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 A B S T R A C T

Area-preserving nontwist maps locally violate the twist condition, giving rise to shearless curves. Nontwist 
systems appear in different physical contexts, such as plasma physics, climate physics, classical mechanics, 
etc. Generic properties of nontwist maps are captured by the standard nontwist map, which depends on a 
convection parameter a and a modulation coefficient b. In the spirit of non-autonomous systems, we consider 
the standard nontwist map (SNM) with a linearly increasing modulation coefficient, and we investigate the 
evolution of an ensemble of points on the phase space that initially lie on the shearless invariant curve in the 
initial state, called shearless snapshot torus. Differently from the SNM with constant parameters — where we 
can see different scenarios of collision/annihilation of periodic orbits leading to global transport, depending 
on the region in the parameter space — for the SNM with time-dependent parameters, the route to chaos is 
not only related to the path in the (a, b) parameter space, but also to the scenario of the evolution of parameter 
bn. In this work, we identify power-law relationships between key parameters for the chaotic transition and 
the iteration time. Additionally, we analyze system reversibility during the chaotic transition and demonstrate 
an extra transport, where parameter variation modifies the diffusion coefficient.

1. Introduction

In Hamiltonian systems, trajectories in phase space evolve under 
the influence of Hamilton’s equations, which describe the dynamics 
of canonical coordinates and momenta [1]. Hamiltonian dynamics 
extends beyond familiar systems, not only well-known conservative 
ones such as the pendulum [2] but also more complex applications, for 
example, in the study of transport in plasma physics, fluid dynamics, 
condensed matter, celestial mechanics and other areas [3–8].

The dynamics of a time-independent Hamiltonian system with N
degrees of freedom can be visualized in the 2N-dimensional phase 
space of coordinates and momenta. From an initial value of coordinates 
and momenta, one can study the dynamics by looking at the trajectory 
evolution in the phase space. However, finding trajectories in the phase 
space may be very difficult, as Hamilton’s equations are usually not 
analytically solvable, and numerical solutions might be quite CPU-
consuming. One way to simplify the issue is to examine the Poincaré 
section of the system. For instance, a three-dimensional Hamiltonian 
system can be analyzed by observing the values of two variables at 
the moment the third variable reaches a specific value. The Poincaré 
section can be represented by discrete-time equations called maps, that 
can arise naturally in Hamiltonian systems [1].
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In the context of Hamiltonian dynamics, non-autonomous systems 
represent a class of dynamical systems where the governing equa-
tions of motion explicitly depend on time. Unlike autonomous sys-
tems, where the phase space usually shows the coexistence of regular 
and chaotic trajectories, non-autonomous Hamiltonian systems exhibit 
time-varying behaviors that depend on the range of the dynamical pa-
rameter and the parameter’s evolution scenario [9–11]. These systems 
find widespread application across diverse fields, including celestial 
mechanics, plasma physics, and climate sciences.

While nontwist maps have been widely studied [12,13], the bibli-
ography for time-varying effects in them is still scarce. In that sense, 
non-autonomous Hamiltonian systems pose unique theoretical chal-
lenges and opportunities, requiring novel techniques to describe their 
behavior. For instance, the time dependence in these systems breaks 
conserved quantities and invariant structures, such as invariant tori 
and periodic orbits, which are central to understanding the system’s 
long-term behavior.

In this paper, we explore the behavior of the shearless transport 
barrier — a distinctive feature of nontwist systems — under the influ-
ence of a time-varying parameter in the standard nontwist map (SNM). 
Our key findings show that for small variations in this parameter, 
the evolution of the shearless ensemble closely follows the stationary 
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shearless curve. However, after certain bifurcations, such as separatrix 
reconnection, the ensemble diverges from the stationary curve. The 
chaotic transition of the shearless ensemble is characterized by three 
critical values: the parameters b*c  (marking the start) and b+c  (marking 
the end) of the chaotic transition, as well as the instantaneous Lya-
punov exponent, measured during the transition. We provide numerical 
results for these values as a function of the parameter’s evolution. 
Additionally, we qualitatively track the chaotic transition by evaluating 
the reversibility of the shearless ensemble throughout the process. 
Finally, we demonstrate the occurrence of an extra diffusion linked to 
the varying parameter.

The structure of the paper is as follows: Section 2 reviews key 
properties of the SNM. Section 3 introduces the non-autonomous SNM, 
incorporating the time-dependent parameter. Section 4 investigates the 
system’s behavior under small time-dependent perturbations. Section 5 
focuses on the transition to chaos in the shearless snapshot torus. Sec-
tion 6 briefly addresses the transport properties of the non-autonomous 
SNM. Finally, Section 7 presents our conclusions.

2. Standard nontwist map

The standard nontwist map (SNM) is a paradigmatic area-preserving 
map that locally violates the twist condition (cf. Eq. (3)). The SNM M0
reads [14] 

M0 =
T

yn+1 = yn * b sin(2⇡xn)
xn+1 = xn + a(1 * y2n+1)

(1)

where a À [0, 1) and b À R, and the domain of the variables is D :=
{(x, y)  y À (*ÿ,ÿ), x À [*1_2, 1_2), mod 1}. Variable x plays the role 
of an angle, and we call y a radius for simplicity. The index n represents 
a discrete time, which is called iteration from here on. The parameter 
a shapes the rotation number along the y direction, therefore, called 
convection coefficient. The parameter b represents the amplitude of a 
radial perturbation, and we called it modulation coefficient.

In general, we can define the rotation number ! of an orbit initiated 
at the point (x0, y0), when it exists, by 
!(x0, y0) = lim

nôÿ

xn
n
, (2)

where the x variable is lifted to the real numbers.
In particular, if an orbit is periodic, then its rotation number is 

rational, written as the ratio of two integers ! = m_n. Trajectories with 
irrational rotation numbers populate densely one-dimensional lines 
called invariant tori, or more complex objects such as cantori [15].

In the integrable limit, b = 0, successive iterations of an orbit result 
in a straight line that wraps around the x*domain. For b ë 0, some 
invariant curves are destroyed, resulting in a mixed phase space with 
chaotic regions, while other invariant tori still exist. Fig.  1 shows the 
rotation number for both integrable and non-integrable cases. Because 
the rotation number is nonmonotonic, the twist condition 
)!_)y ë 0 (3)

is violated, giving rise to the shearless curve.
As the KAM theorem assumes the twist condition, the problem of 

motion stability in nontwist systems involves understanding how the 
shearless curve — the curve where the KAM theorem is not valid — 
breaks up (see [12,13]).

Because the map can be factored as a product of involutions, we 
can determine indicator points (IPs); if these points belong to a regular 
orbit, then the orbit is the shearless curve, and the IPs are located on 
it. The indicator points for the SNM are [16] 
z(±)0 = (±1_4,±b_2), z(±)1 = (a_2 ± 1_4, 0). (4)

Fig.  2 shows typical phase portraits of the SNM for fixed a = 0.345.
Because of the twist condition violation, periodic orbits with the 

same rotation number come in pairs. For the integrable case with 

Fig. 1. Rotation number of SNM in function of y coordinate for b = 0 (black) and 
b = 0.3 (red). We consider parameter a = 0.345. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

a = 0.345, two period-3 elliptic orbits are present in the phase space. 
When b ë 0, the system becomes non-integrable, and the period-3 
elliptic orbits transform into island chains separated by a shearless 
barrier. Additionally, two period-3 hyperbolic points exist in this re-
gion, each with its own separatrix. These separatrices eventually collide 
and reconnect, undergoing a global bifurcation known as separatrix 
reconnection, which changes the phase space topology from hetero-
clinic to homoclinic near the shearless curve (see Fig.  3). The separatrix 
reconnection threshold for period-one orbits may be found analytically, 
considering that the hyperbolic point in each separatrix will have the 
same value of the Hamiltonian [12]. For higher-order periodic orbits 
(n g 2), analytical expressions for the reconnection threshold are 
unavailable. However, our numerical analysis shows that, for a = 0.345, 
separatrix reconnection occurs at b< = 0.3761.

For sufficiently high values of the modulation coefficient b (right 
panel on Fig.  2) almost all invariant curves are destroyed, with the 
shearless usually being the last one. The critical value of b for shearless 
torus breakup is, for a = 0.345, bc ˘ 0.83. After this value the 
shearless torus is destroyed, but there might be still some partial barrier 
effects [17,18].

3. Parameter drift

This section introduces the non-autonomous standard nontwist map 
(NASNM). For that, we consider the parameter b in Eq.  (1) to be 
time-dependent 
b ô bn. (5)

There are several ways to choose the time dependence. For simplic-
ity, we choose 
bn = b0 + nv, (6)

where b0 is the initial parameter, n is the iteration number and v is the 
parameter growth rate, written as v = (bf * b0)_N . The last iteration 
satisfies the condition bN = bf , where bf  is the final parameter and N
is the total number of iterations. We write [b0, bf ,N] to denote the drift 
scenario.

Discrete-time conservative systems are usually considered under 
the assumption of constant parameters. When parameter drift is intro-
duced, invariant structures like KAM tori are lost, making the analysis 
of individual trajectories less meaningful. Instead, a more effective 
approach is to track ensembles that initially correspond to the KAM 
curves of the original system [9,10]. We define an initial ensemble as 
a sequence of points ri on the phase space lying in an invariant curve 
R0 = {r0, r1, r2,… , ri}. (7)
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Fig. 2. Phase portraits of the SNM for fixed a = 0.345. On the left the integrable case (b = 0), b = 0.3 on the center, and b = 0.79 on the right. The shearless curve is plotted in 
red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Phase portraits for the SNM with constant parameters, showing in green (blue) 
the upper (lower) separatrix and in red the shearless curve. On the left side b = 0.37, 
and on the right b = 0.38. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Considering the shearless invariant torus, for the given fixed b0, we 
choose one of the indicator points z0, z1 as the initial point r0 and the 
successive points {r1, r2,… , ri} are obtained from the iteration of r0
with the SNM with fixed parameter b0. The temporal evolution of the 
ensemble R0 is given by the successive application of the NASNM. At 
each iteration denoted by n, the current image of this ensemble is called 
snapshot torus. It is essential to distinguish that the snapshot torus, 
rather than an invariant curve, undergoes this evolution.

Fig.  4 displays a typical snapshot tori evolution, corresponding to 
the drift scenario [b0 = 0.3, bf = 1.0,N = 100]. It is clear that 
introducing time dependence significantly changes the phase portrait. 
During earlier time intervals, expressly when bn = 0.44, the system still 
retains some characteristics of the SNM, evidenced by the resemblance 
of the snapshot tori to the invariant curves observed in the stationary 
model. However, as the system evolves, for instance, when bn = 0.79, 
the phase portrait deviates substantially from the stationary model. 
Notably, while the stationary system has already lost all invariant 
curves — the shearless invariant curve usually being the last one —, 
on the time-dependent model the shearless snapshot torus exhibits a 
different structure, that is affected by various phenomena observed in 
the stationary model, such as separatrix reconnection, the emergence 
of small islands, the destruction of primary islands, and the formation 
of meanders. In this sense, the ensemble preserves a memory of the 
evolution scenario.

4. Adiabatic variation and separatrix reconnection

Section 3 was dedicated to showing the main concepts arising from 
the parameter’s time dependence. In this section, we show some results 
for small and slow parameter variations bn,

Fig.  5 shows an evolution scenario for an initial condition with 
b0 = 0.0 and bf = 0.3.

We see that the shearless snapshot torus tends to the shearless curve 
for the static picture for the end of the evolution bf = b. The slower the 

Fig. 4. Snapshots of the non-autonomous SNM for a = 0.345 and drift scenario 
[b0 = 0.3, bf = 1.0,N = 100], corresponding to the instants n = 20 (bn = 0.44) on 
the left, and n = 70 (bn = 0.79) on the right. The shearless snapshot torus is plotted in 
red. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 5. Shearless invariant curve for b = 0.3 in black and the final shearless snapshot 
torus for the drift scenario [b0 = 0.0, bf = 0.3], N = 50 in red, N = 100 in blue and 
N = 500 in green, showing that for slower variations of parameter bn the evolution of 
NASNM approximates the invariant curves for the static scenario. The right panel shows 
a close-up of the boxed region in the left panel. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

variation of the parameter bn, the closer the snapshot torus aligns with 
its corresponding invariant curve in the static picture.

We quantify this result by calculating the ensemble-averaged ro-
tation number, namely the average rotation number of all ensemble 
points initially located on the shearless curve. This result is shown in 
Fig.  6.

We see a very good agreement between the ensemble-averaged 
rotation number and the rotation number in the static scenario for 
values of bn f b<. But when the parameter reaches values close to the 
separatrix reconnection b< (Fig.  3), the ensemble starts experiencing a 
stretching towards the separatrix. After that, although the ensemble-
averaged rotation number is still close to the rotation number in the 
static scenario, the phase space is very distinct, notably the standard 
deviation in Fig.  6.
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Fig. 6. Averaged rotation number Í!Î and the standard deviation �! in function of 
time-dependent parameter bn. The average is taken over NP = 10000 points initially 
located on the shearless curve for b0.

Fig. 7. Critical parameter for separatrix reconnection in function of the total number 
of iterations.

For the non-autonomous model, we define the separatrix reconnec-
tion threshold b<n, i.e., the value of bn where the standard deviation of 
�! has its maximum value. This result is shown in Fig.  7.

5. Shearless snapshot torus breakup

This section discusses the transition to chaos of the shearless snap-
shot torus. For stationary Hamiltonian systems, the transition to chaos 
is usually associated with the destruction of invariant curves. However, 
with the introduction of parameter drift, there are no longer invariant 
curves, so the transition to chaos must be studied with different tools 
and techniques. To address this, we compute the ensemble-averaged 
pairwise logarithmic distance (EAPLD) given by the expression [19] 
⇢(n) = Íln d(n)Î, (8)

where d(n) is the distance between a pair of points very close to each 
other in the initial state (n = 0). The average Í�Î is calculated over 
an ensemble of NP  pairs of points located initially on the invariant 
shearless curve for the parameters (a, b0). Fig.  8 shows a typical evo-
lution scenario as function of the dynamical parameter bn for fixed 
[b0 = 0, bf = 2] for different numbers of iterations N .

We see a scenario where the distance between the points hardly 
changes initially. The transition to large-scale chaos begins after a 
critical parameter b*c , where we see an exponentially increasing dis-
tance between the points in the ensemble. After the large-scale chaotic 
transition, for b+c , the ensemble dynamics become strongly chaotic. The 
chaotic transition of the shearless snapshot torus is now characterized 
by the critical parameters b*c  and b+c  and the instantaneous Lyapunov 
exponent �, which is defined as the slope of the curve during the expo-
nential transition, calculated as function of the discrete-time variable n. 
The calculated instantaneous Lyapunov exponent � is unique because it 
exclusively characterizes the shearless snapshot torus. This parameter 

Fig. 8. Ensemble-averaged pairwise logarithmic distance in function of the dynamical 
parameter bn for [b0 = 0, bf = 2] and NP = 50000. In blue N = 100, and N = 1000 in red. 
The black fitted lines represent the slope of ⇢(n) during chaotic transition, calculated as 
function of the discrete-time variable n. The colored regions represent the interval b*c , b+c
for which the chaotic transition occurs. Lambda represents the instantaneous Lyapunov 
exponent. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

can be ascertained only after a certain duration following the beginning 
of the chaotic transition.

The critical parameters b*c  and b+c  are determined by identifying 
the beginning and completion of the exponential transition in the 
ensemble-averaged pairwise logarithmic distance ⇢(n). Here, b*c  marks 
the start of the chaotic transition, defined as the parameter value 
where the linear fit of the instantaneous Lyapunov exponent � first 
overlaps with ⇢(n) within a tolerance ✏ (determined empirically from 
the data variance). Conversely, b+c  corresponds to the transition’s com-
pletion, where the linear fit diverges from ⇢(n) beyond ✏. Although this 
approach is heuristic, it effectively quantifies the interplay between 
the parameter drift rate and the emergence of chaos, offering critical 
insights into the system’s dynamical evolution.

We observe that the chaotic transition starts at lower values of 
the parameter bn when the parameter changes more slowly. This is 
attributed to the fact that a slower change brings us closer to the 
stationary scenario, where chaos in a region of the phase space is 
closely tied to the presence of invariant curves. As the growth rate 
of the parameter increases, we move further away from the stationary 
scenario, and it takes some time for our system to begin experiencing 
significant stretching, ultimately leading to chaotic behavior.

Although the phase space in non-autonomous systems depends on 
the evolution scenario of the parameter [b0, bf ,N], the critical pa-
rameters for the chaotic transition b*c  and b+c  are associated with the 
stationary behavior of the system. In a stationary state, only one critical 
parameter bc defines the shearless breaking point. The invariant curve 
is broken once this point is reached, but partial barriers may still 
exist (see Refs. [17,18]). In a time-dependent system, the transition is 
smooth and influenced by N .

Fig.  9 shows the scalings between � and bc with the total number 
of iterations for b0 = 0 and bf = 2.

We see that for slower variations of the parameter bn, the critical 
parameters bc have an asymptotic behavior, following the power laws 
b*c * b*ÿ ◊ N*0.6 and b+c * b+ÿ ◊ N*0.5, where b±ÿ are the asymptotic 
critical parameters for N ô ÿ. Here, b±ÿ are approximated using 
large-N simulations (see the magnification in the right panel).

The Lyapunov exponent tends to zero as the number of iterations 
tends to infinity because, for conservative Hamiltonian systems, a 
volume element of the phase space will stay the same along a trajectory 
and remnants of KAM tori hinder transport [15].

Fig.  10 shows the ensemble-averaged pairwise logarithmic distance 
calculated on the parameter space. We do the following: for each (fixed) 
value of parameter a, we define the initial condition as points on the 
shearless curve for b0 = 0, and we iterate it using the NASNM, for each 
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Fig. 9. Scaling for the instantaneous Lyapunov exponent � and the critical parameter bc in function of number of iterations N . The dotted lines on the magnification of the right 
panel show the asymptotic critical parameters.

Fig. 10. Parameter space for the non-autonomous SNM. The color scheme represents 
the ensemble-averaged pairwise logarithmic distance.

instant, we calculate the EAPLD, showed through the color. Although 
the phase spaces are very different from the static case to the non-
autonomous, we see the similarities in the parameter space with the 
static case (see Ref. [20]).

Fig.  11 shows the transient region b*c < bn < b+c  for different 
numbers of iterations. We see that a slower parameter growth rate 
leads to a sharper transition, closer to the static picture, while a faster 
parameter growth rate exhibits a smoother transition.

The magnification in Fig.  11 reveals an anomalous broadening of 
the transient region b*c < bn < b+c  for specific parameter regimes, such 
as a ˘ 0.74, where slower parameter growth (larger N) unexpectedly 
results in a smoother transition rather than the sharper threshold 
observed for a ˘ 0.72. This deviation arises from high-order separatrix 
reconnection near the shearless curve, a phenomenon amplified at 
larger N . Prolonged exposure to parameter drift causes the ensemble to 
deform into a multi-layered tubular structure, significantly expanding 
its phase-space footprint. Consequently, trajectories near the ensemble’s 
periphery experience enhanced stretching, escaping earlier than they 
would in compact, reconnection-free scenarios (e.g., a ˘ 0.72). This 
premature escape accelerates the onset of chaotic transport, effec-
tively lowering b*c  and widening the transient region. Such dynamics 
highlight the delicate interplay between parameter drift rates, separa-
trix topology, and finite-time ensemble evolution in non-autonomous 
systems.

As we discussed in Section 1, the SNM is reversible, implying that 
we can represent the time-reversed map M (*n) as 
yn = yn+1 + bn sin(2⇡xn),
xn = xn+1 * a(1 * y2n+1)

(9)

Now let us define the initial state R0 as a sequence of points initially 
on the shearless curve for b0. The ensemble evolution is followed 
through the evolution scenario [b0, bf ,N], resulting in the final state 
RN = M (N)(R0), where we use the notation M (N) to represent N
successive iterations of the map M . Then, we reconstruct the initial 
ensemble by applying the time-reversed NASNM (9), denoted by R0® =
M (*N)(RN ).

The reversibility error D is measured as the average distance be-
tween the points of the initial ensemble R0 and the reconstructed initial 
ensemble R0® : 
D(R0,R0® ) = Ír0® * r0Î (10)

The reversibility error calculated under different scenarios of pa-
rameter evolution provides an additional tool for examining the 
transition to large-scale chaos in our system. Fig.  12 shows the re-
versibility error in function of N in three different ranges of the 
parameter [b0, bf ]: in the first panel we consider the case where small 
scale chaos is present, in the central panel the parameter range is such 
that the chaotic transition might occur, depending on the parameter’s 
growth rate and the last panel shows the result for a parameter range 
such that large-scale chaos is found.

The reversibility error exhibits distinct scaling behaviors determined 
by the parameter drift scenario (b0, bf ). In regimes dominated by small-
scale chaos (first panel, Fig.  12), the reversibility error D follows a 
power-law dependence on N , with numerical precision modulating 
the error magnitude akin to additive random noise. For systems with 
lower numerical precision, the reversibility error increases anomalously 
at large N , likely due to nonlinear phase-space distortions. These 
distortions arise because lower precision allows the ensemble to sam-
ple a broader phase-space region, where nonlinearities dominate the 
dynamics. For scenarios encompassing a chaotic transition (central 
panel), the reversibility error correlates with the parameter growth 
rate: at low N , minimal D reflects incomplete chaotic transitions, 
allowing partial reconstruction of the initial phase space. Conversely, 
higher N values induce full transitions to chaos, rendering phase-space 
reconstruction unfeasible and amplifying D. Here, precision influences 
D only prior to the transition, magnifying residual noise. In large-scale 
chaos regimes (last panel), D similarly follows a power-law scaling, 
but precision ceases to affect the error systematically. This insensitivity 
arises because, in large-scale chaos, the ensemble’s motion resembles 
an unbiased random motion. While finite precision introduces nu-
merical noise, the system’s intrinsic randomness overshadows these 
perturbations.

6. Transport properties

In this section, we briefly discuss the transport properties of the 
NASNM. Unlike the SNM with constant parameters, where we see 
different scenarios of collision/annihilation of periodic orbits leading 
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Fig. 11. Transient regions visualized on the parameter space for different numbers of iterations and a magnification in the right panel.

Fig. 12. Reversibility error in function of N in three different scenarios: small-scale chaos corresponds to [b0 = 0, bf = 0.3], the intermediate range is [b0 = 0.3, bf = 0.8] and finally, 
large-scale chaos is [b0 = 0.3, bf = 1.8]. The different colors represent the number of precision digits used for the calculations.

to global transport, depending on the region in the parameter space, 
for the SNM with time-dependent parameters, the route to chaos is not 
only related to the two parameters (a, b) but also to the scenario of the 
evolution of parameter bn.

We start this section by defining the escape time. The escape time of 
an orbit (xn, yn) is defined as the number of iterations needed to reach 
a condition of escape yn g yTS in the radial coordinate. Fig.  13 shows 
the escape time on the phase space for the stationary map and the non-
autonomous map with different evolution scenarios of the parameter. 
The stationary SNM, with the critical parameter b = bc = 0.83, and 
the NASNM, with a fixed total number of iterations N and different 
scenarios for [b0 = bc * �b, bf = bc + �b], where bc is the critical 
parameter for the shearless breaking point in the stationary model.

In the stationary picture, for bc = 0.83, the shearless barrier is 
already destroyed, but we can still see a partial barrier where the 
shearless curve was previously. We see a region where orbits stay 
longer, an effect called stickiness.

The non-autonomous map shows a scenario where the region 
around the shearless barrier also acts as a barrier, as evidenced by 
the longer escape time within this area. That is because the system 
preserves a memory of the parameter’s evolution. For instance, for 
b0 = 0.73, the central barrier still exists on the stationary picture; 
therefore, orbits in the central region start escaping after the time they 
would if we start with b0 = 0.83, where the shearless barrier does not 
exist anymore on the stationary map.

Let us now consider the average square radial displacement, Í�y(n)2Î

Í�y(n)2Î = Í(y(n) * y(0))2Î = 1
NP

NP…
i=1

(yi(n) * yi(0))2, (11)

where the average is taken over an ensemble of NP  points, each ith 
point located initially at (xi(0), yi(0)).

Fig.  14 shows the average square radial displacement as a function 
of n for the stationary SNM, with the critical parameter b = bc = 0.83
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Fig. 13. Escape time distributions across initial phase-space conditions. The first panel shows the stationary system for (b = 0.83). The central and last panels show the non-
autonomous systems with �b = 0.1 and �b = 0.2, resulting in a drift scenario [b0 = 0.73, bf = 0.93] and [b0 = 0.63, bf = 1.03], respectively. Simulations use N = 500 iterations and a 
radial escape threshold yTS = 1.

Fig. 14. Average square radial displacement in function of discrete-time n, for an initial 
ensemble of NP = 105 points located at the horizontal line y = 0. The curve in blue 
represents the static map with b = bc = 0.83. The curves in red and green represent the 
non-autonomous map for �b = 0.2 and �b = 0.1, respectively, with N = 500. The dotted 
curves represent fits using the random walk approach with time-increasing steps. (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

(blue curve), and the NASNM, with a fixed total number of iterations 
N = 500 and different scenarios for [b0 = bc * �b, bf = bc + �b]. The 
green curve corresponds to �b = 0.1, resulting in the drift scenario 
[b0 = 0.73, bf = 0.93], while the red curve corresponds to �b = 0.2, 
leading to the drift scenario [b0 = 0.63, bf = 1.03].

While escape time quantifies the barrier breaking according to a 
radial displacement threshold yTS , the MSD measures the ensemble-
averaged radial spread independently of yTS . These metrics are 

complementary but distinct: the former captures directional transport, 
while the latter characterizes the diffusive behavior. The mean square 
displacement Í�y(n)2Î is calculated for the entire ensemble, irrespective 
of whether particles exceed yTS .

For the stationary map with b g bc (blue curve in Fig.  14), the de-
struction of the shearless barrier allows large-scale chaotic transport to 
dominate the phase space. This regime can be approximated as a two-
dimensional random walk with independent time steps. Specifically, in 
Eq. (1), the variable xn is treated as a uniformly distributed random 
variable � À [*1_2, 1_2], decoupling it from the radial motion. The 
radial displacement then simplifies to: 

yn+1 = y0 *
n…
i=1

b cos(2⇡�i), (12)

where �i represents the stochastic angular displacement at each itera-
tion [21]. For large n, the average square radial displacement for the 
stationary map converges towards a Gaussian diffusion, and for b ∏ 1
the correlations between successive values of xn are reduced, leading 
to the relation Í�y(n)2Î = (b2_2)n.

In the non-autonomous system (red/green curves), the time-
dependent parameter bn introduces time-increasing step sizes to the 
radial random walk analogy. Here, the radial displacement becomes: 

yn+1 = y0 *
n…
i=1

bi cos(2⇡�i), (13)

where bi = b0 + iv grows linearly with iteration i. Initially (bn f bc), 
large-scale diffusion is suppressed by the shearless barrier, but as bn
exceeds bc , the shearless curve is broken and the step sizes bn amplify 
chaotic transport. This results in a progressive enhancement of Í�y(n)2Î, 
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which can be modeled as a random-walk with time-dependent bi, for 
which Eq. (13) implies Í�y(n)2Î = ≥

i b2i _2. This effect becomes more 
pronounced as the system diverges from the static scenario, and by 
fixing N while taking �b ô 0, the static behavior is recovered.

7. Conclusions

This paper introduced the non-autonomous standard nontwist map 
by considering a drift in parameter b. Conserved quantities and invari-
ant structures, such as KAM tori, are lost for maps with time-dependent 
parameters. Because of that, we study the system’s dynamics by fol-
lowing a set of trajectories that initially start in a single torus of the 
initial system; in this paper, we followed trajectories initially along the 
shearless curve. Although there are no invariant structures, we show 
that the ensemble evolution follows its respective torus in the static 
map, i.e., the ensemble points are located in the same line in the phase 
space and have the same rotation number. But after the parameter 
bn crosses the separatrix reconnection threshold, the ensemble starts 
experiencing a strong stretching because the ensemble points are lo-
cated in a chaotic domain associated with a heteroclinic tangle of the 
autonomous dynamics.

In the context of non-autonomous systems, the transition to chaos 
of the shearless barrier was shown to be such that the points of the set 
initially hardly deviate from each other. The transition begins after a 
critical value of the parameter b*c . During the transition, the points of 
the set diverge exponentially from each other, with a growth rate of the 
distances characterized by the instantaneous Lyapunov exponent �. For 
b+c , the transition ceases, the distance between the points saturates, and 
the remnants of the shearless set exhibit chaotic dynamics. Finally, we 
present power laws relating the parameters �, b*c , and b+c  as functions 
of the total iteration time N . We show the asymptotic behavior of 
the critical parameters, whereas the instantaneous Lyapunov exponent 
tends to zero. A second analysis related to the chaotic transition was 
provided, where we study the distance between the initial condition 
and the reconstructed initial condition, found by iterating backwards 
the final state with the time-reversed map. We show that the initial 
condition can be well reconstructed for a parameter variation scenario 
where small-scale chaos is found.

Finally, we demonstrate that the parameter drift introduces an 
additional transport mechanism, altering the diffusion dynamics of the 
system. In the static case, where b g bc , the diffusion is Gaussian and 
consistent with a random walk characterized by independent steps. 
For the non-autonomous case, diffusion initially occurs more slowly 
when the parameter is below the critical threshold. However, as the 
parameter increases over time, the diffusion is enhanced, leading to 
greater radial displacements. In analogy to the stationary case, we 
show that the diffusion properties of the non-autonomous map, for 
values of bn large enough, are approximated by the random walk with 
time-increasing step sizes.

A natural extension of this work lies in exploring parameter drift 
scenarios bounded by critical thresholds. For systems initialized with 
b0 < bc , the time required to breach the shearless barrier inherently 
depends on N , but further investigations could analyze subcritical 
cases where both b0 and bf  remain below bc . Here, minimal transport 
is expected due to the intact barrier, though subtle dynamics may 
arise from the interplay between adiabatic invariance and finite-time 
parameter drift. Conversely, supercritical scenarios with b0, bf > bc
would eliminate the total barrier, enabling studies of how transient 
memory effects or residual stickiness influence transport even in fully 
chaotic regimes. Systematic exploration of the drift rate v — particu-
larly its role in modulating chaotic transitions — could delineate critical 
thresholds where autonomous-like behavior breaks down. For instance, 
defining bounds on N and �b = bf * b0 that preserve adiabatic 
invariance (i.e., where dynamics mirror the static case) would offer 
predictive criteria for phase-space stability. Such scaling laws could 
unify autonomous and non-autonomous frameworks, bridging gaps in 
our understanding of time-dependent Hamiltonian systems.
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