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HIGHLIGHTS

e Fractal structures are typically found in chaotic orbits of area-preserving dynamical systems, and they influence its transport properties.

e We identify a number of fractal structures in a problem of interest in plasma physics: the drift motion of charged particles in a
magnetized plasma under the action of two drift waves.

e The fractal structures we identify are escape basins, describing its fractal basin structure and also the Wada property.
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Article history: Chaotic dynamics in open Hamiltonian dynamical systems typically presents a number
Received 1 July 2016 of fractal structures in phase space derived from the interwoven structure of invariant
gg‘;%“’e‘j in revised form 23 September manifolds and the corresponding chaotic saddle. These structures are thought to play an

important role in the transport properties related to the chaotic motion. Such properties
can explain some aspects of the non-uniform nature of the anomalous transport observed
in magnetically confined plasmas. Accordingly we consider a theoretical model for the
interaction of charged test particles with drift waves. We describe the exit basin structure
of the corresponding chaotic orbit in phase space and interpret it in terms of the invariant
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Charged particle motion manifold structure underlying chaotic dynamics. As a result, the exit basin boundary is
Fractal basin boundaries shown to be a fractal curve, by direct calculation of its box-counting dimension. Moreover,
Exit basins when there are more than two basins, we verify the existence of the Wada property, an
Wada property extreme form of fractality.
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1. Introduction

One of the outstanding problems in modern plasma physics is the control of anomalous transport of particles across the
magnetic field in fusion-oriented devices like tokamaks [ 1,2]. It is known that low-frequency drift-wave fluctuations govern
plasma transport across magnetic field, specially in the plasma edge region [3]. These fluctuations arise from density and
temperature gradients in a magnetized plasma, leading to ion and electron diamagnetic currents across the magnetic field.
Drift waves are collective oscillations appearing due to the drift velocities associated with these currents [3].
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Particle transport in high-temperature plasmas is dominated by the long-range electric field which results from
the Coulomb interaction among charged particles. For magnetized plasmas the collective modes of interest are low-
frequency ion acoustic oscillations, because they dominate transport properties, namely resistivity and thermal conductivity.
The presence of steep density and temperature gradients causes instability of these low-frequency modes, leading to
electrostatic turbulence and consequently an anomalous transport of particles and energy.

While the ion acoustic oscillations are related to the parallel component of wave vector (with respect to the magnetic
field), its perpendicular component produces the E x B drift of particle guiding centers across the magnetic field [4].
The corresponding dynamical system can be described by a Hamiltonian, after the definition of suitable coordinates and
momenta.

It has been found that the motion influenced by a single drift wave leads to an integrable system [5]. The presence
of KAM tori (invariant curves, in the Poincaré surface of section) prevents particle diffusion, resulting in a localized motion
within “convection cells”. However, if two or more drift waves are considered the system is no longer integrable and chaotic
motion is a possible outcome. This chaotic dynamics can be viewed as a low-dimensional approximation of the extremely
complicated scenario observed in electrostatic turbulence [6].

The mathematical properties underlying chaotic orbits in area-preserving dynamical systems lead to the appearance of
fractal structures which make transport highly non-uniform through the chaotic orbit. One of such structures is the exit or
escape basin, which is a region in phase space defined by the set of initial conditions that escape, or exit, outside a prescribed
region of the phase space [7]. In open Hamiltonian systems such exits can be literally openings through which trajectories
can escape, such as billiards with holes, as in Ref. [8]. In other systems the exits can be thought as regions to which trajectories
collide and are considered lost [9]. Also, it would be an open equipotential surface consisting of channels through which an
orbit can escape [10].

The latter is the case when we consider charged particles in a magnetic field under the action of two drift waves. In
the non-integrable case particles can follow chaotic orbits which intersect exits such as plates or the wall itself which
contains the particles. Once particles hit those exits they are considered lost and removed from numerical simulations.
We are particularly interested in the structure of those exit basins in the case we can vary at least some parameters like the
amplitude of the second wave, related to the degree of non-linearity present in the system.

If the boundary between two basin were a smooth curve it would be simple, in principle, to determine to what exit a given
initial condition will asymptote to. However, for two exit basins in the chaotic region the boundary is typically fractal, which
is by itself a factor limiting the knowledge we have to predict the final state of the system [11]. This uncertainty is ultimately
determined by the box-counting dimension of the fractal boundary. Fractal basin boundaries have been long investigated
in a variety of dissipative as well as conservative systems [ 12]. Moreover, we included in this paper an application of a very
recent method proposed by Daza et al., which introduces the concept of a basin entropy so as to analyze fractal structures
in the basin boundaries [13].

If more than two exit basins are present, there follows that the corresponding exit basins can exhibit the even stronger
Wada property: any point which is on the boundary of one escape basin is also simultaneously on the boundary of all the
others [14]. The Wada property has been investigated in many open Hamiltonian systems, as the three-disk billiard [15],
Duffing equation [16-18], particle scattering by a Hénon-Heiles potential [19,20], tracer advection in fluid flows [21,22],
and quasi-periodically driven systems [23]. The occurrence of Wada basins can be quantitatively characterized by a grid
approach [24]. In the plasma physics context, fractal and Wada basins have been described for the magnetic field line flow
in time-independent systems [25-28].

The major goal of this manuscript is to present some of these fractal structures and the role they play in the passive
transport of particles in the chaotic motion of guiding centers experiencing E x B drift influenced by more than one drift
wave. By considering this as an open system, many structures are related to the non-uniform escape of particles through
different exits both inside and at the boundary of the plasma. In a previous work [29] the presence of fractal structures in
the phase space of dissipative drift motion was considered, showing the existence of fractal basin boundaries for attractors
that appear due to the presence of small damping. In this paper, on the other hand, we consider the conservative version of
the problem, showing that these fractal structures can be assigned also to the escape properties of the chaotic orbit.

This paper is organized as follows: in Section 2 we outline the model for particle motion in drift waves to be used.
Section 3 presents numerical results for chaotic particle motion with emphasis on chaotic motion. Section 4 considers fractal
structures for two escape basins, particularly their fractal basin boundaries. Section 5 explores topological properties like
the existence of Wada basins for three (or more) escape basins. Our Conclusions are left to the final Section.

2. Particle-drift wave interaction model

One approach to describe the turbulent behavior at the tokamak plasma edge related to drift instabilities is to investigate
single particle motion in presence of both magnetic and electric fields, the latter being perturbed by electrostatic drift waves.
Factoring out the gyration around magnetic field lines we can focus on the E x B drift motion of the guiding centers.

Neglecting curvature effects the plasma edge region can be approximately described by a slab geometry: let z be the
toroidal direction, along which there is a uniform magnetic field B = Byz. The radial direction is described by the x
coordinate, parallel to a radial electric field perturbed by one or more electrostatic drift waves. The drift current, on its hand,
has the poloidal direction described by y coordinate, with periodicity 27r. Hence the plasma is bounded in x and periodiciny.
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We assume that the ion and electron charges do not affect appreciably the electric and magnetic fields, hence the
corresponding guiding centers can be considered as passive tracers, or test particles. Such a test particle moves with the
E x B drift velocity

Vo xB
V=- g (1)
where the electric field is written as E = —V @, where @ (x, y, t) is a scalar potential. This is equivalent to the following set
of canonical equations
dx 100 2)
Vy=—T—=——"—",
T de By dy
_ dy 1 0P

_y_ 1o 3
YT A T B ox 3)

corresponding to a time-dependent Hamiltonian

1
H(vav t):EO¢(Xsy5 t) (4)

The electric potential can be divided into two parts: an equilibrium part @ (x) corresponding to a radial electric field and a
perturbation caused by N drift waves with amplitudes A;, frequencies w; and wave vectors k; = (ky;, ky;),fori=1,2,...,N,
in such a way that [5]

N
DXy, 1) = Po(0) + ) Arsin(kyix) cos(kyy — wit), (5)
i=1
where we suppose that there is a stationary wave pattern along the radial distance x and a traveling wave along the poloidal
direction y. Let Ly and L, the characteristic lengths along both directions (L may stand for the radial extent of the plasma
edge region and L, is the rectified poloidal circumference), hence

nmw 2mrm
kX = , ky =
L

where m and n are suitably chosen positive integers.
In the case of N drift waves the Hamiltonian reads

1 N
HX,y,t) = 5 Do(x) + ZA,- sin(kyix) cos(kyy — wit) ¢ . (6)
0

i=1

The electric field in a tokamak has typically a monotonic radial profile
Py = ax® + Bx, (7)

where the parameters & and 8 can be adjusted to fit the electric potential profile of a tokamak discharge [30,31]. In particular,
if o = 0 we have that 8 = E; represents a uniform electric field in the radial direction.

For two drift waves (N = 2), using dimensionless variables and in the reference frame moving with the phase velocity
of wave 1 the normalized Hamiltonian (6) is given by

H(x,y, t) = ®o(x) — u1x + Ay sin (kyx) cos (ky1y) + Ay sin (kyx) cos [kyz (v — ut)], (8)
where uy = w1/ky is the phase velocity of the first wave and

1) w
po 2o 9)
ko  kyi
is the difference between the phase velocities of the two waves.
Let us first consider the case of only one wave (A, = 0). Since H = H(x, y) the system is integrable (in the Liouville
sense). In this case the phase space has cells where the particle motion is bounded. It can be defined a dimensionless trapping
parameter as

U = —— (420 _ ), (10)
A] kﬂ dx

which is proportional to the difference between the drift velocity (1) and the phase velocity of the wave. It quantifies how
sensitive is the equilibrium system with respect to a second drift wave, and how intense we expect to be the radial particle
transport [31].
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Fig. 1. Phase portrait for the Poincaré time-T = 27 map, in the case A, =0and U = 0.

b 27r.

Fig. 2. Phase portrait for the Poincaré map, in the case U = 0 and different values of the parameter A;. (a) 0.1, (b) 0.5, (c) 1.5, and (d) 2.0.

The canonical Eqs. (2)-(3) were numerically integrated for Hamiltonian (8), using an Adams 12th-order predic-
tor—corrector scheme, and a Poincaré map was taken after considering only the values of (x, y) at times equal to an integer
multiple of the period T = 27 (stroboscopic map). We use the following values for the system parameters

w1 = 02, wy = 1.2, kx1 = ky] = kx2 = ky2 = 1.0, u=1.0, A] = 1.0, U= OO,

and take A, (amplitude of the second wave) as a tunable parameter. The integrable case (A, = 0) is depicted in Fig. 1,
where we observe the cells in which the particle motion is bounded. These cells are limited by separatrices emanating from
hyperbolic fixed points at (x = 0, w) andy = 7 /2, 37 /2. The closed curves orbit around the elliptic fixed points atx = 7 /2
andy =0, «r, 27.

When the amplitude of the second wave is small but nonzero [Fig. 2(a)] the system integrability is broken, and
the interior of the cells has a more involved structure, the former separatrices intersecting at an infinite number of
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Fig. 3. Exit basins for the wall (x = 0, red points) and a small square box with center at x = 7 /2 and y = 37 /2 and width 0.05 (green points) in the case
U = 0 and different values of the parameter A,. (a) 0.1, (b) 0.5, (c) 1.5, and (d) 2.0. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

homoclinic/heteroclinic points, which are the skeleton of the area-filling chaotic orbit. Increasing the control parameter
A, causes the destruction of most invariant curves around the displaced elliptic points, and the consequent enlargement of
the chaotic orbit [Fig. 2(b)]. A further increase of A, leads to a bifurcation of the elliptic points, turning them to hyperbolic
points and creating two new elliptic points (a saddle-center bifurcation) [Fig. 2(c)]. Finally, as A, is large enough, no visible
traces of the invariant curves remain and the chaotic region spans virtually all phase space [Fig. 2(d)].

3. Exit basins

The dynamics in the chaotic orbits displayed in Fig. 2 is aperiodic but not uniformly so, due to the complicated nature of
the manifold structure therein. This non-uniformity of chaotic motion can be illustrated by the structure of escape (or exit)
basins, which is a phase space region defined by the set of initial conditions that escape, or exit, outside a prescribed region
of the phase space. For example, if we consider that particles hitting the surface x = 0 (physically corresponding to a “wall”)
are lost, we might be interested on the basin of escaping initial conditions to that wall. Another possibility is that a chaotic
orbit hits a given “opening” within the phase space (an exit window) before it hits the wall. Then we can draw the basin of
escaping initial conditions through that exit [7]. If the initial condition is not placed in the chaotic region (if it belongs to the
interior region of a periodic island, for example) it generates a non-escaping orbit and do not belong to any exit basin.

In summary, for an initial condition originating in a chaotic region in the phase space there are three possibilities: (i)
either the particle hits the wall at x = 0% (i.e. within a given tolerance) and is considered lost; (ii) or the particle hits first a
bounded region (window) and is also considered as lost, or (iii) it never escapes. As a matter of fact, there exists a Lebesgue
measure zero set of initial conditions for which the trajectories never leave the chaotic region, but the probability of a typical
trajectory to belong to this set is zero [ 12].

Fig. 3 shows a representation of the exit basins for the wall at x = 0 (red points) and an opening represented by a small
square box which center is placed at x = 7 /2 and y = 37 /2, with width w = 0.05 (green points). The initial conditions
that never escape through these regions are left blank. These exit basins have an involved structure for all values of the
control parameter A; [Fig. 3(a)-(d)]. The smaller size of the red basin, when compared with the green basin, can be explained
qualitatively on the basis of the sin x dependence of the x-component of the particle velocity. Since the latter tends to zero
as x — 0, it is more probable that a particle be lost through the square opening than through the wall x = 0.

Another factor that influences the relative sizes of the two exit basins is the width of the opening inside the chaotic
region [27]. For example, in Fig. 4 the width has increased to w = 0.15, causing an increase of the area of the green basin,
with respect to the area occupied by the red basin. We have computed these areas through the fraction of the basin points
with respect to the total number of grid points in which the phase portrait has been divided. In particular, we have done so
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Fig. 4. Exit basins for the wall (x = 0, red points) and a small box with width 0.15 (green points) in the case U = 0 and different values of the parameter
A,.(a) 0.1, (b) 0.5, (c) 1.5, and (d) 2.0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

for the points belonging to the red basin, i.e. we computed the fraction S, of initial conditions which lead to trajectories
hitting first the wall.

Our results are presented in Fig. 5 in terms of A, for two different values of the exit width w. As a trend, Fig. 5(a) indicates
that the red exit basin area increases with the intensity of the second wave. This can be explained by remembering that the
increase of A, actually causes the enlargement of the chaotic orbit itself [see Fig. 2], and thus the available number of initial
conditions for trajectories hitting either exit. On the other hand, the red basin area decreases with the width of the second
exit for the same value of A, [Fig. 5(b)], since the more initial conditions belong to the green basin, the less initial conditions
are expected to belong to the red basin (those are the only available exits). Such observations can be explained by a detailed
analysis of the invariant manifold structure, as it will be made in the next section.

It is worth to explore some physical consequences of the increase of the red basin area with the value of A,. A cursory
look at Figs. 3 and 4 shows that most of the initial conditions placed in the chaotic region of the phase space belong to the
green basin, i.e. they escape by the small box placed inside the chaotic region. Hence many particles belonging to the red
basin, specially those far from the tokamak wall (by where they escape), spend a relatively large time in the chaotic region,
and are expected to be more energetic than particles that escape rapidly by the small box. The increase of the red basin area
with A, suggests that the intensity of the second drift wave increases also the transport of energetic particles through the
tokamak wall. This result agrees with experimental measurements of turbulent-driven particle fluxes through the plasma
edge of tokamaks, which increase with the turbulence level [32].

4. Invariant manifolds and exit basin structure

The nature and properties of the exit basins discussed in the previous section can be understood from the structure of the
chaotic region in phase space, which is governed by its invariant manifold structure. Let the Poincaré map obtained from the
numerical integration of the Hamilton’s equations for the drift trajectories (2)—(3) be denoted as F, which is invertible (since
we can integrate the equations backwards by using negative stepsizes). Due to the area-preserving nature of the system the
map F is symplectic. We assume the existence of an area-filling chaotic orbit due to the non-integrability of the underlying
Hamiltonian system.

Let P be an unstable periodic point of the map F embedded in this chaotic region. The stable and unstable subspaces for
P are denoted as E°(P) and EY(P), respectively, and are eigendirections for the tangent map DF(P), with real eigenvalues
|&| < 1for E¥(P) and |&,| > 1 for E*(P). These subspaces are tangent to the stable (W*(P)) and unstable (W"(P)) manifolds
at P. The invariant manifolds W*(P) and W*(P) can be numerically obtained by considering the number of forward and
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Fig. 5. Fraction of the red exit basin area S,,q; as a function of A, for different values of the exit width w. (a) 0.05 and (b) 0.15. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Unstable (red curve) and stable (blue curve) invariant manifolds of an unstable fixed point embedded in the chaotic orbit for different values of A,.
(a) 0.1, (b) 0.5, and (c) 1.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

backward images, respectively, of a small ball filled with a large number of initial conditions and centered at a numerical
approximation for the location of an unstable periodic orbit P embedded in the chaotic orbit [Fig. 6].

The increasingly higher region occupied by those manifolds is reflected the increased area of both red and green basins in
Fig. 3. The striations displayed by the manifold branches explain the incursive fingers characterizing pieces of the exit basins
and which act as escape channels through which chaotic trajectories are directed towards either the wall or the rectangular
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Fig. 7. Unstable (a) and stable (b) manifolds stemming from an unstable periodic orbit embedded in the chaotic region for A, = 2.0. The corresponding
chaotic saddle is depicted in (c).

exit. The wider is the exit the more unstable manifold segments will cross this exit, leading to trajectories escaping by that
exit. Hence, the size of that exit ultimately causes an increase of the corresponding exit basin. This has physical consequences
similar to those caused by the increase of the second wave amplitude, as discussed at the end of the previous section.

The skeleton of the chaotic orbit is a chaotic saddle, formed by homoclinic and heteroclinic intersections of the stable and
unstable manifolds of an infinite number of unstable periodic orbits embedded in the chaotic region, and which support the
ergodic measure of typical orbits [22]. In other words, a chaotic saddle is a non-attracting invariant set with a dense chaotic
orbit. Initial conditions belonging to this saddle remain in the chaotic region, unless portions of the saddle intercept the exit
regions. Fig. 7(c) shows a numerical approximation of the chaotic saddle resulting from the intersection of the stable and
unstable manifolds depicted in Fig. 7(a) and (b), respectively. The existence of a chaotic saddle is a further confirmation of
the fractal nature of the exit basin boundaries.

5. Fractal exit basin boundaries

The complicated structure of the exit basins is qualitatively explained by the convoluted nature of the invariant manifolds
comprising the infrastructure of the chaotic orbit, mathematically represented by the chaotic saddle. In addition we can also
make a quantitative study of the exit basin boundaries by the uncertain fraction method. The key issue is that the boundaries
separating two exit basins have final state sensitivity [33].

An initial condition in the phase space is known up to a given uncertainty ¢, what can be represented by a ball of radius
¢ centered at that initial condition. If the initial condition is so near the boundary that the e-ball intercepts it, we cannot be
sure if that initial condition will evolve to one or another exit. The union of all e-balls intercepting the boundary, divided by
the area of the phase space region, is called the uncertain fraction f (¢). If the boundary is smooth we have that f(¢) ~ ¢,
since the uncertain conditions occupy a strip of width 2¢ straddling the boundary.

On the other hand, for fractal basin boundaries, the uncertain fraction scales as f(g) ~ &% where 0 < « < 1 is the
uncertainty exponent. The latter is related to the box-counting boundary dimension d by « = 2 — d, in a two-dimensional
phase space [12]. The more involved the basin boundary, the higher is its box-counting dimension such that it can be used
as a quantitative characterization of the basin structure complexity [11].

We can examine, for example, the influence of the amplitude of the second wave on the basin structure by computing
the uncertain fraction for different values of A, [Fig. 8]. We selected a representative portion of the exit basin boundaries in
Fig. 2 and covered it with a fine mesh of initial conditions. At each initial condition A we randomly choose three other initial
conditions By, By, and B3, inside an e-ball centered at A. If A and By , 3 lead to orbits escaping through different exits, it turns
out that A a g-uncertain initial condition. The uncertain fraction was estimated from the ratio between the number of all
uncertain conditions and the total number of mesh points. The uncertainty exponent was obtained from a least-squares fit
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Fig. 8. Uncertain fraction as a function of the uncertainty radius for the exit basin boundary with different values of A;. (a) 0.1 and (b) 2.0. The box width
isw = 0.05.
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Fig. 9. Uncertain fraction as a function of the uncertainty radius for the exit basin boundary with different values of A,. (a) 0.1 and (b) 2.0. The box width
isw = 0.15.

in a log-log plot of f (&) versus ¢ for different values of A,, comprising ten orders of magnitude. For smaller A, the exit basin
boundary dimension is d &~ 1.92 [Fig. 8(a)], whereas a larger value of A, yields d ~ 1.97, hence a slightly more complex
basin structure [Fig. 8(b)].

The same technique was used to investigate the effect of increasing opening width on the basin dimension. For w = 0.15
we show in Fig. 9(a) and (b) that the boundary dimension is d ~ 1.99 for two widely different amplitudes showing
that, although the exit basin area is affected by the exit width [see Fig. 5] the corresponding exit boundaries do not show
appreciable effect.

In addition, we can apply to this problem a technique introduced by Daza et al., based on the calculation of the so-called
called basin entropy, which is a quantitative measure of the degree of uncertainty achieved by the fractality of the basin
boundary [13]. The basic idea of this technique is to make a grid in a given region of the phase space, such that each grid
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Fig. 10. Basin entropy and basin boundary entropy for the case of two exits [see Fig. 3] as a function of the second wave amplitude. We also plot the fraction
occupied by the red basin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

point can be assigned to a random variable with the different exits (in the present context) as the possible outcomes. The
basin entropy results from applying the Gibbs entropy definition to that set.

More precisely, let aregion £2 of the phase space characterized by the presence of N, exits (or attractors, in its dissipative
version). The region 2 is covered by a fine mesh of boxes with size ¢, and to each initial condition we assign a color labeled
from 1 to N4. The colors within each box are randomly distributed according to a probability p; ; for the jth color assigned to
the ith box. On supposing that the trajectories inside a box are statistically independent we compute the Gibbs entropy of
the ith box as [13]

m;j 1
5i=ZPi,j10g<p_)a (11)
= i

where m; € [1, Nu] is the number of colors inside the ith box. The total entropy of the grid is the sum over the N boxes, or
S = Zf’zl Si, such that the basin entropy is the total Gibbs entropy divided by the number of boxes, S, = S/N. For a single
attractor the basin entropy is zero, meaning zero uncertainty, whereas for N4 equiprobable exits S, = log N4, which means
a completely randomized basin structure.

We may be interested in the uncertainty related to the basin boundary, rather than the uncertainty of the whole basin
structure, as quantified by S;. For this purpose we can repeat the above calculation, but restricting the computation of the
total entropy to the number N, of boxes which contain more than one color, yielding the so-called boundary basin entropy,
or Sbb = S/Nb.

Applying those concepts to the escape basin structure of the present paper, let us consider the case of two exits, namely
the wall at x = 0 (red points) and a small square box with center at x = 7 /2 and y = 37 /2 and width 0.05 (green points).
We considered a grid of 1000 x 1000 points of each basin, distributed inside 4 x 10* boxes. For each grid point, a maximum
number of 3000 stroboscopic map points were computed, excluding from the statistics those initial conditions that have
not escaped during that integration time. For each box we obtained the quantities

m n;
P n+ny’ b2 n +ny’
where n is the number of points of the box corresponding to the exit 1, and n, is the number for exit 2. The entropy for each
box is

S = —p1log(p1) — p2log(p,),

and the basin entropy S, was obtained by summing up the values of s with respect to those boxes for which all the initial
conditions escape and dividing the result by the number of boxes N, for which all initial conditions escape. The boundary
basin entropy was obtained in the same way, but excluding from the statistics those boxes for which either p; = 0 or
p2 = 0, i.e. there were considered only those boxes which have at least one boundary in their interior. The quantity Sy is
the summation of the entropy S for all boxes that contain at least one boundary divided by the number N, of boxes having
at least one boundary.

In Fig. 10 we plot the values of the basin entropy S, and the basin boundary entropy Sy, for the case of two exits, namely
the wall at x = 0 (red points) and a small square box with center at x = 7 /2 and y = 37 /2 and width 0.05 (green points).
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Fig. 11. Exit basins for the wall (x = 0, blue points) and two small boxes aty = 7 /2 (green points) and y = 37 /2 (red points) with both widths equal to
0.15 and for the same parameter values considered in Fig. 2(a)-(d). (b) and (d) represent successive magnification of boxes. In (b) the black line is a piece
of the unstable manifold of a fixed point embedded in the chaotic region. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The variable parameter is the amplitude of the second wave A5, all the remaining parameters being unchanged. We also plot
in Fig. 10 the fraction occupied by the red basin. The basin entropy and the basin boundary entropy follow the variation of
the fraction occupied by the red basin (escape at the wall). As a general trend, the degree of complexity of the basin structure
and its boundary increases with A,, confirming that the increase of complexity of the basins is essentially due to the increase
of the area of the escape basin.

6. Wada exit basin boundaries

When there are three or more exit basins, the so-called Wada property can also be observed. This is an even stronger
statement of complexity than the fractality of the basin boundary for two exit basins. We begin with some mathematical
definitions [34,35]: a point P is a boundary point of an exit basin B if every open neighborhood of P intersects the basin
B and least another basin. The basin boundary is the set of all boundary point of that basin. The boundary point P is also a
Wada point if every open neighborhood of P intersects at least three different basins. A basin boundary is said to possess the
Wada property if every boundary point of 8 is a Wada point, such that the boundary of such a basin is a Wada exit basin
boundary [15,24].

The presence of Wada boundaries have important physical consequences, since in this case any boundary point turns
to be arbitrarily close to points of all exit basins [14]. Since an initial condition is always known up to a given uncertainty,
such an uncertainty ball typically contains points belonging to all exit basins. Hence it is not possible to say with certainty to
which exit basin will the trajectory asymptote to, even if we could improve the uncertainty. This would be called an extreme
final-state sensitivity.

In order to look for Wada property in our system it is necessary to include a third exit, namely another square box at
the same x-coordinate as the former and the same width, but its y-coordinate is displaced by . In Fig. 11(a) we plot the
basin of the first exit box (red points), the basin of the second exit box (green points) and the basin of the wall (blue points).
The Wada property is can be illustrated by successive magnification of a rectangle containing pieces of the three exit basins,
showing that stripes of all basins coexist in increasingly finer scales [Fig. 11(b)—(d)].

Although highly compelling, this visual evidence is not a bona fide proof that Wada property exists in this system. A
necessary (but not sufficient) condition for the Wada property to exist is that the unstable manifold W"(P) of an unstable
periodic orbit P belonging to this boundary must intersect every exit basin [35]. This has been shown to be true in Fig. 11(b),
where we plot (in black) a segment of the unstable manifold stemming from a saddle point belonging to an exit basin
boundary, which is seen to intercept points of the red, green and blue basins. Since the unstable manifold of a periodic orbit
P belonging to an exit basin boundary has intersected all the exit basins the Wada property is fulfilled.
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Fig. 12. (a) Number of reclassified points in each refinement step, using the grid approach for the basin structure depicted in Fig. 11. (b) Values of W, and
W3 as a function of the refinement step.

It has been recently proposed by Daza et al. a method for quantifying the Wada property in basin boundaries of dynamical
systems (dissipative or conservative) [24]. In the following we shall indicate the basics of this grid approach as applied to
escape Wada basins, further details being found in Ref. [24]. Let us consider a bounded region £2 of the phase space containing
N4 > 3 disjoint escape basins S;, where j = 1,2, ..., Na. There is also a two-dimensional rectangular grid G covering §2,
such that there is a set of non-overlapping grid boxes P = {box;, box,, ..., boxk}. For each point x € 2 we assign an
integer-valued “color” function C such that C(x) = jif x € §; and C(x) = 0 if x does not belong to any of the sets S;, in such
a way that an escape is labeled by C(x).

The collection of grid boxes consisting of box; and all the grid boxes having at least one point in common with box; is
denoted b(box;). For each box box; we call M (box;) the number of different colors in b(box;). Provided M (box;) # 1, N4 we
select the two closest boxes in b(box;) with different colors and draw a line segment between them, computing the color of
the segment midpoint. If the computed color completes all colors inside b(box;) then M(box;) = N, and the procedure is
stopped. Otherwise we refine the procedure by choosing intermediate points until M(box;) = N, (or the number of points
exceeds a specified maximum limit).

Let G, be the set of all the original grid boxes such that M (box;) = m.If m = 1 then the set G; contains points belonging
to the interior of the jth basin, because all the boxes inside the ball b(box;) have the same color. For m = 2 it turns out that
G, belongs to the boundary between two basins, since there are two different colors inside the ball b(box;), and so on. We

call G} the set G, at the qth procedure step. Then we compute the following parameter

number of points of G,

W,, = lim , (12)

g—oo Na . q

12 number of points of G;
wherem € [2, Ny]. In the limiting cases of W;;, = 0 then the system has no grid boxes that belong to the boundary separating
m escape basins, and if W, = 1 then all the boxes in the boundary separate m escape basins. If Wy, = 1 the system

possesses the Wada property, since it will always be possible to find a third color between the two other two colors. The
case of 0 < W;,, < 1 withm > 3is said to be partially Wada.

In the example depicted in Fig. 11 there are three exits, hence Ny = 3. We divided the escape basin structure into boxes,
each of them containing one point of the basin. We classify that point by analyzing the eight neighbor boxes. If all those
boxes are of the same color than the central box, the latter will belong to the set G;. If there are boxes of a same color but
different from the central box, the latter will belong to G,. If the neighbor boxes present two other colors, the central box
will belong to Gs3. According to (12) we compute the quantity

N number of points of G,

number of points of G, + number of points of G3 (13)
for q procedure steps. In each refinement step we check whether or not points of G, may belong to Gs by testing q initial
conditions intermediate between the central box and a neighbor box of different color. If some of those q intermediate initial
conditions exhibit the missing third color, the central box will be reclassified as Gs.

The number of points classified as G3 for each refinement step g is shown as a frequency histogram in Fig. 12(a). It is
apparent that after ¢ = 11 refinement steps the number of reclassified points is so small that the method converges for
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Fig. 13. Basin structure of Fig. 11, showing in black points belonging to G; set (internal points) and in red points of the G, set (boundary points), after
q = 11 refinement steps. The points of G3 (Wada points) are not shown for clarity. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

this value of g. This convergence can also be observed to occur both for W5, computed from Fig. 12(b), as well for W3, which
converge to 7.2% and 92.8%, respectively. Since 0 < W, < 1 the basin structure in Fig. 11 can more properly be classified as
partially Wada (remember that the basin will be totally Wada if W, — 0if ¢ — o0).

Fig. 13 shows in black the points classified as G; (internal to some basin) and in red those points that, after ¢ = 11
refinement steps continue to be classified as G,, hence belonging to basin boundaries. It is clear that some of the boundary
regions really do not exhibit the Wada property, although most of the points (not shown in Fig. 13) belong to Gs, what
explains why the basin structure as a whole is partially Wada.

7. Conclusions

Open non-integrable Hamiltonian systems having two or more exits allow for a detailed investigation of the complicated
structure underlying the chaotic dynamics. In physical terms, it means at least two important consequences: (i) the transport
in the chaotic region is far from being uniform, presenting escape channels by which particles have a faster transport rate;
(ii) there is final-state sensitivity: an initial condition having a given uncertainty close enough to the basin boundaries is
uncertain in the sense that we cannot be sure to what exit this initial condition will asymptote to.

Previous works in systems of interest in plasma physics have investigated this exit basins structure for the magnetic
field lines in time-independent systems. In this work we have investigated the presence of exit basins with a complicated
boundary structure in a time-dependent problem, which is the E x B drift motion of charged particles under the action
of two drift waves with different amplitudes. Although our model is physically simple (the magnetic field, for example, is
supposed to be uniform) we claim that the general aspects of more detailed models would be similar, in the sense that the
structures we investigated are rather universal consequences of the dynamics underlying chaotic orbits in non-integrable
area-preserving systems.

We observed that the exit basins closely follow the invariant manifold structure underlying the dynamics of the area-
filling chaotic orbit. The exit basin boundaries are made of branches of invariant (unstable and stable) manifolds stemming
from unstable periodic orbits (saddles in two dimensions) embedded in the chaotic region. For two exit basin we have shown
that the boundary is indeed fractal, with a box-counting dimension close to the dimension of the phase space itself, i.e. it
is almost an area-filling curve, showing the extremely involved nature of the basin structure. The box-counting dimension
has been shown to increase with the amplitude of the second wave. The area occupied by the exit basins, on the other hand,
has been shown to increase with the increase of the exit widths.

Moreover we applied in this paper the method of basin entropy, proposed by Daza and coworkers [13] to quantify the
basin structure of any system, yielding a more direct measure to compute the loss of information on the final state of the
system. In addition we found that both the basin and basin boundary entropies depend on the perturbation strength in the
same way as the fraction in phase space occupied by the basin of the initial conditions leading to an escape through the
tokamak wall. Since the latter generates orbits that spend a relatively large time in the chaotic region, it can be related to an
enhanced radial transport of energetic particles through the tokamak wall.

In the case of three basins we also shown the Wada property to exists, thanks to the fact that the unstable manifold
of an orbit belonging to the basin boundary intercepts pieces of all exit basins. We also applied a new procedure for the
quantification of the basin boundary structure (grid approach) recently proposed by Daza and coworkers [24]. Our results
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show that most points of the basin structure possess the Wada property, but there are phase space regions in which this
property does not hold. As a consequence our basin structure is only partially Wada.
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