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Abstract

Chimera states are spatial patterns in which coherent and incoherent patterns coexist. It was
reported that small populations of coupled oscillators can exhibit chimera with transient nature.
This spatial coexistence has been observed in various network topologies of coupled systems, such
as coupled pendula, coupled chemical oscillators, and neuronal networks. In this work, we build
two-dimensional neuronal networks with regular and fractal topologies to study chimera states. In
the regular network, we consider a coupling between the nearest neighbours neurons, while the
fractal network is constructed according to the square Cantor set. Our networks are composed of
coupled adaptive exponential integrate-and-fire neurons, that can exhibit spike or burst activities.
Depending on the parameters, we find spiral wave chimeras in both regular and fractal networks.
The spiral wave chimeras arise for different values of the intensity of the excitatory synaptic
conductance. In our simulations, we verify the existence of multicore chimera states. The cores are
made up of neurons with desynchronous behaviour and the spiral waves rotates around them. The
cores can be related to bumps or spatially localised pulses of neuronal activities. We also show that
the initial value of the adaptation current plays an important role in the existence of spiral wave
chimera states.

1. Introduction

Spatial patterns of coexisting coherence and incoherence were observed in 1989 by Umberger et al [1] in
a dispersively coupled chain of nonlinear oscillators. In 2002, Kuramoto and Battogtokh [2] noticed spa-
tial patterns with coherent and incoherent domains in networks composed of oscillators described by the
Ginzburg-Landau equations with nonlocal coupling topology. This kind of spatial pattern was called chimera
by Abrams and Strogatz [3]. Wolfrum and Omel’chenko [4] demonstrated the transient nature [5] of small
populations of chimera states.

Chimera states [6] have been found in many experimental settings, for instance, mechanical oscillator
networks [7, 8], chaotic opto-electronic oscillators [9], oscillator circuits [10], and coupled chemical oscil-
lators [11]. Mukhametov et al [12] reported that synchronous and desynchronous behaviour can appear
simultaneously or independently in the two brain hemispheres of dolphins.

The existence of chimera states was observed in theoretical and numerical studies [13], such as networks
of Kuramoto oscillators [14], coupled Landau—Stuart equations [15], and Belousov—Zhabotinsky oscillators
[16]. Hizanidis et al [17] identified chimera in a network of Hindmarsh—Rose neurons coupled according to
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the connectome of the Caenorhabditis elegans soil worm. Batista et al [18] found chimera states in coupled
maps and chaotic systems by using a local form of the order parameter.

For the studies about chimera states, networks with different topologies have been considered. It was
reported that chimera states emerge in local, nonlocal, and global coupling topologies [19]. In 2019, Argy-
ropoulos and Provata [20] provided numerical evidence of the coexistence of coherent and incoherent domains
in two-dimensional network with fractal connectivity. A fractal is a geometric structure that exhibits self-
similarity and its dimension has non integer value. They found spiral wave chimeras and triple coexistence of
coherent domains, incoherent regions and travelling waves. Spiral wave chimeras were theoretically proposed
in 2004 by Shima and Kuramoto [21] by means of a nonlocally coupled oscillators. Gu et al [22] observed spiral
wave chimeras in locally chaotic homogeneous systems under nonlocal coupling. The chimeras were charac-
terised by synchronisation defect lines separating domains of different oscillation phases. The union between
spiral wave dynamics and chimera states can be found in chemical and biological systems [23]. Totz et al
[24] reported an experimental verification of spiral wave chimera in chemical micro-oscillators. They carried
out experiments with catalyst-loaded ion-exchange beads in a catalyst-free Belousov—Zhabotinsky reaction
mixture.

Recent research has been demonstrated the importance of chimera states in neuronal systems [25]. Wang
etal [26] found chimera in an adaptive neuronal network with burst-timing-dependent plasticity. They showed
different evolution of the chimera states due to the plasticity. We build a network composed of adaptive expo-
nential integrate-and-fire (AEIF) neurons. The AEIF model was proposed by Brette and Gerstner [27] to
describe neuronal activity. The AEIF model has an exponential and an adaptation mechanisms. Naud et al
[28] reported that the AEIF is capable of generating multiple firing patterns, such as initial bursting, regular
bursting, tonic spiking, and continuous adaptation. They investigated the parameter space and found regions
corresponding to the firing patterns. Touboul and Brette [29] identified a complex bifurcation structure and
the existence of chaotic spike patterns. This way, the AEIF model can be used to reproduce qualitatively various
electrophysiological features. Protachevicz et al [30] observed spiking and bursting synchronous behaviour in
a network of coupled AEIF neurons based on the human cortico-cortical connections. Recently, considering a
network of AEIF neurons, Protachevicz et al [31] demonstrated that a short delay in the conductance is relevant
to avoid abnormal neuronal synchronisation. Chimera states were found in an AEIF neuronal network [32],
in which the neurons were connected with their nearest neighbours. The observed chimera was composed of
groups of neurons with spike and burst patterns. Experimental evidences of chimera states were reported in
neuroscience, for instance in neuronal activities related to unihemispheric sleep [33] and pathological brain
states [34]. Lainscsek et al [35] verified that cortical chimera can predict epileptic seizures. Bansal et al [36]
studied cognitive chimera states in human brain networks.

The main goal of our study is to verify the existence of spiral wave chimera states in regular and fractal
networks, in which the local dynamics is described by the AEIF neuron. The AEIF model is able to mimic
known neuronal activities. We consider a two-dimensional network with regular coupling and another with
fractal topology. In the network with fractal topology, the connections are given by the Cantor constructions
algorithm for a fractal set [37]. Bassett er al [38] reported evidence of a fractal architecture in human brain
functional networks in the resting state. In this work, we show the existence of spiral wave chimeras in both
regular and fractal networks of coupled AEIF neurons, when the neurons have spike activities. Depending on
the coupling strength and initial value of the adaptation current, the networks can exhibit multicore chimera
states. The core reveals a set of desynchronised neurons that can be associated with neuronal bumps. Bumps in
networks of spiking neurons [39] play an important role in working memory [40] and feature selectivity [41].
Laing [42] demonstrated that bumps can arise in small-world networks with coupled excitatory and inhibitory
neurons. Recently, Schmidt and Avitabile [43] investigated conditions for the existence and stability of bumps
in networks of spiking neurons.

This paper is organised as follows. Section 2 introduces the neuronal networks of coupled AEIF neurons, in
which we consider regular and fractal couplings. In section 3, we show the existence of spiral waves chimeras
for different values of the coupling strength and the initial adaptation current. In the last section, we draw our
conclusions.

2. Adaptive exponential integrate-and-fire neuronal networks

We build two-dimensional networks composed of N x N AEIF neurons [27] that are coupled by means of
chemical synapses. The AEIF model has an exponential mechanism and an adaptation equation. Depending
on the parameters, it can exhibit spikes and bursts activities. In our two-dimensional networks, the neurons
are connected to R nearest neighbours according to regular or fractal topologies. In our simulations, a net-
work is not converted to another. In the network with regular topology, the neurons are connected with their
nearest neighbours, while the fractal network has a topology generated by the Cantor constructions algorithm
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Figure 1. Two-dimensional coupling matrices of the (a) regular and (b) fractal networks for N = 81 and R = 13. The blue (j, k)
and red (m, n) squares correspond to the postsynaptic and presynaptic neurons. The fractal topology is generated by means of the
Cantor construction algorithm.

for a fractal set. Two-dimensional neuronal networks have been considered in research in vitro. Segev et al
[44] presented measurements of spontaneous activities of cultured two-dimensional neuronal networks util-
ising a multielectrode array technique. Fractal arrangement of neuron axons in two-dimensional network was
uncovered through tractography images produced by magnetic resonance imaging scans [45].

The neuronal network model is given by

dVi Vi — Vy

m— = —g(Vix —E) + gtAr exp | 25— ) —wjp + 1
dr Ar
J+R k+R
+ (Veey — VJk) Z Z gm,nl\/[j,k,m,n,
m=j—R n=k—R
dw-k
Tw dl]', - a(V',k - EL) — Wjk,

dgj,k

Ts dt :_gj,k) (1)

where Cy, is the membrane capacitance, Vji is the membrane potential, g; is the leak conductance, Ey is the
resting potential, Ay is the slope factor, Vi is the spike threshold potential, w; is the adaptation current, I'is the
injection of current, Vggy is the synaptic reversal potential, and g; , is the synaptic conductance. The adjacency
matrix M, has elements with values equal to 1 when the presynaptic (1, n) and postsynaptic (j, k) neurons
are connected, and 0 when they are unconnected. In our simulations, we consider C,,, = 200 pE, EL. = —70mV,
g =12nS, Ay =2 mV, Vp = -50 mV, 7, = 300 ms, a =2 nS, 7, = 1.5 ms, [ = 500 pA, Vggy = 0 mV
(excitatory synapses). When Vi > Vipres [28], Vg, wjx, and g are updated following the rules

‘/j,k — Vi
Wik — Wik + b,
gj,k — Lex>

where V, = —58 mV and b = 70 pA. g, is the maximal intensity of the excitatory synaptic conductance. The
initial conditions of the neuronal potential and adaptation current are randomly chosen in the range Vj; =
[—58, —38] mV and wj; = [0, 70] pA, respectively. The initial conductance of each neuron ( gj,k) are considered
equal to 0.

Figures 1(a) and (b) display the coupling matrices of the regular and fractal networks, respectively, for
N = 81 neurons and R = 13. The fractal topology is generated by means of the Cantor construction algorithm
[37]. The red squares denote the neurons that are connected to the central neuron (blue square) in the network.
We consider periodic boundary conditions. In our simulations, to solve the differential equations, we use the
Runge—Kutta 4th order method with step equal to 0.01 for 7000 ms and a transient time equal to 5000 ms.
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Figure 2. Spatial profiles of the phase and local order parameter z for the regular ((a) and (b)) and fractal ((c) and (d)) couplings,
where we consider g, = 0.042 and g, = 0.058, respectively. In panels (b) and (d), the four red regions have small values of the
local order parameter and correspond to the cores.

We utilise the two-dimensional local order parameter as a diagnostic tool to identify spiral wave chimera
states, given by [24]

1 jHO k46
)= eifma(®)] P
5l = 55 m;éﬂ;é (2)

where 26 + 1 is the side length of a square region with the neuron (j, k) in the center (§ = 4). The phase is

defined as l

t— tj,k
¢j,k(t) =27l + ZWW, (3)
jk jk

where t]{k is the time of the Ith spike of the neuron (j, k), t]{k <t < t;f, and the spike happens for Vi > Vipyes.
We calculate the coefficient of variation of the inter-spike interval (ISI; = #+! — #)

cv=28 (4)
ST

where oy is the standard deviation and ISI is the mean value of ISI. The spike and burst activities are
characterised by CV < 0.5 and CV > 0.5, respectively [46].

3. Spiral wave chimera states

The spiral wave chimera states exhibit the coexistence of coherent and incoherent patterns in which an ordered
spiral wave rotates around a core made up of desynchronous behaviour [24]. Figure 2 displays the spatial
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Figure 3. (a) Values of g, in which synchronous behaviour and spiral wave chimeras appear. (b) Coefficient of variation (CV)
for 7 different initial conditions. The spiral wave chimeras occur in the range 0.02 < g, < 0.08 in which the neurons have spike
activities (CV < 0.5).
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Figure4. (a) Average and standard deviation of the number of cores. (b) Spiral wave chimera probability for different initial
conditions as a function of g, for the regular (red squares) and fractal (blue circles) as a function of g, for fractal and regular
couplings. Depending on the values of g,,, different number of cores can arise in both regular and fractal networks.

profiles of the phase and local order parameter z for the regular (figures 2(a) and (b)) and fractal (figures 2(c)
and (d)) networks. We observe the existence of spiral wave chimera for both regular and fractal couplings. In
figures 2(b) and (d), the four red regions have small values of the local order parameter and correspond to the
cores.

The spiral wave chimeras appear for different values of g, in the regular and fractal networks. Figure 3(a)
displays two ranges of g, values for g, < 0.048 in which chimera states in the regular network (red squares) are
observed. In the fractal network (blue circles), we find chimera for g, values larger than 0.048. In figure 3(b),
we see that the networks can exhibit spike (CV < 0.5) and burst (CV > 0.5) activities. The transition from
spikes to bursts of the fractal network after the regular network is due to its smaller number of connections. In
our simulations, we observe that the spiral wave chimeras occur in the range 0.02 < g, < 0.08 in which the
neurons have spike activities (CV < 0.5).

Depending on the values of g,,, different number of cores can arise in both regular and fractal networks.
Figure 4(a) shows the average and the standard deviation of the number of cores as a function of g,.. The cores
exhibit desynchronous spike activities. By varying the initial conditions, we find a maximum of 5 and 6 cores
for regular and fractal couplings, respectively. The multicores appear for values of g, smaller in the regular
than in the fractal networks.

The existence of chimera depends on the system parameters and the initial conditions. The initial condi-
tions play a crucial role in the emergence of chimera states [47]. In figure 4(b), we calculate the probability of
the emergence of spiral wave chimeras for different initial conditions as a function of g,,. For some g, , there is
a set of initial conditions which goes to the chimera states. Due to this fact, we analyse the effects of different
initial adaptation currents on the emergence of spiral wave chimeras.
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Figure5. D x w for the (a) regular (g, = 0.0473) and (b) fractal (g, = 0.067) networks, where values of w are randomly
distributed in the interval @ — D < wjx < W + D. The spiral wave chimera, synchronised, and desynchronise states are denoted
by yellow, red, and black colours, respectively.

Figure 5 displays D x w, where w is the mean of the initial adaptation currents and D is the range size
of the distribution. The values of w;j are randomly distributed in the interval w — D < wjx < W + D. The
spiral wave chimera, synchronised, and desynchronise states are denoted by yellow, red, and black colours,
respectively. Figure 5(a) is for the network with regular topology, while figure 5(b) is for the network with
fractal topology. Depending on the values of D and w, both networks exhibit chimera and synchronised states.
In both topologies, spiral wave chimera states arise for D > 70. For intermediate values 40 < D < 70, chimera
and synchronised states depend on the topology. For D < 40, it is more difficult to find chimeras due to the fact
that the initial adaptation currents are close, and as consequence the neurons synchronise. In our simulations
(figure 5), we do not observe desynchronised patterns.

4. Conclusions

The coexistence of coherent and incoherent spatial patterns, known as chimera states, have been observed in
several dynamics systems. They have appeared in different types of topologies. Spiral wave chimera states have
been found in two-dimensional networks. These chimeras are characterised by spiral waves rotating around
cores with desynchronous patterns.

In this work, we build networks composed of coupled AEIF neurons. Depending on the parameters, the
AEIF neuron can exhibit spike or burst activities. We study the emergence of chimera states in networks with
regular and fractal topologies. In the regular network, we consider a coupling between the nearest neighbours
neurons, while the fractal network is constructed according to the square Cantor set.

We find spiral wave chimeras in both the networks for different values of the intensity of the excitatory
synaptic conductance g,,. According to the coefficient of variation, the neurons exhibit spike activities in the
chimera states. We identify the existence of spiral wave chimeras with more than one core. The core reveals a set
of desynchronised neurons that can be related to neuronal bumps. The bump states or spatially localised pulses
of activities in coupled spiking neurons play an important role in working memory and visual orientation. The
emergence of chimeras and the number of cores depend on the parameters and the initial conditions. We show
that the initial adaptation currents are relevant for the appearance of spiral wave chimera states.
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