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The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized

using the decay rate of the survival probability. The system consists of an ensemble of non-

interacting particles confined to move along and experience elastic collisions with two infinitely

heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the

other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient

is numerically estimated by means of the averaged square velocity. Our results show remarkably

good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the

phase space. From the decay rates of the survival probability, we obtained transport properties that

can be extended to other nonlinear mappings, as well to billiard problems. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930843]

We study the dynamics of an ensemble of non-interacting

particles moving constrained by two infinitely heavy walls,

where one of them is moving periodically in time and the

other is fixed. This problem, also known as Fermi-Ulam

model (FUM), has application in many areas, including

astrophysics, atom-optics, quantum mechanics, among

others. The diffusive behaviour of the velocity, here set as

the way the transport of orbits occurs in the phase space,

is investigated considering transport properties obtained

from the decay rate of the survival probability, defined by

means of escape formalism. Since the system present

mixed dynamics, stickiness phenomenon may influence the

transport causing anomalous diffusion. In this study, we

developed an analytical approach for the diffusion coeffi-

cient along the transport through the chaotic sea consider-

ing escape rate formalism and survival probability

analysis. The numerical results we obtained are in good

agreement with the theory, and confirm the robustness of

the formalism. The results obtained here can be extended

to other similar dynamical systems.

I. INTRODUCTION

Typical dynamics of Hamiltonian systems are non-

integrable and non-ergodic.1 Such behavior leads the sys-

tem to present mixed phase space, with chaotic seas, invari-

ant tori, and Kolmogorov-Arnold-Moser (KAM) islands.2

For strongly chaotic systems, the dynamics has a normal

diffusive behavior, where particles move freely in the phase

space like a Brownian motion.1,2 In a nearly integrable sys-

tem, an initial condition started in the chaotic sea may pres-

ent a very complicate behavior. Stability islands influence

directly the dynamics generating anomalous effects in the

transport properties for a chaotic orbit.3 In fact, owing to

the presence of cantori (fractal dimension tori),2 and due to

labyrinth islands and chains of islands, generated by

resonances; orbits that are originated in the chaotic sea,

may be trapped for around these stability structures for long

finite time intervals. Such effect is caused by a dynamical

trapping which is called stickiness.3,4 This finite trapping

can cause irregular diffusion of particles where an intermit-

tent behavior may occur, alternating between normal diffu-

sion (chaotic behavior) and irregular (stickiness influence).

The stickiness phenomenon was originally proposed in

early 1970s, by Contopoulos5 in his study about galaxy dy-

namics. Nowadays, sticky orbits lead to a new scenario of

modern science, where anomalous transport and statistical

properties can be obtained in the dynamics of systems in dif-

ferent areas of research such as plasmas,6,7 acoustic,8 astron-

omy,9 biology,10 among others (see Ref. 11 for a review).

In this study, we propose to use diffusion and decay

rates of the survival probability to investigate transport in the

chaotic dynamical regime of the FUM.12 The FUM was orig-

inally proposed by Ulam in early 60s,12 as an attempt to pro-

duce a prototype that could explain the Fermi Acceleration13

(unbounded energy growth). The system consists of an en-

semble of non-interacting particles confined to move

between two infinitely heavy walls, which the particles

collide elastically. One wall is assumed to be fixed while the

other one oscillates periodically in time. Despite the simple

mechanics of the model, it leads to a complex variety of

nonlinear phenomena in both conservative and dissipative

dynamics.14–18 Also, one may find applications of its dynam-

ics in different areas of research as astrophysics,19 atom-

optics,20,21 quantum effects,22–24 experimental devices,25,26

among others. The phase space of the system is mixed and

contains both periodic islands surrounded by a chaotic sea

which is limited by a set of invariant curves. The lower
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one is analytically obtained as function of the control

parameter27 and works as a barrier blocking a flow of par-

ticles through it. This implies that we have a finite portion of

the phase space for orbits to diffuse, and hence we have a

mixed phase space dynamics; we are interested in studying

how the diffusive process and transport occur for this region

and if the survival probability analysis would give us trans-

port coefficients related with the escape formalism already

known in the literature.28–33

In many scenarios, we are not interested in the individ-

ual behavior of an initial condition or particle, but rather in

the average properties of the system, particularly when an

ensemble of particles is taken into account.28 This is the

main reason to consider statistical techniques to evaluate the

description of dynamical phenomena.29–33 An intuitive

example is to drop some colored ink in water, and study how

the particles of ink move far away from each other in the liq-

uid surface when this is also moving. When a physical sys-

tem is setup, a leakage can be considered as the introduction

of a hole or even a barrier.34,35 We introduce a hole in the

system, a pre-defined region, related to the dynamical vari-

able in study, where orbits can escape through it.11,34,35 One

can say, the probability density of an ensemble of initial con-

ditions to survive this leaking is qð~r ; tÞ, where~r represents a

generic dynamical variable in study, for example, the action,

where q¼ 0 in the hole. Note that this is an approximate,

coarse grained description, averaging over less relevant vari-

ables (the angle / in our case). Consider we can separate the

“dynamical region” in two parts: (i) particles that have

escaped through the hole; and (ii) particles that still have not

escaped. Hence, we can define a current of flow for the

escape. Of course it must be proportional to the difference of

concentration of particles among both regions. So, we may

write ~jð~r; tÞ ¼ �Drqð~r; tÞ, where D is the diffusion coeffi-

cient. Considering yet the continuity equation for conserva-

tion of particles, we have
@qð~r ;tÞ
@t ¼ �r:~jð~r; tÞ, and combining

both expressions, we obtain the diffusion equation

@q ~r; tð Þ
@t

¼ Dr2q ~r; tð Þ : (1)

A natural question is then raised about the decay rate of

qð~r; tÞ. The main aspect of this analysis is that the escape

rate is extremely sensitive to the dynamics of the system. For

strongly chaotic systems, which present normal diffusion,

the decay is typically exponential,11,28 while for systems that

present mixed phase space, with irregular diffusion due

stickiness influence, the decay can be slower, presenting a

mix of exponential with a power law,11,36 or stretched expo-

nential decay.37,38 Indeed, when a non-exponential decay is

observed, the dynamics would require a long range correla-

tion, as, for example, a consequence of stickiness influ-

ence.11 An equally important aspect is that the escape rate

can have a strong dependence on the position and size of the

hole.39–41

The investigation of the transport and of the diffusion

properties of FUM is done by solving Eq. (1) considering

boundary conditions for the escape in different hole positions

along the phase space, particularly on the velocity axis.

Considering an ensemble of particles, when a particle

reaches a hole, we consider it has escaped, and the time evo-

lution of other particle from the ensemble is started. An ana-

lytical expression is obtained for the diffusion coefficient as

function of the expansion in Fourier series.42 Our theoretical

findings are compared with numerical simulations obtained

via the average squared velocity. The agreement of the

theory with the simulation for the lower region in the phase

space is remarkably well confirming the robustness of the

formalism. The formalism used could be extended to other

systems described by discrete mappings, particularly the bil-

liard dynamical systems.

The paper is organized as follows: In Sec. II, we describe

the Fermi-Ulam model, its dynamical and some of its chaotic

properties. Section III is devoted to discuss the analytical pro-

cedure and to solve the partial differential equation given in

Eq. (1). We also do a comparison of the numerical results with

the theory, confirming a good agreement of the two. Finally in

Sec. IV, we present our final remarks and conclusions.

II. THE MODEL AND THE MAPPING

We start describing the model under consideration. It

consists of a particle, or equivalently of an ensemble of

non-interacting particles moving constrained by two infin-

itely heavy walls with an absence of gravitational field.

Collisions are considered to be elastic, hence there is no

fractional loss of energy upon collision. One wall is fixed at

x ¼ ‘ and works as a returning mechanism for the particle

to suffer a further collision with a moving wall. This is

described by a periodic oscillating function of the type

xwðtÞ ¼ e cosðwtÞ, where e and w are, respectively, the am-

plitude and the frequency of oscillation. The dissipative dy-

namics is not from interest in this paper although it has

been considered via inelastic collisions where a restitution

coefficient was introduced to simulate the fraction loss of

energy upon collision of the particles with the wall.16

Kinetic friction was also taken into account in the litera-

ture43 as well as in-flight dissipation.44

The dynamics of the system we are investigating is

described by a two-dimensional, nonlinear, measure preserv-

ing discrete mapping for the variables velocity of the particle

v and time t immediately after the nth collision of the particle

with the moving wall. There are two distinct versions of the

dynamics known in the literature: (i) the complete version;

and (ii) static wall approximation. Case (i), i.e., the complete

version, takes into account the full motion of the moving

wall, leading the instant of each collision to be obtained via

solution of transcendental equations. The static wall approxi-

mation, marked by case (ii), assumes both walls are fixed;

however, after the impact with the one on the left, the parti-

cle experiences an exchange of energy and momentum as if

the wall was moving. With such an approximation, the tran-

scendental equations no longer need to be solved and, at the

same time, the nonlinearity of the problem is kept. Such a

version was very useful long time ago when computers were

far slow. It also gives the huge advantage of making the ana-

lytical discussions easier as compared to the complete

model. The scaling properties observed in the simplified

103107-2 Livorati et al. Chaos 25, 103107 (2015)
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model27 are also present in the complete version. In this pa-

per and from this point and beyond, we consider only the

complete version of the model. All of our analytical results

were obtained using the complete model.

To construct the mapping, let us suppose the initial

condition for a moving particle is v0 and t0. We also assume

that at t¼ t0, the position of the particle is at e cosðwt0Þ.
There are three control parameters, e; ‘, and w, and that not

all of them are relevant for the dynamics. It is then conven-

ient to define dimensionless and hence a more convenient

set of variables. We define Vn ¼ vn=w‘; � ¼ e=‘ and finally

measure the time in terms of the number of oscillations of

the moving wall /n ¼ wtn. Starting with an initial condition

ðVn;/nÞ with initial position of the particle given by

xpð/nÞ ¼ � cosð/nÞ, the dynamics is evolved by a map ~T
which gives the pair ðVnþ1;/nþ1Þ in the ðnþ 1Þ th collision

with the moving wall. Taking these into account, we end up

with the following mapping:

~T :
Vnþ1 ¼ V�n � 2� sinð/nþ1Þ
/nþ1 ¼ ½/n þ DTn� modð2pÞ:

(
(2)

The expressions for V�n and DTn depend on what kind of

collision happens: (i) multiple collisions and; (ii) single colli-

sions. The multiple collisions are such that, after the particle

enters in the collision zone, x 2 ½��;þ�� and hits the moving

wall, before it leaves the collision zone, the particle suffers a

second and hence multiple collision. Further collisions can

also be observed. They indeed are less probably to be

observed. This implies that the probability of observing a sec-

ond successive collision is smaller than observing one.

Observing three successive is smaller than observing two and

so on. In fact, such probability has the form PðnsrÞ / n�3:76
sr ,

where nsr denotes the number of successive reflections. For a

further discussion, see Ref. 45, which discusses such reflec-

tions in a periodically corrugated waveguide, a model which

has topological similarities with the complete Fermi-Ulam

model. The expressions for both V�n and DTn are given by

V�n ¼ �Vn and DTn ¼ /c. The numerical value of /c is

obtained as the smallest solution of the equation Gð/cÞ ¼ 0

with /c 2 ð0; 2p�, where the function Gð/cÞ is written as

Gð/cÞ ¼ � cosð/n þ /cÞ � � cosð/nÞ � V�n/c : (3)

Let us now discuss the origin of the function Gð/cÞ and

its physical implications. Between two collisions of the parti-

cle with the moving wall, the particle travels with a constant

velocity, thanks to the absence of any potential gradient

along the way the particle goes. Thus, the position of the par-

ticle is given by a linear equation in time. Besides, the vibrat-

ing motion of the moving wall turns out impossible to find

an analytical expression of the instant of the impact.

Therefore, the function Gð/cÞ is obtained as an attempt to

account the condition that the position of the particle is the

same as the position of the moving wall at the instant of the

impact.

If the function Gð/cÞ does not have a root in the interval

/c 2 ð0; 2p�, we concluded that the particle left the collision

zone and a multiple collision no longer happened.

Let us move on and consider now the case of single col-

lisions. In this case, after a collision, the particle leaves the

collision zone without a further collision. It returns back due

to the fixed wall, which rebound it back to the moving wall.

The corresponding expressions used in mapping (2) are

V�n ¼ Vn and DTn ¼ /r þ /l þ /c, where the auxiliary terms

are given by /r ¼ ð1� � cosð/nÞÞ=Vn and /l ¼ ð1� �Þ=Vn.

The expression of /r denotes the time that the particle

spends travelling to the right-hand side until it hits the fixed

wall. The particle thus suffers an elastic collision and is

reflected backwards with velocity �Vn. The term /l denotes

the time that the particle spends to enter the collision zone.

Finally, /c is numerically obtained as the smallest solution

of the equation Fð/cÞ ¼ 0 with Fð/cÞ given by

Fð/cÞ ¼ � cosð/n þ /r þ /l þ /cÞ � �þ V�n/c : (4)

The same discussion used for the function Gð/cÞ also holds

here for the function Fð/cÞ. Thus, Eq. (4) comes from the

condition that the position of the particle is the same as that

of the moving wall at the instant of the impact.

Figure 1 shows the phase space for three different values

of � and considering 50 different initial conditions. One sees

the phase space presents a mixed structure for all values of �.
In evidence, there is an existence of the chaotic sea in the

low energy regime (below the invariant spanning curve), and

then a chain of islands appear as the velocity is increased.

After that, the presence of a first invariant spanning curve

(FISC), prevents further growth of energy for orbits in the

chaotic sea. The position of the FISC varies with �, and an

analytical estimation for its position, by using a connection

with well known standard mapping2 can be found in Ref. 46.

Considering the results obtained in the above mentioned

papers, the position of FISC is estimated as

VFISC ¼ 2

ffiffiffiffiffi
�

Kc

r
� 2

ffiffi
�
p

; (5)

where � is the control parameter and Kc � 0:9716… is the

critical value for the parameter in the standard map,47 where

the system suffers a transition from local chaos to globally

chaotic dynamics.

Analyzing the mixed phase space of the model, we can

see that, depending of the initial condition, distinct kinds of

dynamics may be observed. If a particle has an initial veloc-

ity above VFISC, it cannot cross the curve downwards and

stays forever confined to a region of local chaos. The dynam-

ics can then be periodic or chaotic. On the other hand, if the

particle has initial velocity below VFISC, the particle has

access to more regions in the phase space. This last scenario

shows itself more interesting to study, since the dynamical

trapping producing the stickiness phenomenon is observed

and affects the dynamics and hence the diffusion. Still, we

can set that in this dynamical regime, there is a limited

region for the particle to have access. The upper barrier is

near VFISC and lower limit is chosen to be 0, although there

are few observations of velocities reaching Vn < 0, mostly

dominated by successive collisions. Therefore, in practical

terms, we consider the two limits Vu ¼ VFISC and V d¼ 0.
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In this limited phase space, the period-one fixed points,

ðV�/�Þ, are given by

/� ¼ 0

p

� �
; V� ¼ 1� � cos /�ð Þ

mp
: (6)

The elliptical fixed points (stability islands) are characterized

by /� ¼ p, and V� ¼ ð1þ �Þ=mp, where m is an integer

m ¼ 1; 2; 3;…. They are elliptic as soon as the condition

m � 1

p

ffiffiffiffiffiffiffiffiffiffiffi
1þ �
�

r
(7)

is matched.

III. RESULTS AND DISCUSSION

In this section, we proceed with a statistical analysis for

the dynamics of the model. Because of the sine function

present in the mapping (2), a direct average over an ensem-

ble of different / is not convenient. Instead, we look at the

squared velocity, hence allowing us to estimate the behavior

of average squared velocity as function of n. We also discuss

the decay rates for the survival probability, and, using a solu-

tion of the diffusion equation, we find out an expression for

the diffusion coefficient. Our numerical results confirm well

the robustness of the theory giving a good agreement of the

two.

A. Root mean square velocity ðVRMSÞ

To start with, let us investigate the behavior of the aver-

aged square velocity over the dynamical evolution in the num-

ber of collisions. From the first equation of mapping (2), and

after applying square from both sides, we have ðVnþ1Þ2

¼ ðVnÞ2 � 4Vn� sinð/nþ1Þ þ 4�2 sin2ð/nþ1Þ. Defining ðDVÞ2

¼ ðVnþ1Þ2 � ðVnÞ2 , and considering the average in the

interval / 2 ½0; 2p� for the terms depending of the phase,

which is zero for sinð/nþ1Þ, and 1/2 for sin2ð/nþ1Þ, we end

up with

ðDVÞ2 ¼ 2�2 : (8)

Note that we here neglect correlations between /nþ1 and Vn,

since V changes very little from one collision to the next.

In our dynamical analysis, we check the velocity proper-

ties between collisions. So, taking the expression of ðDVÞ2 in

the interval between collisions, we may interpret this interval

as an integration variable,48,49 where one may set that

Vnþ1ð Þ2 � Vnð Þ2

nþ 1ð Þ � n
� @V2

@n
: (9)

Integrating both sides, we obtainðVn

V0

dV2 ¼
ðn

0

2�2dn ! ðVnÞ2 ¼ ðV0Þ2 þ 2�2n : (10)

For a better statistics, we set VRMS ¼
ffiffiffiffiffiffi
V2

p
. Then, an an-

alytical expression for the velocity as a function of n is

VRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV0Þ2 þ 2�2n

q
; (11)

where V0 is the initial velocity. Of course this expression is

not valid for any n, particularly the larger ones. Equation

(11) is valid only for small n. Once the phase space is limited

by invariant curves, an orbit in the low velocity regime can-

not reach regions above the invariant curve for long time dy-

namics. If we literally take Eq. (11), as n is increased, VRMS

should also grows infinitely, and that is not what happens.

We can estimate the window of validity of Eq. (11) by

using Eq. (5). Indeed, when VFISC¼VRMS, we can estimate

the number of collisions, nx critical to where the Eq. (11) is

valid. If we choose V0 ! 0, we obtain nx ffi 2=�. The relevant

FIG. 1. Phase space for the Fermi-Ulam model described by mapping (2). The control parameters used were: (a) � ¼ 10�2; (b) � ¼ 10�3; and (c) � ¼ 10�4.

The gray (red) curve marks the position of the first invariant spanning curve (FISC) in the phase space.
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scaling for this crossover is given by nx / ��1, obtained here

by simplest way and which is in well agreement with the

result known from the literature.27

Let us move ahead and discuss the numerical behavior

for VRMS and hence, compare with Eq. (11). First, we eval-

uated numerically the following expression:

V2 ¼ 1

M

XM

i¼1

1

n

Xn

j¼1

Vi;j
2 ; (12)

where M is the ensemble of initial conditions, and n is the

number of collisions. In a statistical point of view, we take

the average of the velocity Vi;j along the orbit running j and

also along the ensemble of initial conditions running i. Initial

conditions were always chosen in the chaotic sea with a low

initial velocity V0 � �. This was made to warrant a maxi-

mum diffusion for a chaotic particle.

Figure 2 shows the behavior for the curves of VRMS as

function of n evaluated over an ensemble of 2.000 initial

conditions. Each one of them was evolved up to 107 colli-

sions with the moving wall. For large enough n, all curves

approach to the stationary state marked by VSS. Our result

obtained in Eq. (11) shows that when n is small and, consid-

ering a negligible initial velocity, i.e., V0 ffi 0, all curves

must diffuse with a
ffiffiffi
n
p

. Hence, VRMS / nb, where b � 1=2.

For large enough n, the curves must converge to the station-

ary state, which scales as VSS / �1=2, as dictated by the posi-

tion of the lowest invariant spanning curve. The crossing of

VSS with VRMS gives a crossover nx / ��1, as we mentioned

above.

B. Transport and diffusion

To discuss the diffusion, let us introduce properly a hole

in the system. Indeed, we set up a velocity Vhole<VFISC that

is used to terminate the dynamics. Starting an initial condi-

tion with V0 ffi 0, the dynamics evolves and the orbit starts

its diffusion along the phase space. When it reaches and

hence crosses Vhole, the dynamics is terminated, the number

of collisions until that point is annotated, and a new initial

condition, with the same velocity and different initial phase,

is started. The procedure repeats until all the ensemble is

exhausted. The diffusion equation (see Eq. (1)) written

specifically to investigate the dynamics of Eq. (2) takes the

form

@q V; nð Þ
@n

¼ Dr2q V; nð Þ ; (13)

where the generic action variable is now set as the particle’s

velocity V, and the time is measured as the number of colli-

sions n. The diffusion equation setup in (13) only holds for

n� 1, since diffusive process occurs in the chaotic sea for

long times. To solve Eq. (13), we use the method of separa-

tion variables for a partial differential equation, yielding

qðV; nÞ ¼ UðVÞTðnÞ. So, applying this to Eq. (13), we obtain

as solution for the n variable

TðnÞ ¼ C1e�fn ; (14)

where C1 is a constant. Also, considering the equation

related with the velocity, one may find

U00 Vð Þ
U Vð Þ ¼ �

f
D
¼ �g2 : (15)

Equation (15) is an ordinary second order differential equa-

tion with constant coefficients. Solutions are given in terms of

sines and cosines. The boundary conditions are
@qðV;nÞ
@V ¼ 0,

where, when V¼ 0, we have U0ð0Þ ¼ 0; and qðV; nÞ ¼ 0,

when V ¼ Vhole. This condition sets that UðVholeÞ ¼ 0, where

Vhole is the pre-defined escape velocity.

Physically, we can interpret the boundary conditions as

being the conservation of particles of the initial ensemble

since no particle escaped yet, and the division of the phase

space, in orbits that escaped and orbits that did not escaped

yet.

Incorporating these into Eq. (15) and considering only

odd solutions, we end up with the condition gVl ¼ lp=2,

where l ¼ 1; 3; 5;… is sum index of the Fourier series expan-

sion. Since g2
l ¼ fl=D, we obtain D ¼ ð4V2

holeflÞ=ðl2p2Þ.
Considering yet Vhole ¼ h and a change in the notation of the

sum index from the Fourier series expansion, from l=2 to

ðk þ 1=2Þ, where odd and even terms are considered, one can

obtain42

q V; nð Þ ¼
X1
k¼0

Ak cos
Vkp

h
k þ 1

2

� �� �

	 exp
�p2Dn

h2
k þ 1

2

� �2
" #

; (16)

where the diffusion coefficient is defined as

D ¼ 4h2fk

p2 k þ 1=2ð Þ2
: (17)

The expression given by Eq. (16) furnishes an analytical

approximation for the survival probability, when a hole is

FIG. 2. Plot of the curves for VRMS as a function of n for different values of

�. We notice the curves start to grow for short n according to the correct scal-

ing exponent b ¼ 1=2 and then suffer a changeover after a crossover nx and

bend towards a stationary state VSS for long times.
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introduced in the chaotic sea.42 This expression holds for

any value of k, it just depends on how many terms one would

consider in the Fourier series expansion. And for k¼ 0, one

could obtain the slowest decay. Also, it is important to clar-

ify that the expression given in Eq. (16) describes well the

behavior for the curves of Psurv only for an exponential

decay. For the case, where it goes through a mixed phase

space, the solution of the diffusion equations is more compli-

cated, and is still considered an open problem.

C. Numerical treatment

Let us now discuss our numerical results. When we con-

sider transport properties and diffusion for chaotic dynam-

ics,28–33 one can obtain the following expression:

h½rðnÞ � rð0Þ�2i ¼
ð

rðnÞ2qð~r; nÞd~r ¼ 2Dn ; (18)

where r is the generic action variable of the system, D is the

diffusion coefficient, n is the iteration number, and qð~r; nÞ is

the probability distribution of a system.

For the FUM case, we can use in the expression given

by Eq. (18), the previously obtained result in Subsection

III A, which is hðDVÞ2i ¼ 2�2. This procedure is made in

order to obtain a numerical approximation for the diffusion

coefficient. Thus, at each collision of the particle with the

moving wall, we calculate the value of the root mean square

velocity, or second moment of the dispersion, as

hDV2i ¼ lim
NP!1

1

NP

XNP

i¼1

Vn
i � V0

i
	 
2

; (19)

where NP is the number of particles, the index i denotes the

NP particles, and Vn is the velocity after n iteration of the ith
particle. So, the diffusion coefficient, should be given as

D ¼ lim
n!1

1

2n
hDV2i : (20)

Figure 3(a) shows a plot of the diffusion coefficient

obtained from Eq. (20) as a function of n for NP ¼ 106.

When we compare the relation between the diffusion coeffi-

cient and hðDVÞ2i, i.e., D ¼ �2 as displayed in Fig. 3(b) in a

log-log plot, we found that a power law fitting furnishes

D ¼ 0:974ð�2Þd, where d � 1. This result remarkably corrob-

orates the linear dependence between D and �2, as predicted

by Eqs. (8) and (20).

In order to give a more robust result, let us compare

with the diffusion expression given in Eq. (17). We consid-

ered ten distinct holes equally distributed along the velocity

axis, from 2� and the value of VSS, i.e., the value of stationary

state for VRMS. Here, we considered the evolution of 106 dif-

ferent initial conditions distributed along the phase 2 ½0; 2p�
and with V0 ¼ 1:1�. The behavior of q as a function of n is

shown in Fig. 4(a).

One can see that as we increase the position of the hole

in the velocity axis, which means that we are increasing the

possibility of the particle to visit a larger region along the

chaotic sea and that the particle has availability to diffuse

before escape, the exponential decay f is slower. This is a

clear confirmation that the orbits experience the dynamical

trapping yielding in a stickiness, hence producing a slower

decay. Indeed, any slower decay than a regular exponential

could be addressed to stickiness influence in the dynamics.

One could fit a stretched exponential or a power law fit,

according to the decay rate of the survival probability. It is

still an open problem if a system will present decay rate as a

power law or as a stretched exponential as stickiness influ-

ence. For the FUM system, we observed a power law decay.

In Figure 4(b), we show a plot of the diffusion coeffi-

cient as a function of the position of the hole for 10 different

holes located along the phase space and considering different

values of �. This was made using the analytical expression

given by Eq. (17), for k¼ 1. Here, we used the exponent f
obtained from every exponential fit in the curves of q shown

in Fig. 4(a). One could notice that there is a remarkably good

agreement between the values of the diffusion coefficient,

for the same values of �, between Figs. 3(a) and 4(b), which

gives support to the connection of the theory and the numeri-

cal data.

Finally, in Fig. 4(c), we rescale the vertical axis by the

transformation D! D=�2 and the horizontal axis by

h! h=�. After this, we obtain an overlap all curves of

the diffusion independent of the analyzed hole. We can see

FIG. 3. (a) Plot of the diffusion coefficient D, Eq. (20) as a function of n for

different values of �, as labeled in the figure. (b) Plot of D vs �2, where a

power law fitting furnishes a slope d � 1, thus confirming the relation

obtained in Eqs. (8) and (20).
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that the rescale in the average for D=�2 relation is near by

1 (dashed line), which is also in agreement with Eqs. (8)

and (20).

The fluctuations around 1 observed in Fig. 4(c) are due

to the direct influence of the periodic islands in the phase

space, producing then a stickiness near periodic regions in

the dynamics. Once the holes were set between 2� and the

VSS, for higher holes, there are some stability islands near

VSS, so the dynamical trapping becomes inherent in the sys-

tem. Also, these orbits cause anomalous diffusion influenc-

ing also the transport3,4 along the chaotic sea. A more

complete analytical analysis of the influence of stickiness in

the dynamics, particularly near the periodic islands, is still

lacking.

IV. FINAL REMARKS AND CONCLUSIONS

In this paper, we studied the dynamics of a particle, or an

ensemble of non-interacting particles, confined between two

walls, where one is fixed and the other one is periodically per-

turbed. The dynamics was described by a two-dimensional,

nonlinear, transcendental, and measure preserving mapping.

The phase space is composed by chaotic seas, KAM islands,

and invariant tori, which separates different regions in the

phase space. Analyzing the expression for the root mean

square velocity as function of n, we estimated analytically the

behavior of VRMS.

Considering the transport properties and an analytical

analysis of the survival probability q, we found an expres-

sion for the diffusion coefficient D. From a Fourier series

expansion, we have shown that D depends on the exponential

rate decay of q and also from the hole position in the phase

space. A numerical simulation was made and shown to agree

well with this expression, confirming the relation between

the diffusion coefficient and �2, as predicted by Eqs. (8) and

(20). Also, we rescaled the behavior of the diffusion

coefficient for 10 different holes, and found a normalization

around 1 for D=�2, which also agrees with the theory.

Both analytical and numerical results in this paper give

robustness to the theory of diffusion analysis, concerning the

survival probability curves, as shown also in Ref. 42. In the

future, it would be interesting to try to expand this formalism

to other more complex dynamical systems, like billiards for

instance. Also, to investigate some possible higher order

effects in the Fourier series expansion for the analytical

expression of diffusion coefficient in Eq. (16), as, for exam-

ple, k> 1, and its effects to Eq. (17), would be an extension

of the formalism here presented. Besides, we could try to

estimate numerically Eq. (16) behavior and possible sticki-

ness influence to this analysis.
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