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The existence of a special periodic window in the two-dimensional parameter space of an experimental
Chua’s circuit is reported. One of the main reasons that makes such a window special is that the observation of
one implies that other similar periodic windows must exist for other parameter values. However, such a
window has never been experimentally observed, since its size in parameter space decreases exponentially with
the period of the periodic attractor. This property imposes clear limitations for its experimental detection.
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The emergence of regular behavior is one of the most
studied topics in nonlinear dynamical systems. It is known
that by the changing of an accessible parameter, chaos �1�
and periodic �2� behaviors will be observed.

The expectation of finding stable periodic behavior inside
chaotic regions in parameter space depends on the sizes and
shapes of the parameter regions, regarded as periodic win-
dows �PWs�, for which stable periodic orbits �POs� are
found. A PW is a region in parameter space that indicates
parameter values for which one finds the lowest periodic
attractor of period P, plus the period-doubling cascade with
attractors of period P2n, with n�N �3�.

For systems whose chaotic attractors have only one posi-
tive Lyapunov exponent as the Chua’s circuit, considered in
this experiment, a special type of PW, regarded as complex
periodic windows �CPWs�, is everywhere observed in pa-
rameter space. The appearance of one such window implies
in the appearance of an infinite number of self-similar others
that appear side by side aligned along a direction. In addi-
tion, CPWs have an extended characteristic in the parameter
space. They visit large portions of the parameter space; i.e.,
one can still stay in the same periodic windows even if es-
pecially large variations in two control parameters are made.
Due to these two characteristics, an arbitrary change in only
one accessible parameter can replace chaos by periodic be-
havior or vice versa. So a better understanding of a CPW is
relevant to applications that relay either on a robust periodic
oscillation, as mechanical machines, or on a robust chaotic
system, as chaos-based communication �4�.

These CPWs, regarded as shrimp �5�, were extensively
studied in maps �6,7� and in periodically forced maps �8,9�.
However, only recently were these windows numerically ob-
served in systems of ordinary differential equations �10,11�.
The reason is that the parameter interval length �P of a
CPW scales exponentially with −P, where P is the period P
of the lowest-period periodic attractor of the CPW �6�. Since
CPWs have usually higher P, they are too tiny to be ob-
served, even though these tiny windows are extended in pa-
rameter space.

This exponential scaling clearly imposes limitations on
the experimental detection of such a periodic window, and
arguably due to that, they have never been experimentally
reported. However, for the Chua’s circuit, it was numerically
shown in Ref. �11� that such CPWs possessing a low value
for the lowest-period periodic attractor �P=4� exist. This

work is dedicated to experimentally report such a CPW.
To certify that we observed a CPW, we show that there

exists curves in parameter space where the POs are super-
stable and that these curves cross transversally at least twice,
a necessary condition that defines a CPW. These parameter
curves are detected by the indirect method of noting the pa-
rameter values at which the symbolic sequences, encoding
the type of POs existing within the CPW, change.

The well-known Chua’s circuit is shown in Fig. 1�a�. The
control parameters are R1=R10−�R1 and R2=R20−�R2,
where R10 and R20 have fixed values and �R1 and �R2 are
varied by precision potentiometers, with steps of 50 m� and
200 m�, in the ranges �0,17�� and �1,5.5��, respectively.
We obtained time series by recording the VC1

�t� voltage with
a 12-bit analog-to-digital converter �ADC� at the rate of 400
ksamples/s. All the attractors were reconstructed by the Tak-
ens method �12� with time delay �=45.0 �s, which corre-
sponds to 18 data points. Then, the reconstructed attractors
are made discrete by measuring VC1�t+�� when the recon-
structed trajectory reaches the section VC1�t�=−2.25 V in a
clockwise orientation. The value of VC1�t+�� when the re-
constructed trajectory realizes its nth crossing in this section
is denoted by VC1

n .
In Fig. 1�b�, we show the parameter space of this circuit.

There, solid black circles represent parameter values for
which one obtains the lowest-period PO. Along the left bor-
der between chaos and the PW �parameters indicated by let-
ters a within the boxes of Fig. 1�b�� in these two PWs, chaos
is replaced by a stable �period-3 or period-4� attractor by a
tangent bifurcation by increasing �R2. In the other borders,
�parameters indicated by letters b, c, and d�, the lowest-
period POs inside the PWs bifurcate and chaos �outside the
PW� is reached after a period-doubling cascade by modify-
ing �R2.

To illustrate our analysis techniques, we first use a sym-
bolic representation to characterize the lower-period POs that
appear for the parameters nearby the borders between the
PWs and the chaotic regions, indicated by the letters a, b, c,
and d, in boxes I, II, and III, in Fig. 1�b�. We use data sets
collected varying �R2 along the lines X and Y for
�R1=3.0 � and �R1=12.5 �, respectively, as shown in
Fig. 1�b�.

The symbolic characterization of these POs is done by
encoding them by the approach in Ref. �13�, using the prop-
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erties of the nearby chaotic attractors. The return maps of the
reconstructed chaotic attractors for parameters in the borders
a, b, c, and d in box III are shown in Figs. 2�a�–2�d�. These
maps as well as the other chaotic attractors at the borders in
both period-3 and period-4 windows display return maps
typical of either unimodal �one maximum� or bimodal �one
maximum and one minimum� maps, and they can be parti-
tioned by the critical points. The partitions are in the maxi-
mal and minimal points, assigned by V1 and V2. So a trajec-
tory point in the interval VC1�V1 is encoded by “0,” a
trajectory point in the interval V1�VC1�V2 is encoded by
“1,” and a point in the interval VC1�V2 is encoded by “2.” A
stable period-P orbit can be encoded by comparing its map-
ping with the mapping of the nearby chaotic attractor, and
depending on the position of the POs points with respect to
the partition points, a PO can be encoded by a sequence
s1s2 . . .sP, where si is a symbol of the alphabet
si= �0,1 ,2�. For chaotic attractors close to the borders with
the period-3 window, in box I, the chaotic returning maps are
unimodal, with only one critical point V1. In the side a of the
window, in box I, we obtain the symbolic sequence 101 and,
in the right side b, the sequence 100. All the POs in the left

side of this window are encoded by 101 and the ones on the
right side by 100. The period-4 POs, in the period-4 window,
close to the borders a, b, c, and d, in box III �whose return
maps can be seen in Figs. 2�a�–2�d�, respectively� are en-
coded by the sequences 1001, 1000, 2000, and 2000, respec-
tively.

In fact, as one varies a control parameter, the symbolic
sequence of a stable PO changes if some periodic point
crosses a critical point of the return map �14�. This mecha-
nism is responsible for the changes in the symbolic se-
quences of the stable POs in the period-3 window. There, the
symbolic sequence 101 changes to 100 when the PO crosses
the critical point V1.

We name � the return map of the closest chaotic attractor
to the period-P PO and O a stable PO with points
VC1

1 , . . . ,VC1

P . Assuming that the return map � can be used as
an approximation to calculate the first derivative of the orbit
points of a PO inside a PW, then the orbit O is stable if

� � 1, �1�

with �= ��i=1
P d�

dVC1
i �. If a PO contains a critical point, a point

on the extremum of the map, �=0, and we say such an orbit
is superstable. For parameters � close to a parameter for
which a superstable PO exists, Eq. �1� is satisfied, which
means that it exists a PW in the neighborhood of parameter
lines for which VC1

i =V1.
A similar mechanism governs the changes in the symbolic
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FIG. 1. �a� Scheme of Chua’s circuit. Their component values
are R10	1.4 k�, R20	37 �, C1	4.7 nF, C2	56 nF, and
L	9.2 mH. �b� Parameter space for the experimental Chua’s cir-
cuit showing the period-3 and period-4 windows. Solid black circles
represent parameters for which the lowest-period POs are observed,
solid light gray circles represent the higher period PO that appear
by periodic-doubling bifurcations, and solid dark gray circles rep-
resent parameters for the closest chaotic attractor to the PWs. The
straight lines indicate parameter values for the sets of time series X
and Y.
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FIG. 2. �Color online� Return maps �black points� of the
Poincaré section of the chaotic attractors obtained using the param-
eters indicated by the borders a, b, c, and d in box III of Fig. 1. We
also show the return maps �blue circles� of the periodic attractors
obtained for the closest parameters to these borders. The vertical
lines, passing through the maximum and the minimum, define the
partition points. In �d�� is shown a zoomed-in view of the minimum
of the return map in �d�.
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sequences of the stable POs inside the period-4 region. The
difference now is that we have two critical points V1 and V2,
which makes Eq. �1� satisfied in parameter curves for which
either VC1

i =V1 �which defines the critical curve SV1� or
VC1

i =V2 �which defines the critical curve SV2� or VC1

i =V1 and
VC1

i =V2. It is typical for this type of CPW that the PW ap-
pears not only for the parameter point for which VC1

i =V1 and
VC1

i =V2, a zero-measure point in parameter space, but also
along the curves SV1 or SV2. These two curves form the
spines introduced in Refs. �7,8�.

Three important characteristics grant to this window the
status of being a CPW: �i� if there is one CPW, then a count-
able infinite number of others must exist, with sizes that
decreases exponentially �Eq. �2�� as the period of the POs
increase. �ii� The two critical curves SV1 and SV2 cross trans-
versally at least twice. For the parameters where the cross-
ings happen, the PO has an orbit point VC1

=V1 and another
VC1

=V2. �iii� POs with the same period coexist.
Concerning characteristic �i�, for quadratic maps one

should expect that

�P�P� 	 e−
P, �2�

as shown in Ref. �6�, with P being the parameter interval
length of a CPW and P the period of the lowest-period pe-
riodic attractor. Also, from �6�, we have that 

2HT, where
HT is the topological entropy or Lyapunov exponent of the
bordering chaotic region �7,8�. But in fact, for flows such as
the Chua’s circuit containing Shilnikov’s homoclinic orbits
�15�, a two-parameter analysis �16� performed in the neigh-
borhood of this orbit shows that it exists a countable �infin-
ity� number of CPWs that appear side by side in parameter
space following the same exponential scaling law that de-
scribe the appearance of the homoclinic orbits. This expo-
nential scaling law is of the form of Eq. �2�, and as shown in
Ref. �17�, 
=�

�

 , with � and 
 representing the real and

imaginary parts of the eigenvalues of the focus point associ-
ated with the homoclinic orbit responsible for the generation
of the many CPWs.

We estimate that for this experimental circuit 
�2, in Eq.
�2�, for a parameter region in the vicinity of the observed
period-4 CPW. That means that in order to observe a higher-
period CPW, with period Ph=42n, with n�N, associated
with the observed period-4 CPW, we should have a potenti-
ometer with a resolution �step size� of 8�p exp�−2�Ph−4��,
8 being roughly an average width of the period-4 CPW ob-
served. So in order to observe a period-8 CPW, we would
need a potentiometer with a resolution of about 0.14 m�,
which is much smaller than our experimental resolution. Nu-
merical simulations realized in a similar Chua’s circuit, re-
ported in Ref. �11�, show that CPWs with attractors of period
lower than 4 exist. However, their sizes are of the order of 20
times smaller than a period-4 large CPW, similar to the one
observed experimentally. Therefore, for the resolution of our
experiment, we do not expect to find the many others nu-
merically found CPWs, but only this “giant” one.

To detect the existence of the critical curves, we search
for transitions in the symbolic sequence of the POs closer to
the borders between the PW and chaos. In box II, the PO

encoded by 1001 at the border a changes its encoding to
2001 at the border b. So between these two borders, there is
a parameter �R2 for which at least one point of the period-4
orbit is VC1

i =V2. Thus within these borders, there must exist
a curve SV2. In box III, the PO encoded by 1001 �border a�
changes its encoding to 1000 �border b�, indicating that
within these borders there is a PO that visits the critical point
V1. Thus, within these borders there must exist a curve SV1.
In box III, the POs in both borders c and d are encoded by
the symbolic sequence 2000, which suggests that within
these two borders there must exist either �or both� curves SV1
or SV2.

As we go from one side of the CPW to the other side by
changing �R2, for a fixed �R1, the points of the return map
of the POs wander along an imaginary smooth curve ��. This
imaginary curve changes its form smoothly, as we vary �R2.
For a �R2 close to a parameter where chaos is found �close
to the borders a, b, c, or d�, �� resembles the return maps � of
the chaotic attractors. The curve �� can be constructed using
all the POs observed in this CPW for a constant �R1. Then,
we estimate the location of the critical points of ��, which
provide us the encoding for the period-4 POs within the
CPW, in Fig. 3�a�. The curves SV1 and SV2 are located where
two different colors �which describe the different encodings�
meet. A curve SV1 is the border line between two regions
representing different encodings. Either 1001 and 1000 or
2001 and 2000. A curve SV2 is the border line between the
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FIG. 3. �Color online� �a� The encoding of all the period-4 POs
found in the CPW. �b� Sketch of the critical lines �SV1 and SV2�
structure of the CPW, disregarding the existence of characteristic
�iii� that causes the appearance of structures as illustrated in Fig. 4.
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regions that encode either 1001 and 2001 or 1000 and 2000.
Note that these curves cross transversally at least twice in-
side the windows at the points where the regions that encode
the four different types of POs meet. This is characteristic �ii�
of a CPW �8�. It can be understood by the way CPWs appear
in the parameter space. The process can be described as hav-
ing a normal PW which contains two curves SV1 and SV2 that
do not cross. One can imagine that both curves have a para-
bolic shape appearing side by side. As one changes a param-
eter of the circuit, the curve SV2 approaches SV1, crossing it
in at least two points, forming a structure similar to the one
shown in Fig. 3�b�, a sketch of a simplified version of what it
could be really happening inside the CPW. There, one sees

that some regions in the parameter space that represent POs
with some encoding �e.g., 1001� do not border a region with
some other encoding �2000�, except for the point where the
curves SV1 and SV2 cross. And when that happens �excluding
the atypical case when the curves are tangent�, there has to
be at least one more crossing inside the CPW, so that the POs
appear side by side other allowed POs. The rule is 1001
appears aside 1000, which appears aside 2000, which ap-
pears aside 2001, which appears aside 1001.

Such a rule can be apparently violated due to characteris-
tic �iii�, which leads to points where two or three different
regions meet, as represented in Fig. 4. But note that, in fact,
the line SV1 does not cross the line SV2, and thus, the rule that
describes the crossing between these lines is not violated.
Internal noise and parameter fluctuations of the circuit par-
tially destroy the CPW. Adding the fact that we have limita-
tions in our parameter resolution, we do not expect to iden-
tify all these fine details of the CPW, but rather a lower-
resolution picture, in which this rule might be apparently
violated.
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ship between homoclinic orbits and the CPWs.
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