
Chaos 30, 093135 (2020); https://doi.org/10.1063/5.0013460 30, 093135

© 2020 Author(s).

Transport of blood particles: Chaotic
advection even in a healthy scenario
Cite as: Chaos 30, 093135 (2020); https://doi.org/10.1063/5.0013460
Submitted: 12 May 2020 . Accepted: 31 August 2020 . Published Online: 21 September 2020

I. M. Silva, A. B. Schelin , R. L. Viana , and I. L. Caldas 

ARTICLES YOU MAY BE INTERESTED IN

Synchronization and spatial patterns in forced swarmalators
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 053112 (2020); https://
doi.org/10.1063/1.5141343

Route to logical strange nonchaotic attractors with single periodic force and noise
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 093137 (2020); https://
doi.org/10.1063/5.0017725

By force of habit: Self-trapping in a dynamical utility landscape
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 053123 (2020); https://
doi.org/10.1063/5.0009518

https://images.scitation.org/redirect.spark?MID=176720&plid=1167511&setID=405123&channelID=0&CID=390544&banID=519902572&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a9441bd671bc98189ea3c063ec4e9d14a9b86aef&location=
https://doi.org/10.1063/5.0013460
https://doi.org/10.1063/5.0013460
https://aip.scitation.org/author/Silva%2C+I+M
https://aip.scitation.org/author/Schelin%2C+A+B
http://orcid.org/0000-0002-8691-6460
https://aip.scitation.org/author/Viana%2C+R+L
http://orcid.org/0000-0001-7298-9370
https://aip.scitation.org/author/Caldas%2C+I+L
http://orcid.org/0000-0002-1748-0106
https://doi.org/10.1063/5.0013460
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0013460
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0013460&domain=aip.scitation.org&date_stamp=2020-09-21
https://aip.scitation.org/doi/10.1063/1.5141343
https://doi.org/10.1063/1.5141343
https://doi.org/10.1063/1.5141343
https://aip.scitation.org/doi/10.1063/5.0017725
https://doi.org/10.1063/5.0017725
https://doi.org/10.1063/5.0017725
https://aip.scitation.org/doi/10.1063/5.0009518
https://doi.org/10.1063/5.0009518
https://doi.org/10.1063/5.0009518


Chaos ARTICLE scitation.org/journal/cha

Transport of blood particles: Chaotic advection
even in a healthy scenario

Cite as: Chaos 30, 093135 (2020); doi: 10.1063/5.0013460
Submitted: 12May 2020 · Accepted: 31 August 2020 ·

Published Online: 21 September 2020 View Online Export Citation CrossMark

I. M. Silva,1 A. B. Schelin,1,a) R. L. Viana,2 and I. L. Caldas3

AFFILIATIONS

1Instituto de Física, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
2Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná, Brazil
3Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil

a)Author to whom correspondence should be addressed: schelin@unb.br

ABSTRACT

We study the advection of blood particles in the carotid bifurcation, a site that is prone to plaque development. Previously, it has been shown
that chaotic advection can take place in blood flows with diseases. Here, we show that even in a healthy scenario, chaotic advection can take
place. To understand how the particle dynamics is affected by the emergence and growth of a plaque, we study the carotid bifurcation in three
cases: a healthy bifurcation, a bifurcation with a mild stenosis, and the another with a severe stenosis. The result is non-intuitive: there is less
chaos for the mild stenosis case even when compared to the healthy, non-stenosed, bifurcation. This happens because the partial obstruction
of the mild stenosis generates a symmetry in the flow that does not exist for the healthy condition. For the severe stenosis, there is more
irregular motion and more particle trapping as expected.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013460

In this work, we study the advection of blood particles in arteries
with bifurcations. Such sites are typically affected by cardiovas-
cular diseases that can lead to strokes, one of the main causes
of death in the world. We focus on the carotid artery bifurca-
tion. The role of the carotid artery is to supply the oxygenated
blood to the brain. In the vessels configuration, a bifurcation
splits the main carotid artery into the internal carotid artery and
the external carotid artery. Over time, this anatomical region is
prone to plaque formation. These plaques, composed typically
by fatty substances and cholesterol deposits, create a local nar-
rowing of the vase, increasing flow disturbance. Previous works
show that chaotic advection of blood particles can often occur
in blood vessels with diseases. Indeed, two basic ingredients are
commonly found in the circulatory system: flow disturbance and
time dependence. Here, we show that chaotic advection can occur
even in healthy conditions. In such cases, the flow disturbance is
naturally created by the bifurcation. As a result, chaotic advec-
tion of particles can initiate and aggravate cardiovascular diseases
by trapping particles and increasing their probability of aggre-
gation and attachment to the vessels wall. We study the carotid
bifurcation in three different scenarios: the first case can be con-
sidered a normal and healthy bifurcation, while the other two
are affected by plaques in the internal carotid artery. We show

that in all scenarios, there is chaotic advection. Our results can
explain why the carotid bifurcation is susceptible to atherosclero-
sis development.

I. INTRODUCTION

Atherosclerosis is the narrowing of the internal part of an artery
as a result of a plaque build up. The disease is the main cause of nat-
ural death in developed countries.1 Due to geometric characteristics,
some arteries, such as the carotid and the coronary, are more prone
to develop flow disturbance. Indeed, several works show that large
variations of shear regions and fast oscillatory flows are responsible
for the biochemical activation that initiates and sustains the plaque
formation.2–6

Blood flows have a pulsatile nature due to the cardiac cycle.3

This cycle is typically divided into two parts: the systole, when the
heart contracts and pumps blood to the arteries, and the diastole,
when the heart relaxes and is refilled with blood.

For time-dependent flows, recirculating zones can appear and,
even though most of the vortices are washed away periodically, par-
ticles carried by such flows can become permanently trapped. In
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fact, for unsteady flows, particle trajectories and streamlines are gen-
erally different. This is why the behavior of advected particles can
become irregular and chaotic even in laminar flows. Indeed, blood
flows in the circulatory system create the perfect environment for
the appearance of chaotic advection.

Chaotic advection is the emergence of chaos in the transport
of particles carried by flows.7 Examples of applications include mix-
ing devices,8 biochemically active systems,9 environmental flows,10,11

and evolutionary models,12 to cite a few.
For open flow systems, the manifestation of chaos is due to the

presence of a chaotic set in a closed region of interest, the mixing
region.13 This set is called the chaotic saddle and is formed by infinite
points of periodic and aperiodic orbits that never leave the mixing
region. Mathematically, the chaotic saddle has a stable manifold, a
set containing points that approach the chaotic saddle for t → ∞,
and an unstable manifold, a set formed by points that approach the
saddle for t → −∞.

A distinctive characteristic of flows with chaotic advection
is that one can physically visualize the unstable manifold of the
system.14 For example, let there be a blob of dye in a time-dependent
flow. As time passes, this blob will deform, stretching and folding
in a way that will result in a filamentary distribution of the dye.
These filaments trace out the unstable manifold. This distribution
of the dye has important consequences. For active systems, such as
blood flows, where the advected quantities interact with each other
in some way, the effects include high reactions rates and trapping
zones. Indeed, the filaments act as a fractal catalyst for the system,
for a review see Tel et al.15

Such a phenomenon is typical for two-dimensional incom-
pressible flows. Consider, for example, the velocity field u = (ux, uy)
with ÷u = ∂ux/∂x + ∂uy/∂y = 0 due to incompressibility. There
exists a stream function ψ(x, y, t) such that

ẋ = −
∂ψ

∂y
, ẏ =

∂ψ

∂x
, (1)

where r = (x, y) is the position of the advected particle.
Here, we identify a Hamiltonian structure of a one-degree-of-

freedom system, where the phase-space corresponds to the physical
plane of the flow. When the flow is time-dependent, the system
behaves as a non-integrable time-depedent Hamiltonian. Therefore,
typical structures from Hamiltonian chaos are directly visible in the
flow. This dynamics is called Lagrangian chaos. In contrast with the
well known fluid dynamics turbulence, Lagrangian chaos can take
place even in laminar, periodic flows such as the ones found in blood
vessels.

Previous works show that common cardiovascular diseases,
such as stenosis and aneurysm, can generate chaotic advection of
blood particles.16–18 It was shown that more severe stenosis generate
higher Lyapunov exponents.16 In a more realistic model, Závodszky
et al. model the blood flow in a realistic 3D cerebral aneurysm and
show fractal patterns of tracers.19

It is important to mention that chaos in blood flows is a
topic well studied in the context of Lagrangian Coherent Structures
(LCSs).5,20–23 Shadden et al.24 introduced LCS as a new tool to charac-
terize blood flows in large vessels. They showed that LCS can be used

to identify several features of the flow, such as flow stagnation and
separation. In particular, a 3D model of the carotid bifurcation was
used and filamentary patterns of long residence time were traced.
Arzani et al.22 used a Lagrangian description to quantify wall shear
stress exposure time, a quantity that is important in the context of
platelet activation.

Here, we will show that even in healthy conditions, blood par-
ticles present chaotic dynamics. In this case, the bifurcation acts as
a perturbation, generating flow structures that appear and disap-
pear periodically. We also study the carotid bifurcation with two
degrees of stenosis in the internal carotid artery: the mild case and
the severe case. We show that there is less chaos, characterized by
a lower fractal dimension of the stable manifold, for the mild case
even when compared to the healthy carotid bifurcation. Indeed,
this non-intuitive result is due to the symmetry that the partially
obstructed carotid branch creates in the flow. For the severe steno-
sis, the fractal dimension is higher and particle trapping increases as
expected.

This paper is divided as follows: in Sec. II, we show the
methods used to simulate the blood flow and particle dynam-
ics. Section III shows the results. We show the conclusions in
Sec. IV.

II. METHODS

The modeling of the system includes three parts: (i) geometric
model generation and boundary condition definitions, (ii) numeri-
cal simulations of the flow, and (iii) numerical simulation of particle
tracing.

A simplified 2D model of the carotid was built with AUTO-
CAD, shown in Fig. 1. The geometry simulates a normal and healthy
artery system.6,25–27 We choose to work with a simple 2D model in
order to give a better insight into the structure of the chaotic advec-
tion. After the bifurcation, the lower branch corresponds to the
external carotid artery (ECA), while the upper one corresponds to
the internal carotid artery (ICA). Typically, the ICA is more affected
by plaques than the ECA. Such a site is also potentially more dan-
gerous, since it is in the route taken by the oxygenated blood to the
brain.

We consider three scenarios: (i) the healthy carotid bifurcation,
case C1; (ii) the mild case, case C2, where the ICA is stenosed with
a 56% occlusion; (iii) the severe case, case C3, where the ICA has a
82% occlusion. For more details about the geometric classification
of the stenosis, see the Appendix.

For the boundary conditions, we imposed a periodic velocity
following, at the inlet, the profile shown in Fig. 2.6 There are two
outlets, corresponding to the end of the two branches, where the
pressure was fixed at 13 300 Pa.

The exact pattern of blood flows is hard to simulate since the
geometry of the vessel varies for each individual Regarding this, we
also tested different boundary conditions, such as different pressure
patterns and velocities inlets and the qualitative results remain the
same. For a more realistic 3D model of the carotid bifurcation, see
Ref. 24.

Blood was considered to be Newtonian and incompressible,
with ρ = 1.06 g/cm3 and µ = 0.04 g/cm s.
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FIG. 1. (a) Geometry of the carotid artery bifurcation. Enlargement of the affected
region for three different cases: (b) case C1, where the bifurcation is healthy, (c)
case C2, where the ICA is obstructed by a mild stenosis, and (d) case C3, where
the ICA is obstructed by a severe stenosis. Here, x is the vertical space between
the occlusions, y is the total carotid wall thickness inside the stenosis region, and
y′ is the carotid diameter after the stenosis.

For the particle tracing, we considered massless particles, i.e.
particles with size zero that follow the flow without inertia by

dr(t)

dt
= u(r, t), (2)

where r(t) is the particles position and u(r, t) is the flow velocity at
position r and time t, obtained by the Navier–Stokes equations.

The Navier–Stokes equations were solved with the finite ele-
ment software COMSOL.28 The finer physics-controlled mesh of
COMSOL with around 16 × 103 elements for each case. Error tol-
erance was defined as 1 × 10−4 and relative tolerance was fixed at
0.01. For time stepping, the generalized alpha method was used
with a maximum time step of 0.01 s. For a video tutorial, see the
supplementary material.

Ten cardiac cycles were simulated and the last seven were used
for analysis. We now show the results for the particle advection in
each scenario.

FIG. 2. Inlet velocity of the flow in m/s for one cardiac cycle.

III. RESULTS

A. Time decay

Flow disturbances commonly generate coherent structures,
such as vortices, that typically trap advected particles, increasing
their residence time in the observation region. This has shown to
be true for blood flows in Refs. 16, 20, 21, and 24 and is also verified
here for the carotid bifurcation. The main difference for this case,
however, is that we have to take into account through which exit the
particle leaves.

Figure 3 shows three semi-log graphics of the number of par-
ticles inside the observation region vs time. To perform the cal-
culation, a line of 104 particles was released from upstream (x =

100 mm) at four different time-phases of the cardiac cycle (t = 0,
t = 1/4T, t = 1/2T, t = 3/4T) and the time they spent before exit-
ing was calculated. We then calculated the mean residence time for
each initial condition considering the four releases.

In Fig. 3(a), we show the mean residence time for all particles
independently of their exit. We see that the behavior is similar for all
three cases, with a faster particle decay for the mild stenosis.

If we consider only the particles that leave through the stenosed
branch (ICA), the situation changes. In Fig. 3(b), we find that for
the severe obstruction, particles spend up to one cardiac cycle more
trapped than particles of the healthy scenario in the observation
region.

Now, we look at particles exiting the non-stenosed branch (the
ECA), shown in Fig. 3(c). For this exit, particles take more time to
leave in the healthy case as compared to the diseased bifurcations.

B. Stable manifolds

As the particles are carried by the flow, some leave the bifurca-
tion region very fast while others spend more time at the observa-
tion site. To understand how this distribution takes place, we now
calculate the stable manifold of the chaotic saddle for each case.
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FIG. 3. Mean number of particles vs time considering four different time-phases of the cardiac cycle (t = 0, t = 1/4T , t = 1/2T , t = 3/4T). (a) Particles that leave in
either of the two exits, (b) particles that leave through the ICA (the stenosed branch), (c) particles that leave through the ECA (healthy branch). The blue line corresponds to
the healthy case C1, while the red line corresponds to the mild case C2 and the black line, the severe case C3.

An approximation of the stable manifold of the chaotic saddle
was obtained by the sprinkler method.29,30 The procedure consists of
taking a grid of 400 × 400 initial conditions that cover the carotid
bifurcation and the stenosed area at t = 1/2T. The trajectory of each
initial condition is calculated, and the initial points of particles that
spend more time wandering around the observation region are then
colored in black.

As shown in Fig. 4(a), we see that for the healthy scenario there
are several filaments that distribute themselves after the bifurca-
tion in both branches. Indeed, these filaments indicate that there is
chaotic advection even in the absence of a disease. These filaments
appear to be fractal structures, a signature of chaos in flows.

The results are shown in Table I. The dark regions that appear
before the bifurcation, close to the vessels wall, are mainly due to the
no-slip boundary condition imposed as a boundary condition for
the flow.

For the mild stenosis, shown in Fig. 4(b), we see that there
are more filaments in the diseased branch, the ICA, although small

filaments are still visible in the ECA. We also identify a barrier in
the middle of the common carotid, the artery before the bifurcation,
separating the upper part of the flow from the lower one.

As the stenosis aggravates, we see in the severe case, shown in
Fig. 4(c), that all the filaments accumulate at the ICA branch, while
the ECA remains clear. Indeed, this asymmetry is due to the flow
behavior: with the ICA mostly blocked, the blood flow leaves the
bifurcation region as a jet through the ECA, rapidly washing away
the particles at this site.

We measured the fractal dimension of the filaments of the sta-
ble manifolds for each case using the box-counting method. The

TABLE I. Fractal dimension of the stable manifolds.

C1 C2 C3

D 1.65 ± 0.03 1.46 ± 0.04 1.75 ± 0.04

Chaos 30, 093135 (2020); doi: 10.1063/5.0013460 30, 093135-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Snapshot of the stable manifold for each case at t = 1/2T . (a) Healthy case C1. (b) Mild stenosis C2. (c) Severe stenosis C3.

box-counting method is a well known technique to estimate the
fractal dimension of a dataset. The procedure consists of repeatedly
covering the fractal filaments with a grid, each time with smaller
boxes. The number of boxes N that cover the fractal set should scale
with the size of the box ϵ as

D =
ln N(ϵ)

ln 1/ϵ
lim
ε→0

. (3)

The fractal dimension corresponds to the slope of the line given by
ln N and ln ϵ. For more details, see Ref. 31.

The results are shown in Table I. For the healthy case, the frac-
tal dimension found is around 1.65. For the mild stenosis this value
decreases, with D = 1.46, and for the severe stenosis it increases
again with D = 1.75. From this result, we can conclude that there
is “less chaos” in the mild scenario. This is due to the symmetry in

the mass flow induced by the partial obstruction in the ICA. Indeed,
this symmetry generates the barrier mentioned previously.

Typically, the shape of the filaments change periodically with
the flow, the fractal distribution though shall remain the same. This
fractal distribution plays an important role in systems where par-
ticles react with each other. It has been shown that the production
term can be modeled by Ref. 15:

P c−γ (4)

where c is the concentration of the active particles and γ is given
by γ = (D − 1)/(2 − D). Therefore, the information of a changing,
non-monotonic, fractal dimension as the size of the plaque changes
must be taken into account.

The stable manifold does not tells us through which branch
each particle is leaving. For instance, initial points that belong to fil-
aments in the lower branch can leave the bifurcation site through the
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FIG. 5. Snapshot of the exit basin for each case at t = 1/2T . (a) Healthy case C1. (b) Mild stenosis C2. (c) Severe stenosis C3.

upper branch. To see how this distribution takes place, we calculate
now the exit basin for each case.

C. Escape basins

Similar to the stable manifold, the exit basin is obtained by tak-
ing a 400 × 400 grid of initial points covering the bifurcation area.
The trajectory of each initial condition is then traced and the branch
through which the particle exits the system is then recorded. The
initial points of particles leaving through the ICA (upper branch)
are colored in dark red, while the ones that leave through the ECA
(lower branch) are colored in green.

Figure 5 shows the results. For the healthy case, in Fig. 5(a), the
exit basin shows that particles in the upper half of the artery leave
the system through the upper branch, as the large red area indi-
cates. This red basin also spreads to the lower half of the artery, with

small filaments of particles that initially belong to the lower branch.
Indeed, particles inside the lower branch can be captured by vortices,
leaving after a while through upper branch.

The same is not true for the mild stenosis case, shown in
Fig. 5(b). For this basin, there is a clear line dividing symmetrically
the two basins. This symmetry is due the partial obstruction created
by the stenosis, allowing the same amount of blood to flow through
both branches.

As the obstruction further increases, the exit basins show an
opposite behavior of particle capturing: all the particles in the lower
half now leave the system through the same side, shown by the green
basin in Fig. 5(c), and there are large green filaments reaching the
upper half. Again, these filaments correspond to particles captured
by re-circulation zones and exiting through the opposite side.

In order to quantify the escape basins, we compute now two
quantities: the so-called basin entropy, a measurement that evaluates
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TABLE II. Measurements of the escape basins: Basin boundary entropy and basin
area.

C1 C2 C3

SB 0.9710 0.2979 1.5263
Area ICA 0.5723 0.4773 0.3387

the degree of mixing between different basins and the area of each
basin.32–34 The calculation of the basin entropy is performed by
dividing the configuration space into N 2D boxes. The fraction of
points leaving through each escape is then evaluated for each box
through

pI =
nI

nI + nE

, (5)

pE =
nE

nI + nE

, (6)

where nI is the number of particles escaping through the internal
carotid artery and nE is the number of particles escaping through
the external carotid artery.

The entropy of each ith box is given by

Si = −pI ln pI − pE ln pE. (7)

The total basin entropy is then given by the average entropy of
all boxes,

SB =
1

N

N∑

i=1

Si. (8)

The basin entropy measures the degree of uncertainty of a given
exit basin.32 For example, if we have a single exit basin then the prob-
ability of reaching it is equal to the unity and the basin entropy
is equal to zero. On the other hand, if we have nE so completely
randomized exit basins that reaching each of them occurs with the
same probability then the entropy is ln nE. Hence, 0 < Sb < ln nE, in
general.

Reducing the box size ε used to compute the probabilities, the
number of boxes grows and also the entropy S =

∑NA
i=1 of each of the

N boxes. However, the basin entropy Sb = S/N, in general, decreases
with ε.

Let nb be the number of boxes, which contain pieces of more
than one exit basin, i.e., those boxes falling in the exit basin bound-
ary. We then define the basin boundary entropy as Sbb = S/nb. Since
Nb ≤ N, the maximum possible value of Sbb that a smooth (nonfrac-
tal) boundary can show is ln 2. It has been argued that, if Sbb > ln 2,
then the exit basin boundary is fractal. Actually, this is a suffi-
cient but not necessary condition, since there may be fractal exit
boundaries with Sbb < ln 2.

According to Table II, the cases C1 and C3 are thus char-
acteristic of fractal exit basin boundaries, as already indicated by
their box-counting dimension, whereas the case C2 has a smooth
exit basin boundary. Moreover, according to the value of the basin
boundary entropy, the final-state uncertainty related to the fractality
of case C3 is higher than for C1.

TABLE III. Table of percentages of stenotic carotid occlusion.

Stenosis x (mm) y (mm) y′ (mm) preNA NA

C2 4.40 10.94 9.96 59.8% 55.8%
C3 1.80 10.31 9.96 82.5% 81.9%

The so-called “basin stability parameter,” which is the relative
area of the exit basin, gives another quantitative measure of the final-
state uncertainty related to the exit basin boundary structure.35 In
principle, the smaller is this area, the more unstable the final-state is
with respect to small and arbitrary changes in the initial conditions.
However, it is also important to take into account the topology of
the basin boundary, since a fractal boundary of a basin of small area
gives more final-state uncertainty than a smooth boundary of a basin
with the same area. Hence, we should take those indicators as com-
plementary. An example is provided by Table II, where the basin
area is compared with the basin entropy: the former decreases as we
go from C1 to C3, but in C2 the boundary is actually smoother than
in C1 and C3. In this case, at least, the basin area gives a partially
correct information on the final-state uncertainty.

IV. CONCLUSIONS

We studied particle advection in the carotid bifurcation for
three different scenarios. The first case was considered to be a nor-
mal and healthy bifurcation, while the other two were affected by
plaques in the internal carotid artery.

We showed that chaotic advection is prone to occur even for
the healthy scenario. This might explain in part why the site is typ-
ically affected by circulatory diseases such as plaque formation and
atherosclerosis.

The models of the carotid bifurcation with mild and severe
stenosis showed that particle trapping is higher for the latter case.
Also, for the severe stenosis, more particles leave the observation
region through the ECA, the non-stenosed branch. This can result
in the transportation of active particles, such as platelets, to other
sites of the circulatory system.

As a next step, we plan to expand our model to a 3D version.
We expect that the results will hold since they are related to a robust
property of the flow: the symmetry induced by the stenosis.

SUPPLEMENTARY MATERIAL

See the supplementary material for a video tutorial of
the flow computation in the carotid bifurcation with COMSOL
Multiphysics.28
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TABLE IV. Eccentricity table and horizontal distance between stenotic carotids.

Stenosis a (mm) b (mm) EI Horizontal distance (mm)

C2 2.99 3.56 0.160 6.87
C3 3.89 4.61 0.156 4.33

APPENDIX: CLASSIFICATION OF THE STENOSIS

There are different methods in the literature to classify the
degree of obstruction of a stenosis. Here, we use the NASCET
criteria.36 In this method, the percentage of the entrance of the occlu-
sion, the pre-NASCET obstruction [Eq. (A1)], and the percentage of
the stenosis as a whole, are given by

preNA =
y − x

y
100%, (A1)

NA =
y′ − x

y′
100%, (A2)

where x is the vertical space between the occlusions, y is the total
carotid wall thickness inside the stenosis region, and y′ is the carotid
diameter after the stenosis, as shown in Fig. 1. The geometrical
details and degree of obstruction of cases C2 and C3 are shown in
Table III.

In general, plaques in blood vessels are not symmetrical and
the characterization of such asymmetry is defined by the so-called
eccentricity index (EI),

EI =
b − a

b
, (A3)

where a and b are the maximum occlusion parameters. Table IV
shows the geometrical parameters and the eccentricity index which
is very close for both cases.
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