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Fı́sica, 12228-900, São José dos Campos, São Paulo, Brazil
3 Departamento de Fı́sica, Universidade Federal do Paraná, 81531-990, Curitiba, Paraná,
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Abstract
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated
how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely
related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium
radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective
in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant
waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at
the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic
footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to
the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of
field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed,
the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels.
For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work
can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in
this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future
tokamak experiments.

PACS numbers: 52.55.Fa, 52.55.Lf, 52.35.Mw, 52.55.Dy, 52.25.Gj

1. Introduction

Many experiments carried out in the last decade have confirmed
long-standing claims that plasma confinement in toroidal
devices strongly depends on the electric and magnetic fields
at the plasma edge [1–5]. The former fields are related
to the observed anomalous particle transport at the plasma
edge, which has been shown to be largely controlled by low-
frequency electrostatic drift waves [2]. The steep density and
temperature gradients existing in the plasma edge give rise to
diamagnetic currents across the confining toroidal magnetic
field so generating drift waves propagating in the poloidal
direction. Drift instabilities occur along this process, such
that particle thermal energy is converted in wave energy, the
corresponding fields causing the chaotic motion of plasma
particles typically related to anomalous diffusion.

a Author to whom any correspondence should be addressed.

As for the magnetic fields, chaotic field lines at the
plasma edge have been found to play a key role in plasma–
wall interactions in tokamaks [6–8]. One of the possible
effects of chaotic field lines is the concentration of heat and
particle loadings on the tokamak wall, which deteriorates the
overall plasma confinement quality [9–11]. Chaotic field line
transport, however, is to be taken in the Lagrangian sense,
meaning spatial separation of nearby field lines at fixed time,
when the magnetic field line configuration is non-integrable
[12–14].

Since charged plasma particles follow magnetic field lines
to leading order, it appears natural to think of anomalous
diffusion arising from some combination of the above
mentioned electric and magnetic fields. On the other hand,
things are not so simple for even uniform magnetic fields
may cause chaotic particle gyration when suitable electrostatic
waves are applied [15]. Hence a comprehensive description of
anomalous particle diffusion would have to take into account
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the possible existence of both electric and magnetic fields at
plasma edge. The complexity of the energy transfer among
waves and particles makes it difficult to directly attack this
problem by, e.g. computer codes based on a kinetic description
of particles interacting with electric and magnetic fields chaotic
in space and time. In spite of such difficulties, some common
issues exist such that we can grasp some physically interesting
issues from the isolated analysis of chaotic magnetic and
electric fields.

One of the common features of complex electric and
magnetic field structures in the tokamak plasma edge is the
existence of reversed shear, which has been given a great
deal of attention in recent years, since they arise in advanced
tokamak scenarios [16]. Electric and magnetic reversed shear
fields are considered separately in this work with respect to
their influences on the transport of particles and field lines,
respectively, in the plasma edge region.

Reversed magnetic shear in tokamaks is possible when the
plasma current radial profiles are non-monotonic such that the
field line rotational transform possesses a simple maximum or
minimum for some radius, which we call shearless radius from
now on. As a consequence, the field line map is non-twist,
i.e. it does not satisfy the so-called twist condition. Since
the field line map is two-dimensional and area-preserving
(for a divergenceless magnetic field), the twist condition can
be expressed in the following form: points more radially
displaced from the wall make larger jumps in the poloidal
direction [17]. The field line map we obtained for reversed-
field configurations fail to satisfy this condition due to the
existence of a shearless radius.

Reversed shear also occurs for the radial electric field
related to drift waves, in the plasma edge region, and causes
a E × B force which drives particles into a reversed shear
drift flow with a wide variety of experimentally observed
effects. We performed numerical simulations of particle
motion by solving the canonical equations from a drift-kinetic
Hamiltonian considering the action of two waves with a phase-
difference, leading to a non-integrable system, for which there
are periodic, quasi-periodic and chaotic trajectories.

Our main goal in this paper is to investigate possible effects
from electric and magnetic reversed shear fields on plasma
confinement through a combination of numerical simulation
results and concepts from Hamiltonian theory. Whereas the
electric reversed shear is tractable from direct integration of
particle equations of motion, the magnetic reversed shear
requires the obtention of a field line map. We kept the models
for both electric and magnetic reversed shear fields as simple
as possible so as to isolate their effects on the particle and
field line transport. Accordingly, for the electric reversed
shear field the magnetic field is monotonic and vice versa.
However, many interesting phenomena stem from considering
simultaneously both forms of shear, like the possible obtention
of a high-confinement mode for tokamak discharges [18–20].
For the magnetic reversed shear equilibrium field we have
added the field of an ergodic magnetic limiter so as to generate
non-integrable field line configurations and Lagrangian chaos.
Our numerical simulations used parameters taken from the
Brazilian tokamak TCABR, for which an ergodic limiter has
been designed to control plasma oscillations [21]. As far as
other tokamaks are concerned, ergodic limiters have been used

to improve plasma confinement in TORE SUPRA [22–24],
TEXTOR [25] and DIII-D [26].

The rest of this paper is organized as follows: in section 2
we consider the electric reversed shear configuration through
the interaction of particles with one and two electrostatic waves
in a monotonic magnetic field. Section 3 deals with the
magnetic reversed shear case by presenting the model fields for
the tokamak non-monotonic equilibrium field and the ergodic
limiter perturbation. We show the obtention of a field line
map, and our numerical results concerning escape patterns
and magnetic footprints. Our conclusions are left to the last
section.

2. Drift wave transport in reversed shear flows

Experiments indicate that the plasma edge behaviour depends
on the anomalous particle transport caused by the observed
electrostatic turbulence [2]. Thus, it is important to estimate
the contribution to this transport due to chaotic particle orbits
driven by the turbulent fluctuation. To do that, in this work
we study the transport of particles in a magnetically confined
plasma due to electrostatic drift waves. The adopted model
describes the trajectory of the guiding centre of a particle in a
uniform magnetic field perpendicular to a radial electric field
perturbed by drift waves [27].

We have used the Hamiltonian description for the guiding
centre trajectory. The E × B drift produced by the equilibrium
radial electric field and a dominant wave is represented by
the integrable part of the Hamiltonian, while the other part
contains the perturbation representing the fluctuating electric
field associated to other drift waves. We study the resonances
and island chains created at the plasma edge and associate the
anomalous plasma edge transport to the Lagrangian chaotic
transport of the guiding centres of ions [27]. In this way we
obtain chaotic orbits that determine the particle radial transport
[28, 29]. We have used the experimental data of electrostatic
turbulence measured in TCABR tokamak to obtain realistic
predictions.

Single particle motion in one drift wave is described by an
integrable Hamiltonian system and can be solved analytically.
For a resonant wave, a two-dimensional lattice of counter
rotating rolls separated by a separatrix is created in the resonant
region. The particles cannot cross the separatrix so that they
are confined to motion within a single roll [27]. The second
wave, with an amplitude smaller than that of the first wave, is
treated as a perturbation. The Hamiltonian is no longer time-
independent such that a particle is no longer confined to a
single roll [27]. Thus, qualitative features of this transport can
be approximated by a low-dimensional dynamical system with
island chains in phase space due to the superposition of two
dominant drift waves. For experimental parameters usually
observed in tokamaks, we analyse the onset of chaos in this
system.

We describe the superposition of poloidal drift waves as a
Hamiltonian system without dissipation. The drift velocity of
the guiding centres are given by [27]

�v =
�E × �B
B2

, �E = −∇φ, (1)
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which is equivalent, in the slab approximation and using polar
cylindrical coordinates, to the following set of differential
equations:

vr = dr

dt
= − 1

rB0

∂

∂θ
φ(r, θ), (2)

vθ = dθ

dt
= 1

B0

∂

∂r
φ(r, θ), (3)

representing canonical equations obtained from the
Hamiltonian as

H(r, θ, t) = φ(r, θ, t)

r0B0
, (4)

for a uniform magnetic field.
We describe the electrical potential φ(r, θ, t) at the plasma

edge as the superposition of an equilibrium term φ0(r) and N

electrostatic drift waves

φ(r, θ, t) = φ0(r) +
N∑

i=1

Ci sin(kri
r) cos(kθi

θ − ωit). (5)

Substituting (5) into equation (4) and dividing by E0/B0 yields
a dimensionless Hamiltonian given by

H(r, θ, t) = H0(r) +
N∑

i=1

Ai sin(kri
r) cos(kθi

θ − ωit). (6)

Moreover, in order to investigate the effects of reversed electric
field we choose a potential with a non-monotonic radial profile

φ0(r) = ar3 + br2 + cr, (7)

where a, b, and c are dimensionless parameters whose
values can be fit to the background potential measured at the
tokamak edge.

In this work we consider the cases of both one (N = 1)

and two drift waves (N = 2), which represents an integrable
and a non-integrable Hamiltonian system, respectively, the
latter typically presenting chaotic behaviour depending on the
perturbation strength and the initial conditions chosen. We can
remove the time dependence in the first wave by performing a
canonical transformation

r = r ′ and θ ′ = θ − ω1

kθ1
t, (8)

such that the transformed Hamiltonian reads (omitting the
primes in the variables for notational simplicity),

H(r, θ, t) = ar3 + br2 + (c − u1)r + A1 sin(kr1r) cos(kθ1θ)

+A2 sin(kr2r) cos[kθ2(θ − ut)], (9)

where u = u2 − u1 ≡ (ω2/kθ2) − (ω1/kθ1) is the
phase difference between the waves. This transformation
corresponds to a change to a frame moving with the phase
velocity u1 of the first wave.

Let us begin by the integrable case of only one wave
(A2 = 0), for which the Hamiltonian is given by

H(r, θ) = ar3 + br2 + (c − u1)r + A1 sin(kr1r) cos(kθ1θ).

(10)
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Figure 1. Radial profiles A (full curve) and B (dashed curve) of the
trapping parameter U(r) for the case of a non-monotonic electric
field.

The corresponding canonical equations have a single relevant
dimensionless parameter, the trapping parameter given by

U(r) = 3ar2 + 2br + (c − u1)

A1kr1

= −Er − u1

A1kr1

, (11)

which describes the influence of the wave parameters and the
normalized electric field on the radial transport of the guiding
centres. The resonant condition, u1 = −Er , occurs at those
radii r̄ given by U(r̄) = 0. Figure 1 presents the two radial
profiles of the trapping parameter, which we call A and B
hereafter, which correspond to radial electric field profiles
and phase velocities of two kinds of discharges observed in
the Brazilian tokamak TCABR. This is a ohmically-heated
tokamak with hydrogen circular plasma, with major radius
R = 61 cm and minor radius a = 18 cm. The plasma current
reaches a maximum value of 100 kA, with duration 100 ms, the
hydrogen filling pressure is 3 × 10−4 Pa and toroidal magnetic
field BT = 1.1 T [30].

Figure 2(a) depicts a phase space plot for the integrable
Hamiltonian system consisting of the profile A and one wave
(A2/A1 = 0). Without the second wave there is no chaos
and the phase space exhibits some periodic structures where
U ≈ 0, consisting of islands chains centred at fixed points.
The particular island chain, occurring at the radial location
wherein U(r̄) = 0, turns to be the place where the second
wave will act more intensively generating a chaotic layer. Such
a resonant island chain occurs at r̄ ≈ 0.87, which is also the
location of the elliptic (o-) points at the centres of those islands.
The poloidal positions of these points are θ̄j = πj/12, for
j = 0, 1, 2, . . . , 24. The widths of the islands belonging to
this chain can be estimated from the positions of the hyperbolic
(x-) points adjacent to this specific chain, and which are located
at r̄1 ≈ 0.94 and r̄2 ≈ 0.80, their poloidal positions being
θ̄j = (π/12)(j + 1/2), with j = 0, 1, 2, . . . , 24.

On the other hand, for |U | ≈ 1, we see barriers acting to
limit the particle radial transport so effectively helping in the
confinement of the particle guiding centres. This occurs in two
different regions, one is the scrape-off layer next to the tokamak
inner wall, and the second is the internal part of the plasma
edge. In fact, tokamak experiments have pointed out that the
quality of plasma confinement may increase with the rise of
the radial electric field when the tokamak wall is polarized by
a bias voltage [30]. In addition, we have observed that this
may be also produced by the electric field of drift waves of
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Figure 2. Phase space plots for the drift Hamiltonian (9) with the
non-monotonic profile A and (a) A2/A1 = 0; (b) A2/A1 = 0.1 and
(c) A2/A1 = 0.4. Note the island chains created at the shearless
radius r̄ ≈ 0.87.

suitable phase velocity and wave amplitude, according to the
behaviour of the trapping parameter U .

The superposition of two drift waves turns the Hamiltonian
system into a non-integrable one, with the consequent
breakdown of a number of invariant curves (in the phase
plane) and the consequent formation of homoclinic chaos.
Figure 2(b) shows the perturbed phase plot (for a shorter
poloidal angle interval for the sake of a better visualization)
obtained by adding a second wave with amplitude A2 = 0.1A1

to the integrable system of one wave. The separatrix orbits
connecting the hyperbolic points are the first ones to become
chaotic when the second wave is added. The orbits near the
elliptic points remain closed, while orbits near the hyperbolic
points are chaotic, filling some nonzero area in the phase plane
with a bounded radial excursion, thus contributing to particle
diffusion along this direction. Increasing the amplitude of the
second wave to A2 = 0.4A1 (figure 2(c)), we observe chiefly
the enlargement of the chaotic layer. Small islands of stability

Figure 3. Phase space plot for the drift Hamiltonian (9) with the
non-monotonic profile B and (a) A2/A1 = 0; (b) A2/A1 = 0.4. An
additional barrier appears with an average radial coordinate
〈r̄〉 ≈ 0.85.

still exist near the elliptic points, but large scale diffusion takes
place due to the more pronounced radial excursion of orbits
throughout the chaotic layer.

In figures 3(a) and (b) we consider the non-monotonic
equilibrium profile B for one and two waves, respectively. The
overall characteristics are kept unchanged here, but we see
that an additional barrier appear in the region for which U ≈ 1
separating the island chains seen in the previous figures. This
barrier appears due to the electric field increase according to
the profile B. As a consequence of this variation, the orbit
stochastization is reduced to the internal part of the plasma
edge. This result shows that the transport can be reduced by
increasing the radial electric field.

3. Connections lengths and magnetic footprints with
reversed magnetic shear

A second problem related to reversed field and transport is the
influence of a reversed magnetic shear on the field line structure
in a tokamak already perturbed such that there is a region
of Lagrangian chaos for magnetic field lines. The field line
map so derived has been used in previous works to investigate
the homoclinic tangles underlying chaotic field line regions in
the outer tokamak region, when monotonic safety profiles are
used [31,32]. The formation of a transport barrier, in the case
of non-monotonic profiles, has been also put into evidence
with help of this map [33]. In this paper we consider such
a non-monotonic profile from the point of view of magnetic
footprints and connection lengths.
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The field line geometry can be described by using the non-
orthogonal polar-toroidal coordinates (rt , θt , ϕt ), given by [34]

rt = R′
0

cosh ξ − cos ω
, θt = π − ω, ϕt = �, (12)

where R′
0 is the magnetic axis radius and (ξ, ω, �) are the

toroidal coordinates. The coordinate surfaces rt = constant
are displaced with respect to the tokamak minor axis so as to
emulate the Shafranov shift effect [34]. Magnetic surfaces are
characterized by nested surfaces of rt = constant, for which
the safety factor is [33]

qc(rt )=qc(a)
r2
t

a2

[
1−

(
1+β ′ r

2
t

a2

)(
1− r2

t

a2

)γ +1

�
(

1− rt

a

)]−1

,

(13)

with

qc(a) ≡ Ipa
2

IeR′2
0

, (14)

where Ip is the total plasma current, a is the plasma radius, Ie

is the external current that generates the equilibrium toroidal
field, and the parameters γ and β, with

β ′ ≡ β
(γ + 1)

(β + γ + 2)
(15)

describing the plasma current profile [33,35]. In the following,
we will choose q ≈ 5 at the plasma edge (rt = a). For
a non-monotonic safety factor profile, there is a region of
negative magnetic shear as well as a shearless radius. We adopt
γ = 0.80 and β = 3.00 so as to have q ≈ 4.80 at the magnetic
axis. We will also choose parameters so that a/R′

0 = 0.26,
which is a typical value for tokamaks [36].

Since the equilibrium magnetic field is axisymmetric, we
may set the ignorable coordinate ϕt as a time-like variable, t

(to be used as a field line parametrization), and put the field line
equations in a Hamiltonian form [17]. This enables us to define
angle-action variables (J , ϑ) for an equilibrium Hamiltonian
given by

H0(J ) = 2π

∫
dJ

q(rt (J ))
. (16)

The explicit form of the relations between these angle-action
variables and the toroidal polar coordinates can be found in
[37]. The equilibrium flux surfaces exhibit the Shafranov shift
with respect to the geometrical minor axis and thus are not
concentric with the tokamak wall, which is at a fixed position
J = 0.055 determined by the radius of the material limiter.
Figure 4 shows a non-monotonic safety factor profile for a
tokamak equilibrium field for which the safety factor at the
plasma edge is q(a) = 5. The concavity of the profile is so as
to have a shearless radius near J = 0.02. We see that there
are two radii for which the safety factor is equal to 4.0, for
instance. As a consequence, a perturbation resonant with this
mode will create two island chains centred at these radii.

We consider an ergodic magnetic limiter design which
consists of Nr slices of a pair of resonant helical windings,
with adequate mode numbers and equally positioned along
the toroidal direction (see [37]). The design of the helical
windings needs to take into account the effects of the toroidal
geometry, which makes the toroidal magnetic field component
stronger in the inner side of the torus than in the outer one.

Figure 4. Non-monotonic safety factor profile in terms of the action
variable J and corresponding to an equilibrium field with γ = 0.80,
β = 2.00 and q(a) = 5.

Consequently, the magnetic field line pitch is nonuniform. We
use a winding law that emulates the actual paths followed by
magnetic field lines. A tunable parameter, λ, is introduced such
that the variable ut = m0[θt +λ sin(θt )]−n0ϕt , where (m0, n0)

are the poloidal and toroidal mode numbers, respectively, is
constant along a field line.

A perturbing Hamiltonian, H1(J , ϑ, t), describing the
action of the EMLs, is obtained from the magnetic field
generated by the helical windings. This magnetic field is
an approximated analytical solution of the Laplace equation,
supposing a vacuum field (valid for low-beta plasma only)
[37]. The boundary conditions are written down with help
of a singular current distribution located at the tokamak wall.
Although the equilibrium Hamiltonian H0(J ) is integrable,
the addition of a non-symmetric perturbation, H1(J , ϑ, t),
caused by the EML rings, breaks the integrability of the
system. Therefore, we model the action of the EML rings
on the equilibrium magnetic field lines as a sequence of pulses
described by the following one-and-a-half degree of freedom
Hamiltonian:

H(J , ϑ, t) = H0(J ) + εH1(J , ϑ, t)

∞∑
k=−∞

δ

(
t − k

2π

Nr

)
.

(17)

Due to the t-dependence of the Hamiltonian in the form of
a sequence of delta-functions, it is possible to define discretized
variables (Jn, ϑn) as the corresponding values of the angle-
action variables just after the n-th crossing of a field line with
the plane tk = (2πk/Nr) with k = 0, 1, 2, . . . , Nr − 1. The
area-preserving mapping obtained from the Hamiltonian (17)
can be found in [37]. Figure 5(a) shows a Poincaré cross-
section produced by our area-preserving mapping, where we
choose γ = 0.80 and β = 3.00 corresponding to the non-
monotonic q profile of figure 4. The perturbing parameter
λ = 0.453 19 is used in order to focus the perturbation on the
most external surface with q = 4. The chaotic region closer
to the tokamak wall which is seen in figure 5(a) comes from a
usual resonance overlapping scenario. Due to the integrability
breakdown not just the resonant magnetic surfaces, but every
rational surface (namely those with rational values for their
safety factors) yields an island chain. The distinctive feature of
resonant perturbations is that they produce larger islands than
they do in non-resonant magnetic surfaces. As the safety factor
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Figure 5. Example of the Poincaré cross-section produced by the
EML mapping, in terms of the action-angle variables (J, ϑ), for a
non-monotonic q profile with γ = 0.80 and β = 3.000, Nr = 4,
λ = 0.453 19, Ih = 8.5% of Ip and (a) (m0, n0) = (4, 1),
(b) (m0, n0) = (5, 1).

near the tokamak wall is monotonic (without shear reversals),
KAM theory holds again permitting the creation of chaotic
regions at the tokamak edge.

Next, we analyse the connection lengths and the magnetic
footprints of the chaotic region obtained for a non-monotonic
safety profile, in order to investigate the effect of using non-
twist mappings on the escape patterns on the tokamak wall.
The cases of resonances closer and farther from the wall are
considered. In order to obtain the connection lengths we use
a grid of 500 × 500 points chosen inside the small rectangle
shown in figure 5(a), and which comprises a representative part
of the chaotic region near the wall. We iterate each point of the
grid until the line reach the wall (J = 0.055). The connection
lengths NCL indicate how many turns are necessary for the
toroidal field line to strike the tokamak wall, and can take on
values in a wide interval, from NCL = 1 to NCL ≈ 104.

In order to examine field lines with small connection
lengths we consider those values of NCL covering an interval
from 1 to 10, to which different shades of gray are assigned.
Accordingly, black pixels correspond to field lines which do
not escape until 4000 iterations have been elapsed, and can
be considered as trapped. Figure 6(a) shows the connection
lengths for this case. One can observe that the initial conditions

Figure 6. (a) Connection lengths for the EML map shown in
figure 5(a). The lengths of the field lines belong to the interval
[1, 10] and are represented in gray-scale. (b) The lengths of the
field lines are in the range [1, 200].

with NCL > 10 saturate in a fixed shade of gray. Figure 6(b)
shows the connection length for NCL = 1–200. They have a
fractal pattern. These results were obtained for a limiter with
mode numbers (4, 1), which intercepts the tokamak wall at
preferential regions. We can alter the limiter parameters so as
to generate a chaotic region which touches the wall in more and
wider intervals. Figure 5(b) shows this possibility and presents
a Poincaré mapping with the grid of initial conditions for mode
numbers (5, 1) and the same perturbation current as in the
former case. Figures 7(a) and (b) show the connection lengths
for both small and large values of NCL. We observed that
initial conditions generating orbits with low NCL correspond to
regions with smooth boundaries in the phase portraits, whereas
initial conditions related to large values of NCL form regions
with a fractal boundary structure.

Neglecting the thickness of the vessel wall, we can set
the tokamak wall at the same radius as the ergodic limiter
rings themselves rt = rW. Suppose that a chaotic region does
intercept this constraint at one or more intervals. It is thus
necessary to impose that a field line is considered lost once it
reaches this radial position. The magnetic footprints are the
deposition patterns of field lines from the chaotic region and
which are lost due to collisions with this constraint [38]. The
escape time NET is the number of iterations it takes for a given
field line to hit this point. We observed that the escape time
is related with the density of points in the Poincaré plots, in
the sense that those field lines belonging to densely populated
regions take more time to escape (hitting the tokamak wall)
than those field lines in sparsely populated regions.

6



Nucl. Fusion 48 (2008) 024018 F.A. Marcus et al

Figure 7. (a) Connection lengths for the EML map shown in
figure 5(b). The lengths of the field lines belong to the interval
[1, 10] and are represented in grey-scale. (b) The lengths of the
field lines are in the range [1, 200].

Field lines tend to escape following the unstable manifolds
of periodic orbits embedded in the chaotic region, i.e. such
manifolds, which have an involved fractal structure, form
channels of preferential escape [31, 39, 40]. For this reason,
the magnetic footprints resulting from collisions of field lines
with the tokamak wall present likewise a fractal structure. For
the non-monotonic profile used in this work, the magnetic
footprints are shown in figures 8(a) and (b), where we can
see the dependence of the escape time NET with the poloidal
angle ϑf , for initial conditions chosen uniformly along the
poloidal cross section. For many intervals there is no field
line incidence. On the other hand, there are abrupt variations
in some intervals, revealing very involved, and actually fractal
structures.

Figure 8(a) was obtained for a limiter with mode numbers
(m0, n0) = (4, 1), for which the chaotic region intercepts the
tokamak wall in two narrow intervals. Altering the limiter
parameters generates a chaotic region which touches the wall
in other intervals. Figure 8(b) demonstrates this possibility
for mode numbers (m0, n0) = (5, 1). Instead of two centred
escape channels, we now have at least five channels. These
fractal regions with high NET values not always correspond
to regions with many field lines. The resonance excited by
mode numbers (4, 1) turned out to be deeper (i.e. farther from
the wall) than the resonance induced by (5, 1). Hence, when
comparing the chaotic regions for both cases, with a nearly
equal limiter current, we expect the chaotic region of the latter
intercepting more points of the wall than the former. This is

Figure 8. (a) The magnetic footprints for the parameters of
figure 5(a). (b) The parameters are those of figure 5(b).

not really unexpected, since the radial location of the (4, 1)

resonance is slightly less than of the (5, 1) one. Even though
we are dealing here with a non-monotonic safety profile,
the interval to which both resonances belong has a positive
magnetic shear, i.e. it is an effectively monotonic increasing
profile for that region.

4. Conclusions

In this work we applied the Lagrangian chaos theory,
considering fusion plasma parameters for simplified tokamak
geometries. We discussed two effects observed at the plasma
edge, namely, the chaotic anomalous particle transport from
the E × B drift motion, as well as the distribution of chaotic
magnetic field lines at the wall.

Initially, we explored a dynamical mechanism by which
the particle transport is achieved and showed how alterations
on the electric field radial profile at the plasma edge can
modify this transport within this region. Thus, guiding centre
trajectories can be stochastized by this process within the
region where the trapping parameter vanishes. On the other
hand, by increasing the trapping parameter a particle transport
barrier can appear at this region.

After that, we showed that the number and the distribution
of the escape channels are determined by two factors: the mean
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width of the chaotic region and the resonance from which it
starts. The former depends in a complicated fashion on the
limiter current, whereas the second is dictated by the shape of
the safety current profile in the region of interest. Our results
suggest that the deeper is the resonance from which the chaotic
region starts, the more concentrated are the deposition patterns
due to the existence of less escape channels.

In the design of experiments of the sort described in this
paper, we propose that, if the limiter current cannot be raised
above some levels, it would be better to use resonances near
the wall, provided there are non-monotonic profiles. However,
we must remark that our conclusions were drawn from a
rather simplified model and thus more comparisons should be
performed with experiments conducted in machines like DIII-
D [7, 26] and TEXTOR [1, 6] tokamaks on controlled plasma
edge transport.
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