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Abstract
Isochronous island chains have been shown to have an impact on plasma transport. To investigate this
effect, we use an area-preserving twistmap that describes the trajectories of themagneticfield lines in a
tokamakwith an ergodic limiter composed of two pairs of coils. In this setup, the plasma is perturbed
by two independentmodes that act on the samemagnetic surface, which provides a framework for
analyzing scenarios where isochronous bifurcations occur. These bifurcations are associatedwith the
emergence of secondary shearless curves, which, like shearless curves in nontwist systems, act as
robust transport barriers, but locally, restricting the transport of chaoticfield lines in the regions near
the island chains. By computing the internal rotation number, we identify the presence of secondary
shearless curves and analyze their dependence on the perturbation parameters.We show that these
curvesmay emerge, persist, or break as the parameters vary, and that even after breaking, they
continue partially restricting field line transport. This persisting trapping effectmight serve as a
possible explanation of the results observed in previousworks.

1. Introduction

It is widely known that the trajectories of themagnetic field lines in a tokamak follow aHamiltonian structure
[1–3]. The toroidal and poloidal fields of the plasma equilibrium correspond to an integrableHamiltonian
system,while externalmagnetic perturbations can be described by a perturbation in theHamiltonian,making
the systemquasi-integrable [4]. As a result, it exhibits phenomena characteristic of quasi-integrable
Hamiltonian systems [5, 6], such as the coexistence of regular and chaotic orbits, the formation of island chains,
and the progressive destruction of KAM tori.

This enables the use ofHamiltonianmodels forfield line trajectories to study certain plasma phenomena.
Although the assumption that plasma particles strictly follow field line orbits is afirst-order approximation—so
that particle dynamicsmay differ substantially [7–10]—thesemodels still offer valuable insight into the physical
processes occurring in tokamaks and have beenwidely used to analyze general dynamical properties [11–14].

A key feature of quasi-integrableHamiltonian systems is the presence of isochronous island chains— better
known in plasma physics as heteroclinic islands. By definition, these are independent island chains that arise
fromdifferent initial conditions, share the samewinding number, and are generated by perturbationmodes
acting on the sameKAM torus [15, 16]. This phenomenon is a topic of interest in various fields, such as atomic
andmolecular physics [17], solid-state physics [18], particle acceleration [15], and nonlinear dynamics [19].

In plasma physics, recent studies have shown the formation of isochronous island chains in the plasma due
to bifurcations. InMHD simulations of theNSTX-U tokamak equippedwith nonaxisymmetric control coils
(NCCs), bifurcations in the island chains led to the emergence of isochronous islands [20]. Furthermore, an
experimental investigation inDIII-Dhas also shown bifurcations giving rise to isochronous island chains [21].
This topic is highly relevant because isochronous island chains can significantly impact plasma confinement.
Reference [20] showed that, under certain plasma conditions, they can enhance confinement, while [21]
indicated that theymay reduce the efficiency ofmechanisms designed to prevent disruptions in the plasma
column.

RECEIVED

25April 2025

REVISED

3 July 2025

ACCEPTED FOR PUBLICATION

17 July 2025

PUBLISHED

30 July 2025

© 2025 IOPPublishing Ltd. All rights, including for text and datamining, AI training, and similar technologies, are reserved.

https://doi.org/10.1088/1402-4896/adf14f
https://orcid.org/0009-0008-1848-4177
https://orcid.org/0009-0008-1848-4177
https://orcid.org/0000-0003-2433-5561
https://orcid.org/0000-0003-2433-5561
https://orcid.org/0000-0002-1748-0106
https://orcid.org/0000-0002-1748-0106
mailto:bruno.borges.leal@alumni.usp.br
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/adf14f&domain=pdf&date_stamp=2025-07-30
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/adf14f&domain=pdf&date_stamp=2025-07-30


Motivated by theseworks, amodel was proposed to investigate isochronous bifurcations in tokamaks [22].
Thismodel is a symplecticmap that describes themagnetic field of a tokamak equippedwith an ergodic limiter
with two pairs of coils. These coils generate two independentmodes, (m1, n1) and (m2, n2), allowing for the
exploration of various bifurcation configurations. The results indicated that these bifurcations can lead to the
formation of secondary shearless curves.

To understand these curves, it is important tofirst define twist and nontwist systems. Dynamical systems are
classified as twist if the rotation number (which, in a tokamak, corresponds to the inverse of the safety factor) is
monotonic, and as nontwist if there is a region in phase spacewhere the derivative of the rotation number
vanishes [12, 23–25]. Tokamakmagnetic fields, which typically have amonotonic safety factor, are thus
classified as twist systems. In the Poincaré section of nontwist systems, the regionwhere the derivative vanishes is
called the shearless curve, which acts as a robust transport barrier. Twist systems do not contain such curves,
however, they can exhibit secondary (or internal) shearless curves, which also serve as transport barriers [26–28].
Transport barriers associatedwith non-monotonic profiles are also observed in particle dynamicsmodels,
where regions near extrema of the q-kinetic profile inhibit transport [29, 30]. In the present work, however, we
restrict our analysis tofield line dynamics.

A recent study using the samemodel as reference [22], but employing the cylindrical approach, showed that
isochronous bifurcations are usually accompanied by the emergence of secondary shearless curves [31]. In the
present work, we use a variation of the previousmodel that incorporates the toroidicity of the tokamak to show
that these results also apply in thismore realistic scenario.

In section 2, we introduce the newmodel. Section 3 defines secondary shearless curves and explains how they
are characterized by the internal rotation number [5, 6]. In section 4, we present the results obtainedwith the
map, wherewe observe the emergence and breaking of secondary shearless curves. Additionally, we analyze a
permitvity diagram that illustrates howfield line transport is influenced by isochronous islands.

2. Themodel

Weconsider a tokamak equippedwith an ergodic limiter formed by a set of pairs of coils with length gmuch
smaller than 2πR0, whereR0 is themajor radius of the tokamak. Each coil in a pair is toroidally positionedπ
radians from its counterpart, and each coil has a toroidal displacement ofΔf= 2π/N radians from its nearest
neighbor, whereN is the total number of coils. A pair of these coils can excite amodewith a defined toroidal and
poloidal wave number, denoted bym and n, which resonates with the rational surface at q=m/n, creating
magnetic island chains. In this work, we investigate the effects of the coupling of resonantmodes by considering
an ergodic limiter with two pairs of coils generating twomodes, (m1, n1) and (m2, n2). In this caseN= 4 and
Δf=π/2.

Asmentioned before, the trajectories of themagnetic field lines in a tokamak are described by aHamiltonian
system. Therefore, the evolution of the field lines around the torus can bemodeled by an area-preservingmap,
which retains the sameHamiltonian structure. Thismap provides the points of intersection of the field lines with
a transversal surface crossing the tokamak chamber, called the Poincaré section.We used this technique to study
the dynamics ofmagnetic field lines in a tokamakwith an ergodic limiter consisting of two pairs of coils. Figure 1
illustrates the configuration.

To exemplify this, we analyze a Poincaré section of theUllmannmap, which describes a tokamakwith an
ergodic limiter consisting of a single pair of coils, which corresponds to themodel presented infigure 1with the
pair of coils (21, 22) turned off.We consider a plasmawith q(a)= 5 and a perturbationmode (5, 1). Figure 1(a)
shows the resulting Poincaré section inCartesian coordinates. The perturbation primarily affects the rational
surface at q= 5/1, creating an island chainwith period 5 and creating chaos near the plasma edge. Smaller
secondary islands also emerge. Figure 2(b) presents the same section but in terms of normalized polar
coordinates,X= θ/2π andY= (b− r)/b, where b is the radius of the plasma column.While this representation
is less visually intuitive, it is farmore common in the study of dynamical systems andwill be used throughout the
remainder of this paper.

Themap used to obtain the results in this work is a variation of theUllmannmap [32] that incorporates the
effect of two pairs of coils, each spaced byΔf=π. It consists of two parts: the first describes the evolution offield
lines in the absence ofmagnetic perturbations, while the second accounts for the perturbation caused by the
limiter coils. In the unperturbed case, the field line position (r*, θ*) ismapped from its previous position (r, θ)
according to:
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whereN= 4 is the number of coils, q(r) is the safety factor, and a1 is a parameter accounting for the toroidicity of
thefield lines. These expressions are derived from a generating function inwhich the toroidal correction appears
as a series expansion [32]. Neglecting all terms in this series yields the cylindrical approximation, as used in [31].
In the present work, we retain thefirst-order termof the series and consider the parameters of the TCABR
tokamak [33], which yields a1=− 0.02.

For the perturbed part, the position of the field line immediately after passing through a coil is given by:
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In this expression, b is theminor radius of the tokamak and the perturbation is characterized by the toroidal
and poloidalmode numbersmi and ni of the pair of coils i= 1, 2, which define the phase factorαi=πni/mi.
Physically, this phase is the relative poloidal angle between coils of the same pair. The index k= 1, 2 distinguishes
the two coils of the i-th pair. The perturbation strength is given by the dimensionless parameter

Figure 1. Schematic figure showing the coil setting and a representation of the Poincaré section. Here, ikdenotes the ith pair of coils,
where i= 1, 2 labels the pair, and k= 1, 2 distinguishes thefirst and second coil within each pair.

Figure 2.Poincaré section of theUllmannmapwith one pair of coils generating themode (5, 1).
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where ò= Il/Ip is the ratio of the perturbation coil current to the plasma current,R is the tokamak’smajor radius,
and a is the plasma column radius. The parameter q(a) represents the safety factor at r= awhile g, asmentioned
before, is the length of each coil.

Using this set of equations,we can track the trajectoryof thefield linesby choosing an initial conditionandapplying
equations (3) and (4)when thefield linepasses throughacoil, andequations (1) and (2) to follow itspathbetweencoils.
Since there are four coils, starting froman initial condition in thePoincaré section,weapply eachof themaps four times
todetermine thenext intersectionwith the section. Figure3(a) showsaPoincaré sectionof the resultingmap for the
modes (3, 1) and (9, 3)with a safety factorprofilewithq(a)=3. In this case, the amplitudesof theperturbations are such
that theprimarymode (3, 1)dominates, forminga single chainof three islandsnear theplasmaedge.

3. Secondary shearless curves

The safety factor is an important parameter in tokamak operation and has a direct correspondencewith the field
linewinding numberω, which is widely used in dynamical systems analysis:

( )
w

=q
1

6

Thewinding number has a clear physicalmeaning for our system. It determines the average poloidal
displacement of a field line, on amagnetic surface, per toroidal turn. Ifω is a rational number (ω= r/s), thefield
line is closed, as it returns to the exact same position after s turns around the torus.On the other hand, ifω is
irrational, thefield line never closes and instead densely covers the corresponding toroidalmagnetic surface. The
winding number is not defined for chaotic orbits.

From anumerical standpoint, thewinding number for amagnetic field line crossing the Poincaré section at
(r0, θ0) at themapping iteration l= 0 is calculated by:
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Figure 3(b) shows thewinding number profile calculated along a line of constantX in the section shown in
figure 3(a). If the equilibriumwinding number profile with respect toY ismonotonic, like in this example, the
system is called a twist system, since it satisfies the twist condition:

( )w
¹

Y

d

d
0, 8

at every point in phase space.
Thus, tokamakswith amonotonic safety factor profile are twist systems. Conversely, if the profile has an

extremum,where dω/dY= 0, the system is called nontwist. In such cases, the solution that violates the twist
condition corresponds to an invariant curve known as the shearless (or twistless) curve.

Figure 3.Poincaré section andwinding number profile for themodes (3, 1) and (9, 3) acting on amagenetic fieldwith q(a)= 3.
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In both twist and nontwist systems, invariant curves act as transport barriers, restricting chaotic orbits from
accessing certain regions of phase space. In twist systems, as the perturbation increases, these barriers are
progressively destroyed, as dictated by theKAM theorem.However, the KAM theoremdoes not apply to
nontwist systems. In such cases, the shearless curve persists even under strong perturbations,making it a robust
transport barrier.

By definition, in twist systems, the derivative of thewinding number never vanishes, and shearless curves do
not exist. However, a local winding number can be defined to describe the rotation of an island around its
elliptical point. This quantity, known as the internal winding number, is calculated by:
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where ζ represents the angle between consecutive points in the island, as shown infigure 4. Even in twist systems,
the internal winding number profile can be non-monotonic. In such cases, the curves corresponding to the
extreme points in the profile are called secondary shearless curves [27]. In the following section, we investigate
the emergence of secondary shearless curves in the systempresented in the previous section, regarding a
tokamakwith two pairs of limiter coils.

4. Results

Weconsider the case inwhich the first pair of coils generates themode (3, 1) and the second generates themode
(9, 3). The amplitude of the first perturbation is kept constant, while the amplitude of the second is gradually
increased. The initial scenario is shown infigure 5(a), wherewe observe the presence of a secondary shearless
curve (in red) that emerges due to the coupling of the resonantmodes. This shearless curve divides the phase
space into two regions, both containing chaotic orbits; however, the chaotic trajectories enclosed by the shearless
curve cannot escape to the outer region, and vice versa.

Figure 6(a) shows amagnified view of the same section, where a pair of (26, 3) twin islands (highlighted in
blue and green) are seen above and below the shearless curve. Figure 6(b) displays the internal winding number
profile computed along a line crossing the shearless curve (indicated in purple infigure 6(a)). The shearless curve
corresponds to a localmaximum in thewinding number profile, while the twin island chains are associatedwith
the plateaus atω= 3/26.

As the amplitude of the secondmode increases, the secondary shearless curve eventually breaks (figure 5(b))
and later reappears (figure 5(c)). In the latter case, we again identify the shearless curve by the localmaximum in
thewinding number profile (figure 6(d)). A pair of (117, 4) twin islands, highlighted in blue and green in
figure 6(c), is also observed.

Figure 4.Poincaré sectionwith a representation of the angles used in the calculation of the internal winding number.
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Figure 5.An example of the breaking and resurgence of the secondary shearless curve as ò2 increases. In (a), for ò2= 1.0731× 10−2, the
internal shearless curve is present. Then the curve disappears, as shown in (b) for ò2= 1.2525× 10−2, and reappears again, as shown in
(c) for ò2= 1.4120× 10−2. In (d), for ò2= 1.5003× 10−2, it has disappeared oncemore. For all cases, ò1= 1.1296× 10−2.

Figure 6.Amplifications of the Poincaré sections infigures 5(a) and 5(c) and the correspondingwinding number profiles.
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Finally, in the last example, the shearless curve is destroyed oncemore, as shown in figure 5(d). The breaking
and resurgence of shearless curves, as well as the appearance of twin islands, which are behaviors typical of non-
twist systems, occur locally, despite the systembeing globally twist.

To assess how the perturbation parameters and the presence of secondary shearless curves influence
transport, we select an ensemble of initial conditionswithin the chaotic region enclosed by the shearless curve
and compute their transmissivity, which corresponds to the fraction of orbits that escape this regionwithin a
given number of iterations [34]. For this calculation, we use amaximumof 6× 104 iterations. This quantity is
evaluated for various values of ò1 and ò2, which denote the perturbation strengths of eachmode. The results are
shown in the parameter space offigure 7.

The four green dots indicate the parameter values corresponding to the previously analyzed sections. In the
first case, the transmissivity is zero, showing that the secondary shearless curve functions as a completely
impermeable transport barrier. In the second case, the curve is broken, permitting limited transport. In the third
case, the shearless curve resurges, once again fully inhibiting transport. Finally, in the last scenario, no transport
barrier exists, and the transmissivity is very high.

An important aspect revealed by this result is that, even after the curve is broken, it continues to act as a
partial transport barrier. This persistent trapping effectmay account for the accumulation of chaoticfield lines
around themagnetic islands of heteroclinic chains observed in [20].

It would be possible to identify the perturbation configurations that lead to the formation of internal
shearless curves by constructing a parameter space similar to that offigure 7, but indicating, for each pair of
values for ò1 and ò2, the presence or absense of the shaerless curve, instead of the transmissivity.

5. Conclusion

Weused a symplecticmap to describe the intersection ofmagnetic field lines with a plane transverse to the
tokamak toroidal chamber, defining our Poincaré section. Themagnetic field lineswere periodically perturbed
in space by themagnetic coils thatmake up themagnetic ergodic limiter, the device responsible for generating
resonances and creating chaos at the plasma edge.

Weconsidered anergodic limiter configuration so that themagneticfield is perturbedby twodifferentmodes
acting on the samemagnetic surface.As a result,weobserved the emergence of local shearless curves,whichwere
identifiedby the internalwindingnumberprofiles.Weobserved that internal shearless curves act as local transport
barriers, trapping chaoticmagneticfield lines near the resonance region createdby theperturbationmodes.These
curves are robust,meaning theypersist as the perturbation increases and continue to inhibit transport even after
beingbroken, as evidencedby the reduced transmissivity in those cases.

Figure 7.Parameter space for the transmissivity of the chaotic region inside the shearless curve.
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Wealso showed that as the perturbation amplitude increases, secondary shearless curves can reappear after
being broken. This phenomenon is typical of nontwist systems, where it occurs globally in the Poincaré section.
We concluded that the same phenomenon occurs locally in twist systems, specifically around the elliptic points.

Finally, we showed that the trapping effect associatedwith internal shearless curves persists even after they
break, andwe propose that this effectmay explain the results observed in [20].
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