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0233732

Transport, in dynamical systems, is defined as the collective
motion of many chaotic trajectories through the phase space. Reg-
ular trajectories can act as partial or total barriers, leading to a
scenario of low or null transport, respectively. One example of a
robust barrier is the shearless curve, a special solution for non-
twist systems. Interestingly, such solutions can be found locally in
twist systems, especially when there is a resonant mode coupling.
In this work, we explore the possibility of local shearless curves in
three different conservative systems. We find that shearless curves
can emerge in pairs or alone, depending on the bifurcation of the
periodic points that they surround. The same scenario is observed
in all systems studied, indicating that local shearless curves are a
recurrent phenomenon in conservative twist systems.

I. INTRODUCTION

Non-integrable Hamiltonian systems are known for the coex-
istence of regular and chaotic solutions in the phase space. Due to
the complexity involving the mixing of solutions that have different
characteristics, chaotic trajectories in phase space can be partially or
totally restricted by regular structures that act as barriers, leading

to non-ergodic chaotic motion.1 Area-preserving maps are useful
tools for analyzing the behavior of these Hamiltonian systems. They
can be specified by analytical formulas or numerically obtained as
Poincaré sections of successive intersections of Hamiltonian flows.2

Among conservative maps, we highlight the class of twist maps,
consisting of maps with variational formulation that can be derived
from generating functions.3 The twist maps are known for satisfy-
ing the twist condition; i.e., in an angle-action portrait, as we vary
the action, the iterated points will lie on different concentric cir-
cles with different time averages of the angle of rotation. However, it
is possible to introduce area-preserving maps with non-monotonic
functions. These maps are called nontwist since the twist condition is
violated at some point in phase space. A great analysis of the rotation
number for nontwist maps was performed in Ref. 4.

The time average rotation, represented by the rotation num-
ber, depends on the action.5 Taking trajectories along a radial line
from the equilibrium point, we can compute the rotation number
as a function of distance along this line. In the case of an integrable
system, the average angle coincides with the average angle variable.
Alternatively, the rotation number can be defined as the average
jump per iteration with respect to a given equilibrium point.6 For
twist maps, this average is always monotonic.
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Due to the violation of the twist condition (named a non-
degeneracy condition for Hamiltonian continuum systems), differ-
ent dynamical phenomena emerge in the phase space.6,7 Twin island
chains and separatrix reconnection are examples of nontwist phe-
nomena that occur because of the non-monotonicity of the rotation
number.8,9 The solution in which the twist condition fails is called
a shearless/twistless curve since the derivative (frequently called the
shear/twist) of the rotation number with respect to the action van-
ishes at such a curve.6 The definition of a shearless curve by the zero
derivative of the rotation number by the radial distance coincides
with the zero derivative of the average rotation number by the action
variable, in the case of an integrable system. These shearless curves
are called “primary” or principal.

In general, an invariant curve can be regarded as a transport
barrier.10 However, in twist maps, due to the KAM theorem, these
barriers are progressively destroyed as the perturbation strength is
continuously increased. Shearless curves, on the other hand, are
robust in the sense that they can survive the destruction of invariant
curves on both sides with respect to the action variable. We shall use
the word “transport barrier” for the shearless curves corresponding
to local extrema of the rotation number profile.

The presence of shearless curves was identified in many physi-
cal systems, such as the Rossby wave experiments in a rotating annu-
lar tank,11,12 in toroidal devices for plasma confinement, such as the
TCABR13,14 tokamak and Texas Helimak,15 in mathematical models
for Rossby waves in shear flows,7 magnetically confined plasmas,16

zonal flows in geophysical systems, and chaotic advection,17,18 to cite
some examples.

The twist measures the rate of change of frequencies over dif-
ferent invariant curves,9 and for twist (nontwist) maps, its sign is
constant (changes). In the action-angle description, these invariant
circles are centered in the origin and the rotation number is a global
measure since it is related to the rotation of the points around its
center.5 However, it is possible to define the rotation number value
for points rotating around any fixed point in phase space. Therefore,
the concept of an internal rotation number was proposed as the mea-
sure of torsion of each torus with respect to its elliptic point (center
of the island).19–21

Along with the idea of an internal rotation number, the possi-
bility of shearless (twistless) curves was also demonstrated in twist
maps. In this case, the shearless curve is related to an extreme value
for the internal rotation number, and since it is related to an inner
structure of the phase space, e.g., an island, it is called a secondary
shearless curve. Dullin et al.19 observed the existence of twistless
curves in the neighborhood of an elliptic point that goes through a
tripling bifurcation. Abud and Caldas20 also identified these twistless
curves in the standard twist map in the neighborhood of tripling and
quadrupling bifurcations. They also observed such curves in twist
maps for field lines in tokamaks.21

According to Dullin, Meiss, and Sterling, the presence of a
shearless curve in the neighborhood of a periodic orbit that goes
through a tripling bifurcation is generic, and the authors also affirm
that the twist of an orbit can be forced to be zero if there is a suf-
ficient number of parameters.19 Interestingly, secondary shearless
curves were also identified in models of optical lattices22 and of
large aspect ratio tokamaks with ergodic limiter.23 With these results,
we suspect that secondary shearless curves are more common than

initially assumed. In order to investigate the generality of secondary
shearless curves, we propose studying a series of dynamical systems
to verify the possibility of these curves around different types of
bifurcations.

In this paper, we study the emergence of secondary shearless
curves in three different twist systems. Our investigations are based
on the computation of the internal rotation number profile and
phase space analysis of the extreme points in the profile and the
emergence of shearless curves around elliptic points.

The first system is a two-parameter twist map, known as the
two-harmonic standard map, presented in Ref. 24, formed by the
addition of a second resonant perturbation in the generic version of
the standard map. This map can be considered a model for the com-
petition of different resonant modes where the resulting isochronous
islands go through different bifurcations, such as pitchfork and
saddle-node. Isochronous islands are distinct islands with the same
frequency and rotation number, and they emerge as a consequence
of multiple resonant perturbations acting in the same resonant sur-
faces (curves). The second system is presented in Ref. 23, a magnetic
field line map, adapted from the Ulmann map,25 composed of two
parts: the first dictating the evolution of the field lines between two
coils of the ergodic limiter and the second that describes the action
of the limiter as an impulsive perturbation. The last system stud-
ied is the well-established Walker–Ford Hamiltonian flow,26 which
describes the effect of resonances on the appearance of isochronous
island chains.

The present paper is organized as follows. Section II is dedi-
cated to the investigations around the two-harmonic standard map,
the simplest analyzed system, which will give us a clearer explanation
of the emergence of secondary shearless tori. In Sec. III, we present
the results on the modified Ulmann map and the impact of differ-
ent arrangements of resonant modes on the rise of shearless curves.
The results on the Walker–Ford Hamiltonian flow are presented in
Sec. III, where, in contrast to Secs. II and II, we study the emergence
of a shearless tori in the time-continuous system. Our conclusions
are presented in Sec. V.

II. TWO-HARMONIC STANDARD MAP AND LOCAL

SHEARLESS TORI

The two-harmonic standard map, also called a standard map
with two modes, is defined by the equations24

yn+1 = yn −
K1

2πm1

sin(2πm1xn) −
K2

2πm2

sin(2πm2xn),

xn+1 = xn + yn+1,

(1)

where x and y are taken mod 1, K1 and K2 are the perturbation
amplitudes, and m1 and m2 are the modes of the resonant per-
turbations. Here, we consider K1, K2 ∈ R

∗
+ and m1, m2 ∈ N. The

two-harmonic map is a generalization of the extended standard map
(ESM), where m1 = 1 and m2 = 2. The ESM arises in the study of a
one-dimensional lattice of particles that interact elastically with their
nearest neighbors.27,28

The map (1) was proposed as a model for the competition
between two resonant modes, m1 and m2.24 The two resonant per-
turbations generate different numbers of islands in the same region
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of the phase space, depending on the parameters.29 As investigated
in Ref. 24, the number of isochronous islands along the line y = 0
is equal to the mode number of the corresponding resonant term.
Thus, if we observe m1 (m2) islands at y = 0 in the phase space of
map (1), we say that the mode m1 (m2) is predominant. The transi-
tions from the chain of islands associated with the mode m1 to the
chain of islands of the second mode m2 can occur either directly or
via intermediate modes. For more information about the transition
routes, see Ref. 24.

The islands along the line y = 0 exhibit a period and frequency
equal to unity for both modes m1 and m2. The global winding
number is defined by the limit

ω = lim
n→∞

xn − x0

n
, (2)

and it is also equal to unity for these islands. The two resonant per-
turbations can act in the same winding number surface, and the
number of chains of islands in this surface varies according to the
perturbation parameters m1,2 and K1,2. It is worth noting that to
determine (2), xn must be computed without applying the modulo
operation.

The standard map is a twist map; i.e., it satisfies the twist condi-

tion
∂xn+1
∂yn

6= 0 for every point in the phase space. As a consequence,

if we compute the winding number profile for different orbits with
initial conditions on a fixed line x, the value of ω changes monoton-
ically with y and forms a plateau in regions where there are islands.
The addition of a second resonant perturbation to the standard map
does not alter the twist property of the system, and the winding
number profile remains monotonic. However, non-monotonic pro-
files can be obtained if we compute the rotation number locally by
measuring the rotation of a single island with respect to its ellip-
tic point.20,23,30 Thus, we can define an internal rotation number ωin,
which is computed by the equation20

ωin = lim
n→∞

1

2πn

∞
∑

n=1

Pnθ̂Pn+1, (3)

with θ = Pnθ̂Pn+1 being the angle between two consecutive points
in the phase space. A schematic illustration of the computation of
ωin is shown in Fig. 1. Due to the normalization by 2π , the internal
rotation number is in the range [0, 1]. Just as for the global counter-
part ω, a rational value of ωin indicates a periodic orbit, whereas an
irrational value corresponds to a quasiperiodic orbit. The internal
rotation number also does not converge for chaotic solutions.

The non-monotonicity of the internal winding number is char-
acterized by an extreme in its profile, and such a point refers to the
local shearless curve, also called a twistless torus.19,20,23,30 Shear, or
twist, is related to the derivative of the rotation number with respect
to the action,19 so at an extremum of ωin, we have ω′

in = 0, indicating
the absence of shear or twist.

The equations in (1) are a simple model for twist Hamiltonian
systems with multiple resonant perturbations. Following the anal-
ysis performed in Ref. 23, we investigate the existence of twistless
tori for different combinations of modes m1 and m2 and in different
transition routes discussed in Ref. 24.

FIG. 1. Schematic figure for the calculation of ωin. For an initial point (x0, y0)
over the winding profile reference line (dashed blue line), the inner angle θn is
sequentially evaluated relative to the center of the island.

A. Emergence of one shearless curve

As shown in Ref. 24, one of the possible transitions from
one island chain to the other is via a pitchfork bifurcation. As
an example, we take the transition m1 = 2 → m2 = 3, where the
elliptic point at (x, y) = (0.5, 0) goes through a pitchfork bifurca-
tion. During this process, it is replaced by a hyperbolic point, and
other two new elliptic points emerge. This transition is presented
in Fig. 2. Along with the phase spaces, we computed the inter-
nal winding number for each island in the phase space relative to
their corresponding elliptic points. The profiles are also presented
in Fig. 2.

As shown in Fig. 2, as the value of K2 increases, the island of
period one centered on the point (x, y) = (0.5, 0) changes its form,
as seen when comparing panels (a) and (b). The shape of the island
around the point (x, y) = (0, 0) remains the same. Further increas-
ing K2 results in the phase space depicted in Fig. 2(c), where a
pitchfork bifurcation occurs and a hyperbolic point replaces the sta-
ble point and two new elliptic points emerge along the line at y = 0.
In this case, the transition from mode m1 to m2 occurs through a
single pitchfork bifurcation.

The internal winding number profiles presented in
Figs. 2(d)–2(f) were calculated with 5.103 initial conditions dis-
tributed along the blue and black lines in the phase space and
iterated for 104 iterations. If the limit (3) converges, the correspond-
ing value of ωin is plotted for the respective value of y. In Fig. 2(d), we
observed that both profiles have monotonic behavior that decreases
as the value of y increases; thus, no internal shearless torus is present
in the phase space. A similar behavior is observed for the island cen-
tered at (x = 0, y = 0) for greater values of K2, as shown by the blue
curves in Fig. 2(e) and 2(f).
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FIG. 2. Transition from mode m1 = 2 to mode m2 = 3 in the two-harmonic standard map. For all cases, K1 = 0.1. In (a) and (b), we have the predominance of mode
m1 = 2, with K2 = 0.01 and K2 = 0.1, respectively. For K2 = 0.15, we have the phase shown in (c), where the pitchfork bifurcation has already happened, and we observe
three elliptic points. The internal winding number profiles for each phase space (a)–(c) are shown in panels (d)–(f), respectively. The profiles are computed in the blue and
black lines presented in the phase space, and each profile corresponds to the line with the same color. The red curves and red points indicate shearless tori.

In contrast, shearless tori can exist around the elliptic point
at (x, y) = (0.5, 0), as evidenced by the extrema observed in the ωin

profiles in Figs. 2(e) and 2(f). These extreme points are marked by
red circles, and the respective shearless tori are also marked in red on
the phase spaces of Figs. 2(b) and 2(c). The shearless tori are iden-
tified by maxima points in the ωin profiles and are located in the
central region of the islands in the phase spaces. They emerge before
the pitchfork bifurcation [Fig. 2(b)] and persist after it [Fig. 2(c)].

B. Emergence of multiple shearless curves

In addition to the pitchfork bifurcation, saddle-node bifurca-
tions can also be part of the transition routes between modes. It was
observed that saddle-node bifurcations occur in pairs within islands,
leading to changes in their structure due to the emergence of new
periodic points. As an example to study the possibility of shearless
tori in these scenario, we examine the transition from mode m1 = 1
to mode m2 = 5. Repeating the analysis performed in Sec. II A, the
phase spaces and the corresponding ωin profiles are shown in Fig. 3.

In the phase spaces of Fig. 3, we observe the predominance of
mode m1 = 1 for all amplitudes K1 and K2 studied. Although the
five islands associated with mode m2 = 5 are not observed, we can
identify the effect of the second mode by the distortion on the island

of Figs. 3(b) and 3(c). However, from the results shown in Ref. 24,
we know that four islands will emerge inside the large distorted
island centered at (x, y) = (0, 0) by four simultaneously saddle-node
bifurcations.

In panels (d)–(f) of Fig. 3, we present the respective internal
winding number profiles computed over the black line at x = 0
shown in the phase spaces of Figs. 3(a)–3(c). Similar to the first
scenario presented in Figs. 2(d), the ωin profiles also decrease mono-
tonically in Fig. 3(d). However, the functions associated with these
profiles differ from one another: while for Fig. 2(d), the profile
resembles half of a parabola, in Fig. 3(d), the function is similar to a
sum of sin(x) terms with different frequencies. Increasing the ampli-
tude K2 of the second mode, we have the profile shown in Fig. 3(e)
with two extreme points, one maximum and one minimum, high-
lighted by the red points. These two points indicate the presence of
two shearless curves in the phase space, and such curves are high-
lighted in red in Fig. 3(b). In panel (e), for y close to y = 0.1, the
profile exhibits a shape similar to the one in panel (d), indicating a
degree of similarity between the two profiles.

In the final panel, Fig. 3(f), we present the ωin profile for the
islands of phase space in Fig. 3(c). This case corresponds to the
largest value of K2 studied. From the winding number profile, we
can identify four extreme points: two maxima and two minima. One
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FIG. 3. Effect of the second mode m2 = 5 in the first mode m1 = 1 for K1 = 0.1 and different amplitudes K2. In (a), K2 = 0.04, (b) K2 = 0.12, and (c) K2 = 0.18. For all
panels, the first mode is predominant since there is only one elliptic point and is in the line y = 0. The action of the second mode is more noticeable in panels (b) and (c)
where we observed the distortion of the islands. The red curves indicate the shearless tori. The internal winding number profiles respective to phase spaces (a)–(c) are
shown in panels (d)–(f), respectively, with the extremes highlighted by the red circles, which indicate the position of the shearless curves.

pair of extrema points is the same pair as in Fig. 3(e) while the new
pair emerges near y = 0.1, which is zoomed in the inset. The four
respective twistless curves are shown in red in Fig. 3(c).

From the sequence of internal winding number profiles shown
in Figs. 3(d)–3(f), we can identify a pattern in the modification of
the profile and the emergence of shearless curves. First, the pro-
file is monotonic with varying concavities and inflection points.
As we increase the amplitude of the second mode, a pair of maxi-
mum–minimum points emerge in the profile, replacing an inflection
point and indicating the emergence of a pair of shearless curves. This
sequence can occur multiple times in the profile, with some inflec-
tion points giving rise to two shearless curves, while others remain
as inflection points in the profile.

C. Emergence of shearless curves in different islands

Different isochronous islands can undergo various bifurca-
tions as one parameter changes. Here, we investigate whether
shearless curves can emerge in different islands. For this to
happen, bifurcations must take place inside the islands. Thus,
we choose the configuration m1 = 2 and m2 = 5, where pitch-
fork and saddle-node bifurcations occur within the two initial
islands. The transition from mode m = 2 to m = 5 is shown in

Figs. 4(a)–4(c). This transition involves an intermediate mode,
m = 3, due to the pitchfork bifurcation occurring first in the
island at x = 0.5, as we can observe in Fig. 4(b). After this
first bifurcation, two elliptic points emerge inside the island cen-
tered in x = 0 by two saddle-node bifurcations, as shown in
Fig. 4(c).

The internal winding number profiles calculated with respect
to the two initial elliptic points are shown in Fig. 4(d). The black
curve, related to the elliptic point at (x, y) = (0, 0), monotoni-
cally decreases, while the blue curve, associated with the point at
(x, y) = (0.5, 0), exhibits a maximum, indicating the presence of a
shearless curve.

If we increase the parameter K2 from K2 = 0.05, of Fig. 4(d),
to K2 = 0.2, the corresponding ωin profiles are shown in Fig.4(e). In
this case, both profiles exhibit extreme points, indicated by the red
circles, and each profile displays different behavior. For the island
centered at x = 0, we observe the emergence of a pair of shearless
curves, where the ωin profile exhibits one maximum and one min-
imum point, as discussed in Sec. II B. Otherwise, the blue profile,
computed in relation to the elliptic point where the pitchfork bifur-
cation emerges, shows a maximum value (indicated by the red circle)
and a cusp, indicating the separatrix passing through x = 0.5 within
the island.
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FIG. 4. Emergence of twistless torus in different islands for m1 = 2 and m2 = 5. For all panels K1 = 0.1 and the amplitude of the second mode is (a) K2 = 0.05,
(b) K2 = 0.2, and (c) K2 = 0.3. While we observe the emergence of just one shearless torus around the elliptic point at (x, y) = (−0.5, 0), we observe two curves around
the point (x, y) = (0, 0). The respective winding number profiles are shown in (d)–(f).

For K2 = 0.3, we have the profiles shown in Fig. 4(f). In this
case, one of the shearless curves around x = 0 has already bro-
ken and both profiles exhibit a cusp and a maximum, indicated by
the red circles. Both cusps represent separatrices. Inside the pair
of shearless curves in the central island, around the elliptic point
at (x, y) = (0, 0), two pairs of elliptic–hyperbolic points emerge via
saddle-node bifurcations.

From our observations, the emergence of shearless curves pre-
cedes the bifurcations that occur at the periodic points. In addition
to the shearless curves discussed in this paper, we analyze the emer-
gence of these curves for all combinations of mi = 1, 2, 3, 4, 5, and 6
for i = 1 and 2, and we noticed that the emergence of a single curve
occurred before a pitchfork bifurcation, whereas the emergence of
pairs of curves precedes saddle-node bifurcations.

III. ULLMANN’S MAP DOUBLE COUPLING

For the second system studied, we consider a symplectic
mapping31 that describes the evolution of a magnetic field line
configuration capable of confining plasma along a torus. This con-
figuration is periodically perturbed by an ergodic magnetic limiter,
which is essentially a set of coils through which electric currents
flow. The mapping uses radial (r) and poloidal (θ) coordinates to

describe the position of a magnetic field line, analogous to cylin-
drical coordinates. A more detailed discussion of the relationship
between the mapping and the physical system is provided in the
Appendix.

The equations that describe the magnetic field line positions, at
the plasma confinement equilibrium, are given by (4) and (5),

r∗ = r, (4)

θ∗ = θ +
2π

Nq(r∗)
, (5)

where N is the number of coils and q(r) is the cylindrical safety
factor,32 determined by the poloidal and toroidal magnetic fields. We
adopted the same safety factor as in Ref. 25.

Equations (4) and (5) define the toroidal evolution of a mag-
netic field line initially located at (r, θ), mapping it to the position
(r∗, θ∗) after a toroidal shift of 2π/N radians, before considering the
perturbation caused by the ergodic magnetic limiter. The ergodic
limiter is formed by two pairs of coils, each producing a perturba-
tion mode of type (m, n), and, between coils of the same pair, there
is a poloidal twist generated by αi = πni/mi, where ni is the toroidal
number of the perturbation (mi, ni) chosen for the system.
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FIG. 5. Arrangement {(3, 1), (12, 4)}. The panels (a), (b), and (c) show the same island for ε2 = 0.000 113, 0.001 130, and 0.004 519, with ε1 = 0.005 648. Panels (d),
(e), and (f) display the internal winding number profile for each case. The shearless curve emerges either alone or in a pair.

The equation

r∗ = r +
bmiCi

mi − 1

( r

b

)mi−1

sin
[

mi(θ
∗ + ( ji − 1)αi)

]

(6)

determines how the radial position r∗ is affected by the coil ji
(j = 1, 2) of the pair i (i = 1, 2), and the coordinate r represents
the field line position after the perturbation. Equation (6) deter-
mines r implicitly, requiring a numerical root-finding method for its
solution. In this study, we employed the Newton–Raphson method.

The equation governing the change in θ due to the
perturbation is

θ = θ∗ − Ci

( r

b

)mi−2

cos

[

mi(θ
∗ + ( ji − 1)αi)

]

, (7)

where θ∗, as mentioned before, is the poloidal field line position
immediately before the perturbation coil, while θ is the poloidal
position after it. The parameter Ci is a dimensionless constant,

Ci =
2εimiga2

q(a)R0b2
, (8)

proportional to the rate of the electric current Ii in each pair and
the plasma current Ip, εi = Ii/Ip, the length g of the coils, the square
of the column plasma radius a, and inversely proportional to the
tokamak’s major radius R0 and the square of its minor radius b.

The configuration of the ergodic magnetic limiter we adopted
compels the Ullmann map to be a composition of equations of
the equilibrium and the perturbation calculated four times. Conse-
quently, there is no explicit formula linking (rn, θn), the nth inter-
section of the field line with the Poincaré section, to the subsequent
intersection (rn+1, θn+1). For a single complete revolution of a mag-
netic field line around the torus, we compute equations (4), (5), (6),
and (7), in this order, four times.

We configured the coil settings so that the same magnetic
surface is perturbed by two distinct resonant modes, (m1, n1) and
(m2, n2). The ratio m/n determines the perturbation of the mag-
netic field line with winding number ω = n/m. All results presented
below correspond to perturbations of the magnetic field line sur-
face with rotational number 1/3. To enhance the visualization of
the Poincaré sections, we adopted the coordinate transformation
(X = θ/2π , Y = (b − r)/b).

A. Emergence of a single shearless curve and a pair of

shearless curves

Initially, we examine the arrangement {(3, 1), (12, 4)}. The set
of coils responsible for the (3, 1) resonance is kept constant at the
value ε1 = 0.005 648, while the second parameter, ε2, is varied. The
magnitude of this second parameter determines whether a chain of
islands of type (12, 4) emerges.
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We begin the investigation with ε2 = 0.000 113. In this case,
only the (3, 1) island chain is present. We focus on one of the islands
in this mode, specifically the island with the X coordinate in the
interval [0.2, 0.6], as shown in Fig. 5(a). As the value of ε2 increases,
bifurcations take place, and beyond a certain threshold, the system
transitions into the (12, 4) mode. We identify each mode by count-
ing the number of stable (or unstable) periodic orbits of period 3
present in the system.

In Fig. 5(d), we present the winding number profile associated
with the island shown in Fig. 5(a) for ε2 = 0.000 113. The vertical
line segment in Fig. 5(d) consists of approximately 103 points, each
representing an initial condition that contributes to the winding
number profile.

The initial profile, shown in Fig. 5(d), is monotonic. How-
ever, the subsequent case, depicted in Fig. 5(e) for ε2 = 0.001 130,
exhibits a non-monotonic profile with two local extrema. Only the
extremum marked by a highlighted point defines a shearless curve,
shown in red in Fig. 5(b). The other extremum, a local minimum,
determines a separatrix that arises from the saddle-node bifurcation
occurring at the center of the island, as shown in Fig. 5(b). Note
that, according to the previously established method for counting
bifurcations, the system is in the resonant mode (6, 2).

At first glance, it may appear that a pitchfork bifurcation has
occurred: the elliptical point in Fig. 5(a) transforms into a hyper-
bolic point in Fig. 5(b), with two elliptical points simultaneously
emerging. However, what actually occurs is that the elliptical point
in Fig. 5(a) shifts to the right, followed by a saddle-node bifurcation.
This explains why the vertical line segment is displaced to the right
relative to Fig. 5(a).

If we increase ε2 further, two new shearless curves emerge, as
illustrated for ε2 = 0.004 519 in Fig. 5(c). These curves correspond
to the second and third red curves, counted from the interior to
the exterior of the island in this panel. The innermost of these two
curves is associated with the minimum highlighted by a red dot
in the winding number profile shown in Fig. 5(f). Upon a further
increase of ε2, this curve transitions into a separatrix as bifurca-
tions occur—first defining the mode (9, 3) and subsequently the
final mode (12, 4). Since no additional shearless curves arise for
ε2 > 0.004 519, we have opted not to display the stage involving all
bifurcations.

B. Emergence of multiple pairs of shearless curves

We now investigate the arrangement {(3, 1), (15, 5)} by cou-
pling the modes (3, 1) and (15, 5). When the perturbation parameter
ε2 is varied, four bifurcations occur before the island chain (15, 5)
is formed. The system will pass through the modes (6, 2), (9, 3),
and (12, 4) via saddle-node bifurcations, finally achieving the mode
(15, 5). Each of these modes can be associated with a pair of shearless
curves. However, the bifurcations are not shown since they occur
for values of ε2 greater than those necessary for the emergence of
shearless curves.

In Fig. 6(a), we show one of the islands of the mode (3, 1) when
ε2 = 0.000 113. The winding number profile for this perturbation
value is monotonic, as shown in Fig. 6(b). Therefore, there are no
shearless curves.

FIG. 6. Arrangement {(3, 1), (15, 5)}. Panels (a), (c), (e), and (g) show the
same island for ε2 = 0.000 113, 0.002 259, 0.003 389, and 0.004 519 with
ε1 = 0.005 648. Panels (b), (d), (f), and (h) display the internal winding number
profile for each case. The shearless curve emerges in pairs.

Nevertheless, for ε2 = 0.002 259, we observe the first pair of
these curves emerging in the Poincaré section of Fig. 6(c); we have
highlighted them in red. The winding number profile for this case
is shown in Fig. 6(d). It contains two local extrema, corresponding
to the pair of shearless curves. Along with the emergence of local
extrema and the transformation of the profile into a non-monotonic
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FIG. 7. Arrangement {(6, 2), (15, 5)}. Panels (a), (c), (e), and (g) show
two islands belonging to independent chains for ε2 = 0.000 113, 0.000 565,
0.001 356, and 0.002 259, respectively, along with their internal winding number
profiles in panels (b), (d), (f), and (h). The occurrence of shearless curves differs
between the chains. In all cases, ε1 = 0.001 130.

form, the profile exhibits a degree of rippling. This phenomenon is
visually evident in the interval y ∈ [0.155, 0.165].

In Fig. 6(f), for ε2 = 0.004 519, a second pair of extrema
emerges within the interval where ripples were previously observed.
These extrema are close to each other, as seen in both the corre-
sponding profile and the associated Poincaré section in Fig. 6(e).

Nevertheless, this pair of extrema (and shearless curves) will become
more pronounced as ε2 increases.

In the same rippled region, two additional pairs of extrema
emerge. Figure 6(g) illustrates the final stage, where all shearless
curves have emerged. Altogether, there are eight shearless curves,
with four corresponding to local maxima and four to local minima
in the winding number profile, as shown in Fig. 6(h).

As ε2 continues to increase, internal island bifurcations arise,
contributing to the eventual formation of the mode (15, 5). All
shearless curves associated with local minima in the profiles become
separatrices, and no further shearless curves are generated. In
summary, the arrangement {(3, 1), (15, 5)} illustrates a scenario
where shearless curves appear in pairs, allowing us to assign one pair
of these curves to each bifurcation.

C. Emergence of shearless curves in different islands

The final case presented with the Ullmann map is for the
arrangement {(6, 2), (15, 5)}. It exhibits behavior similar to those
observed in the previous cases. However, the number of shearless
curves that appear for each island chain is different. The investiga-
tion begins at the mode (6, 2), which consists of two isochronous
(3, 1) islands. Therefore, we present two islands simultaneously in
Figs. 7(a), 7(c), 7(e), and 7(g). Each one of these islands belongs to
one of the two (3, 1) island chains. In these four panels, we keep
ε1 = 0.001 130 fixed and increase ε2.

In Fig. 7(a), the leftmost island has an internal winding number
profile depicted in green, as illustrated in Fig. 7(b). The rightmost
island has its internal winding number profile depicted in blue. Both
profiles are monotonic and ε2 = 0.000 113.

When ε2 = 0.000 565, the green profile remains monotonic.
However, the blue profile, initially monotonic in Fig. 7(b), becomes
non-monotonic, as shown in Fig. 7(d). This transition is accompa-
nied by the appearance of a shearless curve, depicted as a red curve
on the largest rightmost island in Fig. 7(c). It is worth noting that
the appearance of the shearless curve is identical to that shown in
Fig. 5(b). Specifically, only one shearless curve appears due to a local
maximum in the profile.

Eventually, the green profile also becomes non-monotonic.
As shown in Fig. 7(f), it develops two local extremes—one local
minimum and one local maximum—corresponding to the pair of
shearless curves visible in Fig. 7(e) for ε2 = 0.001 356. In this exam-
ple, the arising of the shearless curves is similar to the one shown in
Fig. 4(c).

However, it should be noted that the emergence of the shearless
curves will not be associated with a double saddle-node bifurcation.
Instead, two saddle-node bifurcations will occur at values very close
to each other (the results shown in Ref. 23 suggest that the bifur-
cations in the Ullmann map appear one by one). Nevertheless, the
number of shearless curves is identical to that observed in the case
of a double bifurcation.

The bifurcations can be seen in Fig. 7(g), left island, for
ε2 = 0.002 259. With the bifurcations, the shearless curve deter-
mined by the local minimum in Fig. 7(f), the green profile, becomes
an internal separatrix. The winding number profiles associated with
this Poincaré section are depicted in Fig. 7(h), where only the
shearless curves determined by local maxima persist.
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IV. WALKER–FORD HAMILTONIAN

Complementary to the discrete maps shown so far, we also
included a Hamiltonian flow as an alternative framework for the
bifurcations and the emergence of shearless invariants. The Hamil-
tonian model in question was initially meant to describe the two-
dimensional dynamics of a star moving around a galaxy center with
a cylindrical symmetric potential. It was first used to numerically
prove the emergence of chaos due to the lack of a third integral of
motion when perturbations acted on the system.33

In an action-angle format, its non-perturbed (hence integrable)
form reads

H0(J1, J2) = J1 + J2 − J2
1 − 3J1J2 + J2

2 (9)

for J1 and J2 as action variables. From this point on, Walker and
Ford consider two coupled oscillators to simulate the effects of sin-
gle and double resonances on the appearance of stability islands
in phase space.26,29 Thus, the complete Hamiltonian considers the
non-perturbed term H0 and two controlled perturbations,

H(θ1, θ2, J1, J2) = H0 + H1 + H2, (10)

with each perturbation mode as

H1(θ1, θ2, J1, J2) = αJ1J2 cos(mθ1 − nθ2),

H2(θ1, θ2, J1, J2) = βJ1J
3
2
2 cos(rθ1 − sθ2),

(11)

where (m, n) and (r, s) are the modes controlling the amount of
islands generated by H1 and H2, respectively. The amplitudes α and
β control their size.

The phase space analysis in this case takes place for a discrete
map generated by the intersection of the flow trajectories with a
surface section—here taken as (θ1 = 3π

2
). In general, we still have

a resonance between modes, although now corresponding to oscil-
latory terms in the energy function (i.e., the Hamiltonian itself in the
present model).

For the purpose of this work, we fixed the amplitude and mode
of H1 to α = 0.02 and (m, n) = (2, 2), focusing on the effect of the
second perturbation H2 as its amplitude and modes change. This
limitation of equal mode numbers is meant to reduce the dynam-
ics in phase space, so as to isolate and reproduce the same scenarios
seen for the two-harmonic standard map and Ullmann’s map. More-
over, in this arrangement, since resonance modes are multiples of
each other, no chaos is generated, as it is always possible to define
a single angle variable 2 = θ1 − θ2, reducing Hamiltonian (10) to a
one-degree-of-freedom system with H as constant of motion (given
its explicit time independence). However, non-multiple modes are
enough to induce chaos in the system if desired.

A. Emergence of one shearless curve

Primarily, in the absence of the second perturbative mode
(when β = 0), phase space presents isolated islands in a period-two

FIG. 8. Arrangement {(2, 2), (4, 4)}. Panels (a), (b), and (c) show β = 0.0, 0.01, and 0.02, respectively. The corresponding winding number profile ωin is shown below each
frame, i.e. (d), (e), and (f). In all cases, α = 0.02, H = 0.22.
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FIG. 9. Arrangement {(2, 2), (6, 6)}. Panels (a), (b), and (c) show β = 0.01, 0.02, and 0.04, respectively. The corresponding winding number profile ωin is shown below
each frame, i.e. (d)–(f). In all cases, α = 0.02, H = 0.22.

chain, as generated by the (m, n) mode [Fig. 8(a)] with a monotonic
winding number profile [Fig. 8(d)]. As soon as the second mode is
introduced, both islands maintain their internal structure without a
bifurcation for β < 0.02 [Fig. 8(b)], although with a winding profile
presenting a slight plateau [Fig. 8(e)].

For further increasing β ≥ 0.02, the second mode resonates
with the first and induces a pitchfork bifurcation in both island
centers independently, thereby generating a period-two chain with
inner resonances also of period two [Fig. 8(c)]. These resonances
increase in size with β , but without further bifurcations or emer-
gence of extremant points in the rotation number profile. Despite
inducing both phenomena, the shearless curve and the bifurca-
tion, they are not simultaneous in this simplest case. This scenario
corresponds to the same seen in Fig. 2.

B. Emergence of multiple shearless curves

When changing the perturbation mode to r = s = 6, for
low amplitude [β = 0.01—Fig. 9(a)], the island structure is still
similar to cases (a) and (b) for r = s = 4, but with a winding
profile presenting a maximum point and two inflections [near
J2 = 0.075—Fig. 9(d)]. At slightly higher β = 0.02, these inflection
points shift and become a minimum–maximum pair [Fig. 9(e)],
therefore creating two extra shearless curves within the central
island [Fig. 9(b)], although with no bifurcation occurring.

This process is roughly the same seen from Figs. 3(d) to 3(e)
and 3(e) to 3(f), Figs. 4(d) to 4(e), and in Figs. 5(e) to 5(f) . At
β = 0.04, the previous minimum point pinches down in the wind-
ing profile [Fig. 9(f)], forming a pit. In phase space, the previously
shearless curve related to this minimum becomes the separatrix of
the new islands bifurcated around the central elliptical point. The
two previous maxima remain, each one forming an inner and outer
shearless invariant [Fig. 9(c)].

The comparison between the simplest mode r = s = 4 with
r = s = 6 suggests that the number of extremes in the winding
profile increases with the period of the second perturbation and
therewith the presence of shearless invariants.

One may note a minimum point in Fig. 9(f) around J2 = 0.068
resembling a “cusp,” as normally seen whenever winding number
profiles cross a separatrix curve between islands. However, despite
presenting a discontinuous derivative (∂ωin/∂J2), it remains finite.
At the same time, it does not correlate with any new structure
(separatrix or island) in phase space [Fig. 9(c)] or when looking at its
trajectory. This raises the doubt of whether this would be a regular
shearless barrier as the ones previously discussed.

Indeed, when further investigating the emergence of this
“cusp,” it is seen to appear for β ≈ 0.032 (all other parameters kept
as in Fig. 9), exactly on the elliptic point of the island used as refer-
ence (i.e., θ2 = π and J2 ≈ 0.06). That is, the vicinity of the island
center presents a winding number close to zero. As β increases,
the “cusp” position (i.e., the J2 value for which ωin = 0) increases
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FIG. 10. Arrangement {(2, 2), (5, 5)}. Panels (a) and (b)
show β = 0.02 and 0.03, respectively. The corresponding
winding number profileωin is shown below each frame, i.e.,
(c) and (d). In all cases, α = 0.02, H = 0.22.

as well, moving apart from the island center as seen in Fig. 9(c).
The same phenomenon can be found for the mode m = n = 2 and
r = s = 5. Therefore, the nature of the point is likely to be closer to
that of a minimum that could be associated with a regular shearless
curve, although originating from a different bifurcation process than
the ones analyzed along the paper. For this reason, we refrain from
analyzing it in more detail but find it worth mentioning.

C. Emergence of shearless curves in different islands

At last, the two scenarios shown so far correspond to reso-
nance parameters m, n, r, and s as multiples and even numbers.
This implies that resonances promote bifurcations near or over the
elliptical central points, as they have similar parity. To complement
these results, we also present the bifurcation behavior for an odd
perturbation mode; that is, r = s = 5.

As shown in Fig. 10, most features are similar to what was
seen for even (r, s), with the minimum point at J2 = 0.0715 pinching
down, while its corresponding shearless invariant becomes the sep-
aratrix of the new side island on its right [Figs. 10(b) and 10(d)]. On
the other hand, given the distribution of the bifurcated islands, with
elliptical center at θ2 = π/2 and side island at θ2 ≈ π + π/10, the
shearless curve extends all over the island chain, whereas the inner
one remains within the previous central island.

V. CONCLUSIONS

The onset of secondary shearless curves has been previously
reported in a few twist systems. In this article, we present further
examples where we identify the presence of such curves in differ-
ent coupled systems. Our results indicate that secondary shearless
curves are commonly observed in twist systems.

By employing the two-harmonic standard map, a conservative
map, we were able to discern three patterns for the emergence of
shearless curves. As the perturbation parameter increases, a single
shearless curve, defined by a local maximum point in the inter-
nal rotation number profile, emerges and characterizes one of the
patterns. A second pattern is the emergence of shearless curves in
pairs. These curves manifest as maximum and minimum pairs in the
internal rotation profile. Ultimately, the shearless curve defined by
the local minimum point will evolve into a separatrix in scenarios
where the bifurcations are of the saddle-node type. Finally, a third
pattern is observed, and pairs of shearless curves precede a double
saddle-node bifurcation.

In addition to the standard map, we made use of another con-
servative map, which describes magnetic field lines for confinement
of plasma in toroidal geometries. For this system, we were also able
to identify the three patterns of the emergence of shearless curves
discussed in the previous paragraph. The only difference being that
shearless curves precedes only saddle-nodes and they emerge one by
one.

In addition to discrete systems, we use a Hamiltonian flow,
specifically the Walker–Ford Hamiltonian, to show the emergence
of shearless curves in pairs, or alone, as observed on the previously
studied maps. Preceding a pitchfork bifurcation, a single shear-
less curve appears, as defined by the emergence of a maximum
in the rotation number profile. Furthermore, saddle-node bifur-
cations give rise to pairs of shearless curves, in accordance with
the pairs of maxima and minima in the rotation profile. Neverthe-
less, for the Hamiltonian flow, new phenomena were also observed
when compared to the discrete maps. The emergence of a shearless
curve apparently without the subsequent appearance of a bifurca-
tion and the inversion of the local maximum by a minimum in the
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winding number profile together with the appearance of a new pair
of shearless curves.

In summary, we numerically identified the occurrence of shear-
less curves in discrete and continuous twist Hamiltonian systems
with the coupling of resonant modes. We noticed that the curves
can appear either alone, or in pairs, and usually preceding fixed
point bifurcations. When appearing in maximum–minimum pairs,
the curves determined by the local minimum in the rotation profile
eventually become separatrices.
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APPENDIX: ULLMANN’S MAP FOR MULTIPLE

RESONANCES

In the context of magnetic confinement plasma, with the ulti-
mate goal of achieving power fusion, there are a number of con-
finement settings that employ a magnetic perturbation. The primary
objective of such a perturbation is to generate a chaotic magnetic
layer that mitigates certain types of instabilities or allows the escape
of the magnetic lines in a suitable manner. Some examples of
these devices are the divertor,32 saddle coils as in DIII-D,34 and the
magnetic ergodic limiter.35

The symplectic mapping31 given by Eqs. (4)–(7) describes the
evolution of a magnetic field line configuration capable of con-
fining a plasma along a torus. The model, as determined by the
mapping, adopts a magnetic field of equilibrium Beq (composed of
poloidal and toroidal components) that is periodically perturbed
by an ergodic magnetic limiter, which is essentially a set of coils
through which electric currents flow.

It is important to note that the periodicity occurs in a geomet-
rical sense, not in a time sense; the entire confinement system is
static. The mapping was originally proposed by Ullmann,25 while the
perturbation setup is analogous to that proposed in Leal et al.23

This mapping employs radial r and poloidal θ coordinates
rather than action and angle variables to describe the position of a
magnetic field line. They are analogous to cylindrical coordinates,
and because we study the dynamics via a plane that transversely
intersects the torus, there is no need for the toroidal coordinate φ. By
construction, the Poincaré section must be located adjacent to one of
the coils. As discussed before, the equations that describe the mag-
netic field line positions, at the plasma confinement equilibrium, are
given by (4) and (5).

Equations (4) and (5) describe the toroidal evolution of a mag-
netic field line that has previously been localized at (r, θ) to a
position (r∗, θ∗) after a 2π/N radian toroidal shift. The magnetic
field line at (r∗, θ∗) is always placed after a toroidal evolution of
2π/N radian and before the perturbation due to the ergodic mag-
netic limiter, and the position (r, θ) is always the magnetic position
line after the perturbation. For convenience, we adopted a cylin-
drical approximation because it reduces the emergence of chaotic
field lines. Thus, the torus is approximated by a periodic cylinder
of length 2πR, and the equations (4) and (5) can be deduced from
Beq. × dl = 0, where dl is an infinitesimal segment of the field line.

Equation (5) includes q(r), the safety factor, an important mea-
sure in plasma confinement in tokamaks. For example, a tokamak
must operate with values of q > 1 to prevent kink mode instabilities.
It is defined as the mean value of the ratio of the toroidal variation
1φ to the poloidal variation 1θ , ν ≡ 1φ/1θ ,

q ≡
1

2π

∫

νdθ , (A1)

and it has a simple relation with the winding number, with one being
the inverse of the other: ω = 1/q.
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FIG. 11. (a) The magnetic coils along the toroidal chamber are equally separated
from each other. In (b), the cylindrical approach is illustrated. The toroid is viewed
as a 2πR-periodic cylinder.

The magnetic field line in equilibrium is perturbed by a mag-
netic field, whose mapping is given by equations (6) and (7). This
perturbation is generated by a set of coils called an ergodic magnetic
limiter. These coils produce resonances on magnetic field surface
lines with a rational internal winding number. The set of coils con-
sists of two pairs, each of which produces a mode perturbation of
type (m, n). The distance between each coil of one pair is equal to
π radians, and the toroidal displacement between a given coil and
its neighbor is π/2 radians. In Fig. 11(a), we show an illustration of
how the magnetic coils are distributed along the toroidal chamber,
while Fig. 11(b) represents the cylindrical approach.

As previously mentioned, each coil pair i generates a resonance
of type (mi, ni). To achieve this, it is necessary for each coil to have a
poloidal twist relative to its counterpart. Consequently, the param-
eter αi = π

ni
mi

must be included as a phase in the trigonometric

functions of the perturbation map (6, 7).
The equations (6) and (7) are the same as those used in the

work of Ref. 23 and are a version of Ullmann’s map.25 The parameter
b is the minor radius of the tokamak. The poloidal mode m is the
number of pairs of toroidal wire segments35 (thus producing chains
of m islands).
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