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Abstract

Isochronous island chains have been shown to have an impact on plasma transport. To investigate this
effect, we use an area-preserving twist map that describes the trajectories of the magnetic field linesin a
tokamak with an ergodic limiter composed of two pairs of coils. In this setup, the plasma is perturbed
by two independent modes that act on the same magnetic surface, which provides a framework for
analyzing scenarios where isochronous bifurcations occur. These bifurcations are associated with the
emergence of secondary shearless curves, which, like shearless curves in nontwist systems, act as
robust transport barriers, but locally, restricting the transport of chaotic field lines in the regions near
the island chains. By computing the internal rotation number, we identify the presence of secondary
shearless curves and analyze their dependence on the perturbation parameters. We show that these
curves may emerge, persist, or break as the parameters vary, and that even after breaking, they
continue partially restricting field line transport. This persisting trapping effect might serve as a
possible explanation of the results observed in previous works.

1. Introduction

Itis widely known that the trajectories of the magnetic field lines in a tokamak follow a Hamiltonian structure
[1-3]. The toroidal and poloidal fields of the plasma equilibrium correspond to an integrable Hamiltonian
system, while external magnetic perturbations can be described by a perturbation in the Hamiltonian, making
the system quasi-integrable [4]. As a result, it exhibits phenomena characteristic of quasi-integrable
Hamiltonian systems [5, 6], such as the coexistence of regular and chaotic orbits, the formation of island chains,
and the progressive destruction of KAM tori.

This enables the use of Hamiltonian models for field line trajectories to study certain plasma phenomena.
Although the assumption that plasma particles strictly follow field line orbits is a first-order approximation—so
that particle dynamics may differ substantially [7—10]—these models still offer valuable insight into the physical
processes occurring in tokamaks and have been widely used to analyze general dynamical properties [11-14].

A key feature of quasi-integrable Hamiltonian systems is the presence of isochronous island chains— better
known in plasma physics as heteroclinic islands. By definition, these are independent island chains that arise
from different initial conditions, share the same winding number, and are generated by perturbation modes
acting on the same KAM torus [15, 16]. This phenomenon is a topic of interest in various fields, such as atomic
and molecular physics [17], solid-state physics [ 18], particle acceleration [15], and nonlinear dynamics [19].

In plasma physics, recent studies have shown the formation of isochronous island chains in the plasma due
to bifurcations. In MHD simulations of the NSTX-U tokamak equipped with nonaxisymmetric control coils
(NCCs), bifurcations in the island chains led to the emergence of isochronous islands [20]. Furthermore, an
experimental investigation in DIII-D has also shown bifurcations giving rise to isochronous island chains [21].
This topic is highly relevant because isochronous island chains can significantly impact plasma confinement.
Reference [20] showed that, under certain plasma conditions, they can enhance confinement, while [21]
indicated that they may reduce the efficiency of mechanisms designed to prevent disruptions in the plasma
column.
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Motivated by these works, a model was proposed to investigate isochronous bifurcations in tokamaks [22].
This model is a symplectic map that describes the magnetic field of a tokamak equipped with an ergodic limiter
with two pairs of coils. These coils generate two independent modes, (#1,, ;) and (m,, n,), allowing for the
exploration of various bifurcation configurations. The results indicated that these bifurcations can lead to the
formation of secondary shearless curves.

To understand these curves, it is important to first define twist and nontwist systems. Dynamical systems are
classified as twist if the rotation number (which, in a tokamak, corresponds to the inverse of the safety factor) is
monotonic, and as nontwist if there is a region in phase space where the derivative of the rotation number
vanishes [12, 23-25]. Tokamak magnetic fields, which typically have a monotonic safety factor, are thus
classified as twist systems. In the Poincaré section of nontwist systems, the region where the derivative vanishes is
called the shearless curve, which acts as a robust transport barrier. Twist systems do not contain such curves,
however, they can exhibit secondary (or internal) shearless curves, which also serve as transport barriers [26—28].
Transport barriers associated with non-monotonic profiles are also observed in particle dynamics models,
where regions near extrema of the q-kinetic profile inhibit transport [29, 30]. In the present work, however, we
restrict our analysis to field line dynamics.

A recent study using the same model as reference [22], but employing the cylindrical approach, showed that
isochronous bifurcations are usually accompanied by the emergence of secondary shearless curves [31]. In the
present work, we use a variation of the previous model that incorporates the toroidicity of the tokamak to show
that these results also apply in this more realistic scenario.

In section 2, we introduce the new model. Section 3 defines secondary shearless curves and explains how they
are characterized by the internal rotation number [5, 6]. In section 4, we present the results obtained with the
map, where we observe the emergence and breaking of secondary shearless curves. Additionally, we analyze a
permitvity diagram that illustrates how field line transport is influenced by isochronous islands.

2. The model

We consider a tokamak equipped with an ergodic limiter formed by a set of pairs of coils with length ¢ much
smaller than 27R, where R, is the major radius of the tokamak. Each coil in a pair is toroidally positioned 7
radians from its counterpart, and each coil has a toroidal displacement of A¢ = 27t/ N radians from its nearest
neighbor, where N is the total number of coils. A pair of these coils can excite a mode with a defined toroidal and
poloidal wave number, denoted by m and n, which resonates with the rational surface at g = m/n, creating
magnetic island chains. In this work, we investigate the effects of the coupling of resonant modes by considering
an ergodic limiter with two pairs of coils generating two modes, (115, 11;) and (15, ). In this case N =4 and
Ap=m/2.

As mentioned before, the trajectories of the magnetic field lines in a tokamak are described by a Hamiltonian
system. Therefore, the evolution of the field lines around the torus can be modeled by an area-preserving map,
which retains the same Hamiltonian structure. This map provides the points of intersection of the field lines with
atransversal surface crossing the tokamak chamber, called the Poincaré section. We used this technique to study
the dynamics of magnetic field lines in a tokamak with an ergodic limiter consisting of two pairs of coils. Figure 1
illustrates the configuration.

To exemplify this, we analyze a Poincaré section of the Ullmann map, which describes a tokamak with an
ergodic limiter consisting of a single pair of coils, which corresponds to the model presented in figure 1 with the
pair of coils (21, 2,) turned off. We consider a plasma with g(a) = 5 and a perturbation mode (5, 1). Figure 1(a)
shows the resulting Poincaré section in Cartesian coordinates. The perturbation primarily affects the rational
surface at = 5/1, creating an island chain with period 5 and creating chaos near the plasma edge. Smaller
secondary islands also emerge. Figure 2(b) presents the same section but in terms of normalized polar
coordinates, X = 0/2mand Y= (b — r)/b, where b is the radius of the plasma column. While this representation
is less visually intuitive, it is far more common in the study of dynamical systems and will be used throughout the
remainder of this paper.

The map used to obtain the results in this work is a variation of the Ullmann map [32] that incorporates the
effect of two pairs of coils, each spaced by A¢ = 7. It consists of two parts: the first describes the evolution of field
lines in the absence of magnetic perturbations, while the second accounts for the perturbation caused by the
limiter coils. In the unperturbed case, the field line position (+*, 6*) is mapped from its previous position (r, 6)
according to:

* r
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Figure 1. Schematic figure showing the coil setting and a representation of the Poincaré section. Here, i, denotes the ith pair of coils,
where i = 1, 2 labels the pair, and k = 1, 2 distinguishes the first and second coil within each pair.
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Figure 2. Poincaré section of the Ullmann map with one pair of coils generating the mode (5, 1).
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where N = 4 is the number of coils, () is the safety factor, and a, is a parameter accounting for the toroidicity of
the field lines. These expressions are derived from a generating function in which the toroidal correction appears
asa series expansion [32]. Neglecting all terms in this series yields the cylindrical approximation, as used in [31].
In the present work, we retain the first-order term of the series and consider the parameters of the TCABR
tokamak [33], which yields a; = — 0.02.

For the perturbed part, the position of the field line immediately after passing through a coil is given by:

C. m;—1
= )T 07+ = Do) )
m; —
m;—2
0= 0% — ci(%) cos[m; (0% + (k — D)l (4)

In this expression, b is the minor radius of the tokamak and the perturbation is characterized by the toroidal
and poloidal mode numbers m1; and n; of the pair of coils i = 1, 2, which define the phase factor o; = 7n;/m;.
Physically, this phase is the relative poloidal angle between coils of the same pair. The index k = 1, 2 distinguishes
the two coils of the i-th pair. The perturbation strength is given by the dimensionless parameter
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Figure 3. Poincaré section and winding number profile for the modes (3, 1) and (9, 3) acting on a magenetic field with g(a) = 3.
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where € = I;/I, is the ratio of the perturbation coil current to the plasma current, R is the tokamak’s major radius,
and a is the plasma column radius. The parameter q(a) represents the safety factor at r = a while g, as mentioned
before, is the length of each coil.

Using this set of equations, we can track the trajectory of the field lines by choosing an initial condition and applying
equations (3) and (4) when the field line passes through a coil, and equations (1) and (2) to follow its path between coils.
Since there are four coils, starting from an initial condition in the Poincaré section, we apply each of the maps four times
to determine the next intersection with the section. Figure 3(a) shows a Poincaré section of the resulting map for the
modes (3, 1) and (9, 3) with a safety factor profile with g(a) = 3. In this case, the amplitudes of the perturbations are such
that the primary mode (3, 1) dominates, forming a single chain of three islands near the plasma edge.

3. Secondary shearless curves

The safety factor is an important parameter in tokamak operation and has a direct correspondence with the field
line winding number w, which is widely used in dynamical systems analysis:

q9=— (6)
w

The winding number has a clear physical meaning for our system. It determines the average poloidal
displacement of a field line, on a magnetic surface, per toroidal turn. If wis a rational number (w = r/s), the field
line is closed, as it returns to the exact same position after s turns around the torus. On the other hand, if wis
irrational, the field line never closes and instead densely covers the corresponding toroidal magnetic surface. The
winding number is not defined for chaotic orbits.

From a numerical standpoint, the winding number for a magnetic field line crossing the Poincaré section at
(r0, 0) at the mapping iteration / = 0 is calculated by:

1 k
= lim —) (0.1 — 0). 7
w= lim 27rk§( ) ™)

Figure 3(b) shows the winding number profile calculated along a line of constant X in the section shown in
figure 3(a). If the equilibrium winding number profile with respect to Yis monotonic, like in this example, the
system is called a twist system, since it satisfies the twist condition:

dw
— =0, ®)
dy
atevery point in phase space.

Thus, tokamaks with a monotonic safety factor profile are twist systems. Conversely, if the profile has an
extremum, where dw/dY = 0, the system is called nontwist. In such cases, the solution that violates the twist

condition corresponds to an invariant curve known as the shearless (or twistless) curve.
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X

Figure 4. Poincaré section with a representation of the angles used in the calculation of the internal winding number.

In both twist and nontwist systems, invariant curves act as transport barriers, restricting chaotic orbits from
accessing certain regions of phase space. In twist systems, as the perturbation increases, these barriers are
progressively destroyed, as dictated by the KAM theorem. However, the KAM theorem does not apply to
nontwist systems. In such cases, the shearless curve persists even under strong perturbations, making it a robust
transport barrier.

By definition, in twist systems, the derivative of the winding number never vanishes, and shearless curves do
not exist. However, a local winding number can be defined to describe the rotation of an island around its
elliptical point. This quantity, known as the internal winding number, is calculated by:

k
o= lim =3y — O ©)

k—o00 27Tk 1=0

where ( represents the angle between consecutive points in the island, as shown in figure 4. Even in twist systems,
the internal winding number profile can be non-monotonic. In such cases, the curves corresponding to the
extreme points in the profile are called secondary shearless curves [27]. In the following section, we investigate
the emergence of secondary shearless curves in the system presented in the previous section, regarding a
tokamak with two pairs of limiter coils.

4. Results

We consider the case in which the first pair of coils generates the mode (3, 1) and the second generates the mode
(9, 3). The amplitude of the first perturbation is kept constant, while the amplitude of the second is gradually
increased. The initial scenario is shown in figure 5(a), where we observe the presence of a secondary shearless
curve (in red) that emerges due to the coupling of the resonant modes. This shearless curve divides the phase
space into two regions, both containing chaotic orbits; however, the chaotic trajectories enclosed by the shearless
curve cannot escape to the outer region, and vice versa.

Figure 6(a) shows a magnified view of the same section, where a pair of (26, 3) twin islands (highlighted in
blue and green) are seen above and below the shearless curve. Figure 6(b) displays the internal winding number
profile computed alongaline crossing the shearless curve (indicated in purple in figure 6(a)). The shearless curve
corresponds to alocal maximum in the winding number profile, while the twin island chains are associated with
the plateaus at w=3/26.

As the amplitude of the second mode increases, the secondary shearless curve eventually breaks (figure 5(b))
and later reappears (figure 5(c)). In the latter case, we again identify the shearless curve by the local maximum in
the winding number profile (figure 6(d)). A pair of (117, 4) twin islands, highlighted in blue and green in
figure 6(c), is also observed.
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Figure 5. An example of the breaking and resurgence of the secondary shearless curve as ¢, increases. In (a), for €, = 1.0731 x 1072, the
internal shearless curve is present. Then the curve disappears, as shown in (b) for ¢, = 1.2525 x 10~ 2, and reappears again, as shown in
() for e, =1.4120 x 102, In (d), for e, = 1.5003 x 10", it has disappeared once more. For all cases, ¢; = 1.1296 x 10 2.
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Figure 6. Amplifications of the Poincaré sections in figures 5(a) and 5(c) and the corresponding winding number profiles.
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Figure 7. Parameter space for the transmissivity of the chaotic region inside the shearless curve.

Finally, in the last example, the shearless curve is destroyed once more, as shown in figure 5(d). The breaking
and resurgence of shearless curves, as well as the appearance of twin islands, which are behaviors typical of non-
twist systems, occur locally, despite the system being globally twist.

To assess how the perturbation parameters and the presence of secondary shearless curves influence
transport, we select an ensemble of initial conditions within the chaotic region enclosed by the shearless curve
and compute their transmissivity, which corresponds to the fraction of orbits that escape this region within a
given number of iterations [34]. For this calculation, we use a maximum of 6 x 10* iterations. This quantity is
evaluated for various values of €; and ¢,, which denote the perturbation strengths of each mode. The results are
shown in the parameter space of figure 7.

The four green dots indicate the parameter values corresponding to the previously analyzed sections. In the
first case, the transmissivity is zero, showing that the secondary shearless curve functions as a completely
impermeable transport barrier. In the second case, the curve is broken, permitting limited transport. In the third
case, the shearless curve resurges, once again fully inhibiting transport. Finally, in the last scenario, no transport
barrier exists, and the transmissivity is very high.

An important aspect revealed by this result is that, even after the curve is broken, it continues to act asa
partial transport barrier. This persistent trapping effect may account for the accumulation of chaotic field lines
around the magnetic islands of heteroclinic chains observed in [20].

It would be possible to identify the perturbation configurations that lead to the formation of internal
shearless curves by constructing a parameter space similar to that of figure 7, but indicating, for each pair of
values for €; and ¢, the presence or absense of the shaerless curve, instead of the transmissivity.

5. Conclusion

We used a symplectic map to describe the intersection of magnetic field lines with a plane transverse to the
tokamak toroidal chamber, defining our Poincaré section. The magnetic field lines were periodically perturbed
in space by the magnetic coils that make up the magnetic ergodic limiter, the device responsible for generating
resonances and creating chaos at the plasma edge.

We considered an ergodic limiter configuration so that the magnetic field is perturbed by two different modes
acting on the same magnetic surface. As a result, we observed the emergence of local shearless curves, which were
identified by the internal winding number profiles. We observed that internal shearless curves act as local transport
barriers, trapping chaotic magnetic field lines near the resonance region created by the perturbation modes. These
curves are robust, meaning they persist as the perturbation increases and continue to inhibit transport even after
being broken, as evidenced by the reduced transmissivity in those cases.
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We also showed that as the perturbation amplitude increases, secondary shearless curves can reappear after
being broken. This phenomenon is typical of nontwist systems, where it occurs globally in the Poincaré section.
We concluded that the same phenomenon occurs locally in twist systems, specifically around the elliptic points.

Finally, we showed that the trapping effect associated with internal shearless curves persists even after they
break, and we propose that this effect may explain the results observed in [20].
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