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Area-preserving nontwist maps locally violate the twist condition, giving rise to shearless curves. Nontwist
systems appear in different physical contexts, such as plasma physics, climate physics, classical mechanics,
etc. Generic properties of nontwist maps are captured by the standard nontwist map, which depends on a
convection parameter ¢ and a modulation coefficient . In the spirit of non-autonomous systems, we consider
the standard nontwist map (SNM) with a linearly increasing modulation coefficient, and we investigate the
evolution of an ensemble of points on the phase space that initially lie on the shearless invariant curve in the
initial state, called shearless snapshot torus. Differently from the SNM with constant parameters — where we
can see different scenarios of collision/annihilation of periodic orbits leading to global transport, depending
on the region in the parameter space — for the SNM with time-dependent parameters, the route to chaos is
not only related to the path in the (a, b) parameter space, but also to the scenario of the evolution of parameter
b,. In this work, we identify power-law relationships between key parameters for the chaotic transition and
the iteration time. Additionally, we analyze system reversibility during the chaotic transition and demonstrate
an extra transport, where parameter variation modifies the diffusion coefficient.

1. Introduction

In Hamiltonian systems, trajectories in phase space evolve under
the influence of Hamilton’s equations, which describe the dynamics
of canonical coordinates and momenta [1]. Hamiltonian dynamics
extends beyond familiar systems, not only well-known conservative
ones such as the pendulum [2] but also more complex applications, for
example, in the study of transport in plasma physics, fluid dynamics,
condensed matter, celestial mechanics and other areas [3-8].

The dynamics of a time-independent Hamiltonian system with N
degrees of freedom can be visualized in the 2N-dimensional phase
space of coordinates and momenta. From an initial value of coordinates
and momenta, one can study the dynamics by looking at the trajectory
evolution in the phase space. However, finding trajectories in the phase
space may be very difficult, as Hamilton’s equations are usually not
analytically solvable, and numerical solutions might be quite CPU-
consuming. One way to simplify the issue is to examine the Poincaré
section of the system. For instance, a three-dimensional Hamiltonian
system can be analyzed by observing the values of two variables at
the moment the third variable reaches a specific value. The Poincaré
section can be represented by discrete-time equations called maps, that
can arise naturally in Hamiltonian systems [1].

In the context of Hamiltonian dynamics, non-autonomous systems
represent a class of dynamical systems where the governing equa-
tions of motion explicitly depend on time. Unlike autonomous sys-
tems, where the phase space usually shows the coexistence of regular
and chaotic trajectories, non-autonomous Hamiltonian systems exhibit
time-varying behaviors that depend on the range of the dynamical pa-
rameter and the parameter’s evolution scenario [9-11]. These systems
find widespread application across diverse fields, including celestial
mechanics, plasma physics, and climate sciences.

While nontwist maps have been widely studied [12,13], the bibli-
ography for time-varying effects in them is still scarce. In that sense,
non-autonomous Hamiltonian systems pose unique theoretical chal-
lenges and opportunities, requiring novel techniques to describe their
behavior. For instance, the time dependence in these systems breaks
conserved quantities and invariant structures, such as invariant tori
and periodic orbits, which are central to understanding the system’s
long-term behavior.

In this paper, we explore the behavior of the shearless transport
barrier — a distinctive feature of nontwist systems — under the influ-
ence of a time-varying parameter in the standard nontwist map (SNM).
Our key findings show that for small variations in this parameter,
the evolution of the shearless ensemble closely follows the stationary
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shearless curve. However, after certain bifurcations, such as separatrix
reconnection, the ensemble diverges from the stationary curve. The
chaotic transition of the shearless ensemble is characterized by three
critical values: the parameters b_ (marking the start) and b} (marking
the end) of the chaotic transition, as well as the instantaneous Lya-
punov exponent, measured during the transition. We provide numerical
results for these values as a function of the parameter’s evolution.
Additionally, we qualitatively track the chaotic transition by evaluating
the reversibility of the shearless ensemble throughout the process.
Finally, we demonstrate the occurrence of an extra diffusion linked to
the varying parameter.

The structure of the paper is as follows: Section 2 reviews key
properties of the SNM. Section 3 introduces the non-autonomous SNM,
incorporating the time-dependent parameter. Section 4 investigates the
system’s behavior under small time-dependent perturbations. Section 5
focuses on the transition to chaos in the shearless snapshot torus. Sec-
tion 6 briefly addresses the transport properties of the non-autonomous
SNM. Finally, Section 7 presents our conclusions.

2. Standard nontwist map

The standard nontwist map (SNM) is a paradigmatic area-preserving
map that locally violates the twist condition (cf. Eq. (3)). The SNM M,
reads [14]

{ Vup1 = Yy — bsinQzx,)

My = _ s
Xntl = Xp + Ll(l _yn+1)

(€]
where @ € [0,1) and b € R, and the domain of the variables is D :=
{(x,y) | y € (—0, ), x € [-1/2,1/2), mod1}. Variable x plays the role
of an angle, and we call y a radius for simplicity. The index n represents
a discrete time, which is called iteration from here on. The parameter
a shapes the rotation number along the y direction, therefore, called
convection coefficient. The parameter b represents the amplitude of a
radial perturbation, and we called it modulation coefficient.

In general, we can define the rotation number w of an orbit initiated
at the point (x, yy), when it exists, by
(g, ) = lim =2, @)

n—oo n
where the x variable is lifted to the real numbers.

In particular, if an orbit is periodic, then its rotation number is
rational, written as the ratio of two integers w = m/n. Trajectories with
irrational rotation numbers populate densely one-dimensional lines
called invariant tori, or more complex objects such as cantori [15].

In the integrable limit, b = 0, successive iterations of an orbit result
in a straight line that wraps around the x—domain. For b # 0, some
invariant curves are destroyed, resulting in a mixed phase space with
chaotic regions, while other invariant tori still exist. Fig. 1 shows the
rotation number for both integrable and non-integrable cases. Because
the rotation number is nonmonotonic, the twist condition

dw/dy #0 3)

is violated, giving rise to the shearless curve.

As the KAM theorem assumes the twist condition, the problem of
motion stability in nontwist systems involves understanding how the
shearless curve — the curve where the KAM theorem is not valid —
breaks up (see [12,13]).

Because the map can be factored as a product of involutions, we
can determine indicator points (IPs); if these points belong to a regular
orbit, then the orbit is the shearless curve, and the IPs are located on
it. The indicator points for the SNM are [16]

757 = (£1/4.£0/2). 7 = (@/2:£1/4.0). @

Fig. 2 shows typical phase portraits of the SNM for fixed a = 0.345.
Because of the twist condition violation, periodic orbits with the
same rotation number come in pairs. For the integrable case with
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Fig. 1. Rotation number of SNM in function of y coordinate for b = 0 (black) and
b=0.3 (red). We consider parameter a = 0.345. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

a = 0.345, two period-3 elliptic orbits are present in the phase space.
When b # 0, the system becomes non-integrable, and the period-3
elliptic orbits transform into island chains separated by a shearless
barrier. Additionally, two period-3 hyperbolic points exist in this re-
gion, each with its own separatrix. These separatrices eventually collide
and reconnect, undergoing a global bifurcation known as separatrix
reconnection, which changes the phase space topology from hetero-
clinic to homoclinic near the shearless curve (see Fig. 3). The separatrix
reconnection threshold for period-one orbits may be found analytically,
considering that the hyperbolic point in each separatrix will have the
same value of the Hamiltonian [12]. For higher-order periodic orbits
(n > 2), analytical expressions for the reconnection threshold are
unavailable. However, our numerical analysis shows that, for a = 0.345,
separatrix reconnection occurs at b* = 0.3761.

For sufficiently high values of the modulation coefficient b (right
panel on Fig. 2) almost all invariant curves are destroyed, with the
shearless usually being the last one. The critical value of b for shearless
torus breakup is, for a = 0.345, b, =~ 0.83. After this value the
shearless torus is destroyed, but there might be still some partial barrier
effects [17,18].

3. Parameter drift

This section introduces the non-autonomous standard nontwist map
(NASNM). For that, we consider the parameter » in Eq. (1) to be
time-dependent

b~ b,. (5)

There are several ways to choose the time dependence. For simplic-
ity, we choose

b, = by +nv, ©

where b is the initial parameter, » is the iteration number and v is the
parameter growth rate, written as v = (b, — by)/N. The last iteration
satisfies the condition by = b, where b, is the final parameter and N
is the total number of iterations. We write [by, b, N] to denote the drift
scenario.

Discrete-time conservative systems are usually considered under
the assumption of constant parameters. When parameter drift is intro-
duced, invariant structures like KAM tori are lost, making the analysis
of individual trajectories less meaningful. Instead, a more effective
approach is to track ensembles that initially correspond to the KAM
curves of the original system [9,10]. We define an initial ensemble as
a sequence of points r; on the phase space lying in an invariant curve

R():{r(),rlyr2,~~-7ri}~ @
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Fig. 2. Phase portraits of the SNM for fixed a = 0.345. On the left the integrable case (b =0), b = 0.3 on the center, and b = 0.79 on the right. The shearless curve is plotted in
red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Phase portraits for the SNM with constant parameters, showing in green (blue)
the upper (lower) separatrix and in red the shearless curve. On the left side b = 0.37,
and on the right b = 0.38. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Considering the shearless invariant torus, for the given fixed b,, we
choose one of the indicator points z,,z, as the initial point r, and the
successive points {r,,r,,...,r;} are obtained from the iteration of r
with the SNM with fixed parameter b,. The temporal evolution of the
ensemble R, is given by the successive application of the NASNM. At
each iteration denoted by n, the current image of this ensemble is called
snapshot torus. It is essential to distinguish that the snapshot torus,
rather than an invariant curve, undergoes this evolution.

Fig. 4 displays a typical snapshot tori evolution, corresponding to
the drift scenario [b, = 03,b ;= 1LO,N = 100]. It is clear that
introducing time dependence significantly changes the phase portrait.
During earlier time intervals, expressly when b, = 0.44, the system still
retains some characteristics of the SNM, evidenced by the resemblance
of the snapshot tori to the invariant curves observed in the stationary
model. However, as the system evolves, for instance, when b, = 0.79,
the phase portrait deviates substantially from the stationary model.
Notably, while the stationary system has already lost all invariant
curves — the shearless invariant curve usually being the last one —,
on the time-dependent model the shearless snapshot torus exhibits a
different structure, that is affected by various phenomena observed in
the stationary model, such as separatrix reconnection, the emergence
of small islands, the destruction of primary islands, and the formation
of meanders. In this sense, the ensemble preserves a memory of the
evolution scenario.

4. Adiabatic variation and separatrix reconnection

Section 3 was dedicated to showing the main concepts arising from
the parameter’s time dependence. In this section, we show some results
for small and slow parameter variations b,,

Fig. 5 shows an evolution scenario for an initial condition with
by=0.0 and b, =0.3.

We see that the shearless snapshot torus tends to the shearless curve
for the static picture for the end of the evolution b, = b. The slower the
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Fig. 4. Snapshots of the non-autonomous SNM for a = 0.345 and drift scenario
[by = 0.3,b, = 1.0,N = 100], corresponding to the instants n = 20 (b, = 0.44) on
the left, and n =70 (b, = 0.79) on the right. The shearless snapshot torus is plotted in
red. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Shearless invariant curve for b = 0.3 in black and the final shearless snapshot
torus for the drift scenario [b, = 0.0, b, = 03], N =50 in red, N = 100 in blue and
N =500 in green, showing that for slower variations of parameter b, the evolution of
NASNM approximates the invariant curves for the static scenario. The right panel shows
a close-up of the boxed region in the left panel. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

variation of the parameter b,, the closer the snapshot torus aligns with
its corresponding invariant curve in the static picture.

We quantify this result by calculating the ensemble-averaged ro-
tation number, namely the average rotation number of all ensemble
points initially located on the shearless curve. This result is shown in
Fig. 6.

We see a very good agreement between the ensemble-averaged
rotation number and the rotation number in the static scenario for
values of b, < b*. But when the parameter reaches values close to the
separatrix reconnection b* (Fig. 3), the ensemble starts experiencing a
stretching towards the separatrix. After that, although the ensemble-
averaged rotation number is still close to the rotation number in the
static scenario, the phase space is very distinct, notably the standard
deviation in Fig. 6.
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Fig. 6. Averaged rotation number (w) and the standard deviation ¢, in function of

»

time-dependent parameter b,. The average is taken over NP = 10000 points initially
located on the shearless curve for b.
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Fig. 7. Critical parameter for separatrix reconnection in function of the total number
of iterations.

For the non-autonomous model, we define the separatrix reconnec-
tion threshold 57, i.e., the value of b, where the standard deviation of
o,, has its maximum value. This result is shown in Fig. 7.

5. Shearless snapshot torus breakup

This section discusses the transition to chaos of the shearless snap-
shot torus. For stationary Hamiltonian systems, the transition to chaos
is usually associated with the destruction of invariant curves. However,
with the introduction of parameter drift, there are no longer invariant
curves, so the transition to chaos must be studied with different tools
and techniques. To address this, we compute the ensemble-averaged
pairwise logarithmic distance (EAPLD) given by the expression [19]

p(n) = (Ind(n)), ®

where d(n) is the distance between a pair of points very close to each
other in the initial state (n = 0). The average (-) is calculated over
an ensemble of N P pairs of points located initially on the invariant
shearless curve for the parameters (a, b)). Fig. 8 shows a typical evo-
lution scenario as function of the dynamical parameter b, for fixed
[bg=0,b; =2] for different numbers of iterations N.

We see a scenario where the distance between the points hardly
changes initially. The transition to large-scale chaos begins after a
critical parameter b, where we see an exponentially increasing dis-
tance between the points in the ensemble. After the large-scale chaotic
transition, for b}, the ensemble dynamics become strongly chaotic. The
chaotic transition of the shearless snapshot torus is now characterized
by the critical parameters b, and b} and the instantaneous Lyapunov
exponent 4, which is defined as the slope of the curve during the expo-
nential transition, calculated as function of the discrete-time variable n.
The calculated instantaneous Lyapunov exponent 4 is unique because it
exclusively characterizes the shearless snapshot torus. This parameter
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Fig. 8. Ensemble-averaged pairwise logarithmic distance in function of the dynamical
parameter b, for [by = 0,b, = 2] and N P = 50000. In blue N = 100, and N = 1000 in red.
The black fitted lines represent the slope of p(n) during chaotic transition, calculated as
function of the discrete-time variable . The colored regions represent the interval 57, b*
for which the chaotic transition occurs. Lambda represents the instantaneous Lyapunov
exponent. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

can be ascertained only after a certain duration following the beginning
of the chaotic transition.

The critical parameters b, and b} are determined by identifying
the beginning and completion of the exponential transition in the
ensemble-averaged pairwise logarithmic distance p(n). Here, b7 marks
the start of the chaotic transition, defined as the parameter value
where the linear fit of the instantaneous Lyapunov exponent A first
overlaps with p(n) within a tolerance ¢ (determined empirically from
the data variance). Conversely, b/ corresponds to the transition’s com-
pletion, where the linear fit diverges from p(n) beyond e. Although this
approach is heuristic, it effectively quantifies the interplay between
the parameter drift rate and the emergence of chaos, offering critical
insights into the system’s dynamical evolution.

We observe that the chaotic transition starts at lower values of
the parameter b, when the parameter changes more slowly. This is
attributed to the fact that a slower change brings us closer to the
stationary scenario, where chaos in a region of the phase space is
closely tied to the presence of invariant curves. As the growth rate
of the parameter increases, we move further away from the stationary
scenario, and it takes some time for our system to begin experiencing
significant stretching, ultimately leading to chaotic behavior.

Although the phase space in non-autonomous systems depends on
the evolution scenario of the parameter [by,b,, N], the critical pa-
rameters for the chaotic transition b, and b} are associated with the
stationary behavior of the system. In a stationary state, only one critical
parameter b, defines the shearless breaking point. The invariant curve
is broken once this point is reached, but partial barriers may still
exist (see Refs. [17,18]). In a time-dependent system, the transition is
smooth and influenced by N.

Fig. 9 shows the scalings between A and b, with the total number
of iterations for by = 0 and b, = 2.

We see that for slower variations of the parameter b,, the critical
parameters b, have an asymptotic behavior, following the power laws
b7 — b, o N706 and b} — b} o« N3, where b% are the asymptotic
critical parameters for N — oo. Here, b are approximated using
large-N simulations (see the magnification in the right panel).

The Lyapunov exponent tends to zero as the number of iterations
tends to infinity because, for conservative Hamiltonian systems, a
volume element of the phase space will stay the same along a trajectory
and remnants of KAM tori hinder transport [15].

Fig. 10 shows the ensemble-averaged pairwise logarithmic distance
calculated on the parameter space. We do the following: for each (fixed)
value of parameter a, we define the initial condition as points on the
shearless curve for b, = 0, and we iterate it using the NASNM, for each
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Fig. 9. Scaling for the instantaneous Lyapunov exponent A and the critical parameter b, in function of number of iterations N. The dotted lines on the magnification of the right

panel show the asymptotic critical parameters.
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Fig. 10. Parameter space for the non-autonomous SNM. The color scheme represents
the ensemble-averaged pairwise logarithmic distance.

instant, we calculate the EAPLD, showed through the color. Although
the phase spaces are very different from the static case to the non-
autonomous, we see the similarities in the parameter space with the
static case (see Ref. [20]).

Fig. 11 shows the transient region b, < b, < b} for different
numbers of iterations. We see that a slower parameter growth rate
leads to a sharper transition, closer to the static picture, while a faster
parameter growth rate exhibits a smoother transition.

The magnification in Fig. 11 reveals an anomalous broadening of
the transient region b, < b, < b} for specific parameter regimes, such
as a ~ 0.74, where slower parameter growth (larger N) unexpectedly
results in a smoother transition rather than the sharper threshold
observed for a ~ 0.72. This deviation arises from high-order separatrix
reconnection near the shearless curve, a phenomenon amplified at
larger N. Prolonged exposure to parameter drift causes the ensemble to
deform into a multi-layered tubular structure, significantly expanding
its phase-space footprint. Consequently, trajectories near the ensemble’s
periphery experience enhanced stretching, escaping earlier than they
would in compact, reconnection-free scenarios (e.g., a ~ 0.72). This
premature escape accelerates the onset of chaotic transport, effec-
tively lowering b, and widening the transient region. Such dynamics
highlight the delicate interplay between parameter drift rates, separa-
trix topology, and finite-time ensemble evolution in non-autonomous
systems.

As we discussed in Section 1, the SNM is reversible, implying that
we can represent the time-reversed map M "™ as
Yp = Ypg1 + b, sin(wx,,), ©

X, =Xy —a(l =y, )

Now let us define the initial state R, as a sequence of points initially
on the shearless curve for b,. The ensemble evolution is followed
through the evolution scenario [by,b,, N1, resulting in the final state
Ry = MW(R,), where we use the notation MN) to represent N
successive iterations of the map M. Then, we reconstruct the initial
ensemble by applying the time-reversed NASNM (9), denoted by Ry =
MENMRY).

The reversibility error D is measured as the average distance be-
tween the points of the initial ensemble R, and the reconstructed initial
ensemble Ry :

D(Ry, Ryy) = (|ryy — 1|} (10)

The reversibility error calculated under different scenarios of pa-
rameter evolution provides an additional tool for examining the
transition to large-scale chaos in our system. Fig. 12 shows the re-
versibility error in function of N in three different ranges of the
parameter [b),b/]: in the first panel we consider the case where small
scale chaos is present, in the central panel the parameter range is such
that the chaotic transition might occur, depending on the parameter’s
growth rate and the last panel shows the result for a parameter range
such that large-scale chaos is found.

The reversibility error exhibits distinct scaling behaviors determined
by the parameter drift scenario (by, b,). In regimes dominated by small-
scale chaos (first panel, Fig. 12), the reversibility error D follows a
power-law dependence on N, with numerical precision modulating
the error magnitude akin to additive random noise. For systems with
lower numerical precision, the reversibility error increases anomalously
at large N, likely due to nonlinear phase-space distortions. These
distortions arise because lower precision allows the ensemble to sam-
ple a broader phase-space region, where nonlinearities dominate the
dynamics. For scenarios encompassing a chaotic transition (central
panel), the reversibility error correlates with the parameter growth
rate: at low N, minimal D reflects incomplete chaotic transitions,
allowing partial reconstruction of the initial phase space. Conversely,
higher N values induce full transitions to chaos, rendering phase-space
reconstruction unfeasible and amplifying D. Here, precision influences
D only prior to the transition, magnifying residual noise. In large-scale
chaos regimes (last panel), D similarly follows a power-law scaling,
but precision ceases to affect the error systematically. This insensitivity
arises because, in large-scale chaos, the ensemble’s motion resembles
an unbiased random motion. While finite precision introduces nu-
merical noise, the system’s intrinsic randomness overshadows these
perturbations.

6. Transport properties
In this section, we briefly discuss the transport properties of the

NASNM. Unlike the SNM with constant parameters, where we see
different scenarios of collision/annihilation of periodic orbits leading
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Fig. 11. Transient regions visualized on the parameter space for different numbers of iterations and a magnification in the right panel.
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Fig. 12. Reversibility error in function of N in three different scenarios: small-scale chaos corresponds to [b, = 0,b, = 0.3], the intermediate range is [b, = 0.3,b, = 0.8] and finally,
large-scale chaos is [b, = 0.3,b, = 1.8]. The different colors represent the number of precision digits used for the calculations.

to global transport, depending on the region in the parameter space,
for the SNM with time-dependent parameters, the route to chaos is not
only related to the two parameters (a, b) but also to the scenario of the
evolution of parameter b,.

We start this section by defining the escape time. The escape time of
an orbit (x,, y,) is defined as the number of iterations needed to reach
a condition of escape y, > yrg in the radial coordinate. Fig. 13 shows
the escape time on the phase space for the stationary map and the non-
autonomous map with different evolution scenarios of the parameter.
The stationary SNM, with the critical parameter b = b, = 0.83, and
the NASNM, with a fixed total number of iterations N and different
scenarios for [by = b, — 4b,b; = b. + Ab], where b, is the critical
parameter for the shearless breaking point in the stationary model.

In the stationary picture, for b, = 0.83, the shearless barrier is
already destroyed, but we can still see a partial barrier where the
shearless curve was previously. We see a region where orbits stay
longer, an effect called stickiness.

The non-autonomous map shows a scenario where the region
around the shearless barrier also acts as a barrier, as evidenced by
the longer escape time within this area. That is because the system
preserves a memory of the parameter’s evolution. For instance, for
by = 0.73, the central barrier still exists on the stationary picture;
therefore, orbits in the central region start escaping after the time they
would if we start with b, = 0.83, where the shearless barrier does not
exist anymore on the stationary map.

Let us now consider the average square radial displacement, (Ay(n)?)

NP
(Aym?) = () = 5O0)2) = = Z:,(y,(n) — 302, an

where the average is taken over an ensemble of NP points, each ith
point located initially at (x;(0), y;(0)).

Fig. 14 shows the average square radial displacement as a function
of n for the stationary SNM, with the critical parameter b = b, = 0.83
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Fig. 13. Escape time distributions across initial phase-space conditions. The first panel shows the stationary system for (b = 0.83). The central and last panels show the non-
autonomous systems with 4b = 0.1 and 4b = 0.2, resulting in a drift scenario [b, = 0.73,b, = 0.93] and [b, = 0.63,b, = 1.03], respectively. Simulations use N = 500 iterations and a

radial escape threshold y;¢ = 1.
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Fig. 14. Average square radial displacement in function of discrete-time n, for an initial
ensemble of NP = 10° points located at the horizontal line y = 0. The curve in blue
represents the static map with b = b, = 0.83. The curves in red and green represent the
non-autonomous map for 46 = 0.2 and 4b = 0.1, respectively, with N = 500. The dotted
curves represent fits using the random walk approach with time-increasing steps. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

(blue curve), and the NASNM, with a fixed total number of iterations
N =500 and different scenarios for [by = b, — 4b,b; = b, + Ab]. The
green curve corresponds to 4b = 0.1, resulting in the drift scenario
[by = 0.73,b; = 0.93], while the red curve corresponds to 4b = 0.2,
leading to the drift scenario [b, = 0.63,b, = 1.03].

While escape time quantifies the barrier breaking according to a
radial displacement threshold y;g, the MSD measures the ensemble-
averaged radial spread independently of y;g. These metrics are

complementary but distinct: the former captures directional transport,
while the latter characterizes the diffusive behavior. The mean square
displacement {Ay(n)?) is calculated for the entire ensemble, irrespective
of whether particles exceed y;g.

For the stationary map with b > b, (blue curve in Fig. 14), the de-
struction of the shearless barrier allows large-scale chaotic transport to
dominate the phase space. This regime can be approximated as a two-
dimensional random walk with independent time steps. Specifically, in
Eq. (1), the variable x,, is treated as a uniformly distributed random
variable § € [-1/2,1/2], decoupling it from the radial motion. The
radial displacement then simplifies to:

n
Vart =Yo— Y, boosxs)), 12)
i=1
where §; represents the stochastic angular displacement at each itera-
tion [21]. For large n, the average square radial displacement for the
stationary map converges towards a Gaussian diffusion, and for b > 1
the correlations between successive values of x, are reduced, leading
to the relation (4y(n)?) = (b*/2)n.
In the non-autonomous system (red/green curves), the time-
dependent parameter b, introduces time-increasing step sizes to the
radial random walk analogy. Here, the radial displacement becomes:

n
Vol = Yo — Z b; cos(276;), 13)
i=1
where b; = by + iv grows linearly with iteration i. Initially (b, < b,.),
large-scale diffusion is suppressed by the shearless barrier, but as b,
exceeds b, the shearless curve is broken and the step sizes b, amplify
chaotic transport. This results in a progressive enhancement of (4y(n)?),
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which can be modeled as a random-walk with time-dependent b;, for
which Eq. (13) implies (4y(n)*) = ¥, b2/2. This effect becomes more
pronounced as the system diverges from the static scenario, and by
fixing N while taking 4b — 0, the static behavior is recovered.

7. Conclusions

This paper introduced the non-autonomous standard nontwist map
by considering a drift in parameter b. Conserved quantities and invari-
ant structures, such as KAM tori, are lost for maps with time-dependent
parameters. Because of that, we study the system’s dynamics by fol-
lowing a set of trajectories that initially start in a single torus of the
initial system; in this paper, we followed trajectories initially along the
shearless curve. Although there are no invariant structures, we show
that the ensemble evolution follows its respective torus in the static
mabp, i.e., the ensemble points are located in the same line in the phase
space and have the same rotation number. But after the parameter
b, crosses the separatrix reconnection threshold, the ensemble starts
experiencing a strong stretching because the ensemble points are lo-
cated in a chaotic domain associated with a heteroclinic tangle of the
autonomous dynamics.

In the context of non-autonomous systems, the transition to chaos
of the shearless barrier was shown to be such that the points of the set
initially hardly deviate from each other. The transition begins after a
critical value of the parameter b7 . During the transition, the points of
the set diverge exponentially from each other, with a growth rate of the
distances characterized by the instantaneous Lyapunov exponent A. For
b}, the transition ceases, the distance between the points saturates, and
the remnants of the shearless set exhibit chaotic dynamics. Finally, we
present power laws relating the parameters 4, b, and b} as functions
of the total iteration time N. We show the asymptotic behavior of
the critical parameters, whereas the instantaneous Lyapunov exponent
tends to zero. A second analysis related to the chaotic transition was
provided, where we study the distance between the initial condition
and the reconstructed initial condition, found by iterating backwards
the final state with the time-reversed map. We show that the initial
condition can be well reconstructed for a parameter variation scenario
where small-scale chaos is found.

Finally, we demonstrate that the parameter drift introduces an
additional transport mechanism, altering the diffusion dynamics of the
system. In the static case, where b > b,, the diffusion is Gaussian and
consistent with a random walk characterized by independent steps.
For the non-autonomous case, diffusion initially occurs more slowly
when the parameter is below the critical threshold. However, as the
parameter increases over time, the diffusion is enhanced, leading to
greater radial displacements. In analogy to the stationary case, we
show that the diffusion properties of the non-autonomous map, for
values of b, large enough, are approximated by the random walk with
time-increasing step sizes.

A natural extension of this work lies in exploring parameter drift
scenarios bounded by critical thresholds. For systems initialized with
by < b, the time required to breach the shearless barrier inherently
depends on N, but further investigations could analyze subcritical
cases where both b, and b, remain below b,. Here, minimal transport
is expected due to the intact barrier, though subtle dynamics may
arise from the interplay between adiabatic invariance and finite-time
parameter drift. Conversely, supercritical scenarios with by,b; > b,
would eliminate the total barrier, enabling studies of how transient
memory effects or residual stickiness influence transport even in fully
chaotic regimes. Systematic exploration of the drift rate v — particu-
larly its role in modulating chaotic transitions — could delineate critical
thresholds where autonomous-like behavior breaks down. For instance,
defining bounds on N and 4b = |b, —by| that preserve adiabatic
invariance (i.e., where dynamics mirror the static case) would offer
predictive criteria for phase-space stability. Such scaling laws could
unify autonomous and non-autonomous frameworks, bridging gaps in
our understanding of time-dependent Hamiltonian systems.
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