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The Structure of Chaotic Magnetic Field Lines
in a Tokamak with External Nonsymmetric

Magnetic Perturbations
Elton César da Silva, Iberê Luiz Caldas, and Ricardo Luiz Viana

Abstract—We consider the effects of external nonsymmetric
magnetostatic perturbations caused by resonant helical windings
and a chaotic magnetic limiter on the plasma confined in a
tokamak. The main purpose of both types of perturbation is to
create a region in which field lines are chaotic in the Lagrangian
sense: two initially nearby field lines diverge exponentially
through many turns around the tokamak. The equilibrium field
is obtained from the equations of magneto-hydrodynamic equi-
librium written down in a polar toroidal coordinate system. The
magnetic fields generated by the resonant helical windings and
the chaotic magnetic limiter are obtained through an analytical
solution of Laplace equation. The magnetic field line equations
are integrated to give a Hamiltonian mapping of field lines that we
use to characterize the structure of chaotic field lines. In the case
of resonant windings, we obtained the map by both numerical
integration and a Hamiltonian formulation. For a chaotic limiter,
we analytically derived a symplectic map by using a Hamiltonian
formulation.

Index Terms—Chaotic magnetic limiter, Hamiltonian formula-
tion for field line flow, magnetic field line mapping, magnetic per-
turbations in tokamaks, resonant helical windings.

I. INTRODUCTION

FUSION PLASMA machines are based in some mag-
netic confinement scheme. Among the various schemes

devised for fusion applications, the tokamak is one of the
most promising candidates to achieve this goal. Tokamaks are
basically toroidal pinches in which a plasma column is formed
by ohmic heating of a low-pressure filling gas, produced by
electric fields generated in pulses by transformer coils. The
plasma torus is then confined by the superposition of two basic
fields: 1) a toroidal magnetic field produced by pick-up coils
mounted around the tokamak, and 2) a poloidal field generated
by the plasma column itself [1]. The combination of these
fields results in helical magnetic field lines. From a geometrical
point of view, it is convenient to view these field lines as lying
on nested toroidal surfaces, called magnetic surfaces, on which
the gradient of pressure that causes the plasma expansion is
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counterbalanced by the Lorentz force that appears due to the
interaction between the plasma current and the magnetic field,
in an equilibrium configuration [2].

A Hamiltonian approach to this situation consists of a pa-
rameterization of the field lines by means of a spatial ignor-
able coordinate. With respect to this coordinate, the equilib-
rium configuration must exhibit a symmetry. This parameter
plays the role of time in the Hamilton canonical equations, the
other variables being field line coordinates and/or magnetic sur-
face labels as well [3]. One of the advantages of this approach
is the possibility of describing field lines by means of Hamil-
tonian maps, reducing the number of degrees of the system [4].
In this framework, symmetry-breaking magnetic field perturba-
tions alter this behavior, and field lines may become chaotic in a
lagrangean sense: two initially nearby field lines diverge expo-
nentially through many turns around a toroidal system [5], [6].

A context in which the existence of chaotic magnetic field
lines has profound implications for the plasma confinement in
tokamaks is the control of the plasma-wall interactions. They
occur frequently as a result of collisions of particles—which
escape from the plasma and cross the vacuum region that sur-
rounds it—with the tokamak inner metallic wall [1]. One of the
technological problems in the operation of tokamaks turns to be
the control of these plasma-wall interactions [7]. The confine-
ment quality is affected by the presence of impurities released
from the inner wall due to sputtering processes caused by local-
ized energy and particle loadings. Controlling this interaction
leads to a decrease of the impurity content in the plasma core
and improves plasma confinement.

As an example, plasmas in modern tokamaks and Stellara-
tors are bounded by a separatrix between closed field lines
on toroidal magnetic surfaces and open field lines that direct
plasma particles from the plasma edge to divertor plates [8],
[9]. In this arrangement, the diverted plasma particles can be
recycled and pumped in order to reduce impurity levels in the
plasma. In an ideal tokamak, the separatrix is a sharp surface,
but asymmetries in the equilibrium field create a layer of
chaotic field lines between the last confining surface and the
separatrix [10], [11]. Another type of ergodic divertor uses a
region of chaotic field lines in the plasma edge. Open field lines
that hit the divertor plates guide plasma particles to the wall
[5]. Both divertor concepts aim to control anomalous plasma
edge transport and improve the confinement quality. Since a
nonsymmetric magnetic field configuration may be described
as a one and a half degree of freedom Hamiltonian system, the
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field line behavior due to an ergodic divertor is near-integrable,
and has been intensively studied by means of Hamiltonian
maps in tokamaks [5], [12], as well as in Stellarators [13].

Like an ergodic divertor, a chaotic magnetic limiter (CML)
creates a “cold” boundary layer of chaotic magnetic field lines in
the peripheral region of the tokamak [14]. It has been argued that
suitably applied chaotic magnetic fields can enhance heat and
particle diffusion in this peripheral region of the tokamak vessel,
so as to uniformize these loadings on the metallic wall [15],
[7]. A design for the CML consists of one or more grid-shaped
coils of finite width and wound around the torus, each of them
with wires that conduct electrical currents in opposite senses
for adjacent segments. The magnetic field generated by such
configuration falls down rapidly with the distance from the wall,
and can interact with the equilibrium magnetic field in order to
create chains of magnetic islands in the peripheral region of the
torus.

Another scenario where chaotic field lines play a role in the
plasma behavior is the case of disruptive instabilities. Severe ob-
structions to the obtention of long lasting plasma confinement in
fusion devices are the existence of instabilities and anomalous
particle transport. An experimental method to artificially pro-
duce this chaotic region is the use of conductors wound exter-
nally around the device vessel wall in a suitable way [16]–[18].
An example is provided by resonant helical windings (RHW),
which are helical coils that create resonant magnetic perturba-
tion inside the plasma. Disruptive instabilities in tokamaks are
typically preceded by Mirnov oscillations, which are fluctua-
tions of the poloidal magnetic field that can be detected by mag-
netic probes [19]. The use of RHW has been proved to inhibit
these oscillations below a threshold value of the perturbation
[17], [20], [21]. An RHW creates a magnetic island structure
within the plasma column that hinders a rotation of the magneto-
hydrodynamical (MHD) modes. Magnetic islands are field line
structures of tubular shape that wind around the torus. A cross
section of these islands reveals a phase portrait (in Hamiltonian
maps) very similar to pendulum trajectories in phase space [22].

Minor, or soft disruptions can occur within the plasma in
the region comprising the main island and its satellites, leading
eventually to the loss of confinement. The creation of a thick
layer of chaotic magnetic field lines in this region is responsible
for these minor disruptions [16], [17], [23]. The onset of chaotic
behavior of magnetic field lines in a tokamak with RHW has
been studied by several authors [24]–[26]. The origin of chaotic
field lines is the interaction between magnetic islands produced
by the perturbing field on the equilibrium structure. An RHW
would cause destruction of part of the equilibrium magnetic sur-
faces if toroidal effects are taken into account, and if the pertur-
bation is strong enough [25].

Since the action of either an RHW, an ergodic divertor, or a
CML, is a symmetry-breaking perturbation of the equilibrium
magnetic configuration, the magnetic islands that appear in the
plasma due to their operation are expected to have a thin region
of chaotic field lines attached to the neighborhood of their sepa-
ratrices [22]. The generation of a thick chaotic region, essential
to the RHW or CML action, can be achieved by means of the
interaction between adjacent island chains. In the CML case,
due to the fast radial decrease of the perturbation field, only the

peripheral islands have a significant width. Therefore, the inner
region of the plasma column is not supposed to be noticeably
affected by a CML.

A theoretical description for the CML, using this conceptual
background, was pioneered by Martin and Taylor, who have pro-
posed a model in which the magnetic field line behavior is de-
scribed by a map [27]. This map has been later improved by the
addition of toroidicity effects, and considering a design for the
CML rings that reflects the actual paths followed by field lines
[28]. Hamiltonian descriptions for field line behavior have been
recently proposed for the CML [29], RHW [30], and ergodic di-
vertor [5].

An efficient design for an RHW or a CML depends on an
adequate choice of equilibrium and perturbing magnetic fields,
as well as a convenient coordinate system that evidences the
resonant effects [31]. Following a large number of field lines
through numerical integration of their differential equation typi-
cally requires a considerably large computer time, and is a rather
unsatisfactory way to determine how chaotic field lines behave
when model parameters are changed. To answer this and other
related questions, we would benefit from an analytically ob-
tained map for field lines. Early studies used the well-known
Chirikov–Taylor standard map [32], however this and other re-
lated twist maps may not be appropriate to model some other
features of field line behavior. Simple analytical maps were in-
troduced to describe separatrix chaos in a single-null [11] and
ergodic divertor [12]. Balescuet al. have proposed a general
class of Hamiltonian maps to describe a wide variety of field
line configurations [4], [33].

In this paper, we will describe in some detail how the equilib-
rium and nonsymmetric perturbing magnetic fields are obtained,
and how a Hamiltonian map can be derived by using these model
fields. For an RHW, we have obtained this map numerically.
Phase portraits are shown in order to evidence the creation of
a chaotic field line region. For a CML, we were able to obtain
analytically the map, by using as a tool a Hamiltonian formula-
tion for field line flow. The methods here exposed, however, are
not restricted to the specific models we use and may be adapted
to consider other related situations in which there is an external
magnetic perturbation, like error fields.

The toroidicity of the equilibrium plasma configuration puts
some restrictions on the use of common toroidal coordinates,
since it is desirable that coordinate surfaces should coincide
as much as possible with actual magnetic surfaces of the
equilibrium field. A coordinate system devised to deal with
this problem was proposed by Kucinski and Caldas [34]. The
tokamak equilibrium field will be obtained as an approximate
analytical solution, in this coordinate system, of an elliptic
partial differential equation for the poloidal magnetic flux,
in an ideal MHD equilibrium theory. The perturbing EML
fields will be obtained through an explicit solution of the
Laplace equation, supposing they are vacuum fields. The total
magnetic field will be the superposition of these fields, which
is justifiable when the plasma response is negligible. This turns
to be the case in the majority of situations, except for states of
marginal stability, that are not considered in this work.

This paper is organized as follows: in Section II, we present
the equilibrium magnetic field calculation by solving the corre-
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sponding MHD equilibrium equation. Section III is devoted to
the obtention of the perturbing magnetic field due to an RHW,
showing numerically obtained maps. In Section IV, we derive
the magnetic field due to a CML, and show how to build an an-
alytical area-preserving map for field lines. The last section is
left for our conclusions. An Appendix is included on the coor-
dinate system used in this work.

II. TOKAMAK EQUILIBRIUM MAGNETIC FIELD

We suppose that the tokamak plasma is in a state of static
MHD equilibrium. By using the ideal MHD equations, we have
that [2]

(1)

where
plasma equilibrium electric current density;
magnetic field;
kinetic pressure.

Taking the dot product of (1) with results in

(2)

such that the equilibrium magnetic field lines lie on constant
pressure surfaces with topology of nested tori, known asmag-
netic surfaces.

Instead of the pressure, we may label these surfaces with other
surface quantities, like the poloidal magnetic flux, defined
as the flux of through a ribbon from the magnetic axis to a
coordinate curve. In this way, we may rewrite (2) in the form

(3)

Equations (1) and (3) show that all points of a magnetic surface
the plasma pressure must be counterbalanced by the Lorentz
force. The existence of magnetic surfaces may be regarded
as a necessary, albeit not sufficient, condition for plasma
confinement. In addition, to present closed magnetic surfaces
the system must have some spatial symmetry.

There are many coordinate systems to describe magnetic field
lines in a tokamak [35], its choice being dictated by the sym-
metries exhibited by the system. For the so-called local coor-
dinates that are a kind of cylindrical coordinates with
toroidal curvature, the coordinate surfaces const. hardly
coincide with actual equilibrium magnetic surfaces. A better
choice would be the toroidal coordinates , but their co-
ordinate surfaces are not suitable as well. We have used in this
paper a polar toroidal coordinate system [34] which,
in the large aspect ratio limit, reduces to the local system. Fur-
ther details about these coordinate systems are found in the Ap-
pendix.

Consider a field line in a tokamak where denotes the ra-
dius of the magnetic axis, that is shifted with respect to the geo-
metric major due to a toroidicity effect (Shafranov shift).
The tokamak minor radius is denoted by. The spatial sym-
metry is with respect to the azimuthal angle, and the mag-
netic surface labels depend only on the remaining coordinates,
as the poloidal flux . The MHD equations

may be used to derive an elliptic partial differential equation for
the equilibrium poloidal magnetic flux, which bears the names
of Grad, Shafranov, and Schlüter, who have derived it in the
late 1950s [2]. The corresponding equation in the polar toroidal
system is [36]

(4)

where is the toroidal component of the equilibrium plasma
current density, given by

(5)

where is the poloidal current function, that is
the current density flux through the same surface used in the
definition of .

The equilibrium magnetic field contravariant components, in
terms of the surface functions and , are

(6)

(7)

(8)

where

(9)

Closed form solutions to the Grad–Schlüter–Shafranov equa-
tion are relatively rare, especially in the coordinate system used
here. Hence, we will look for an approximate solution

(10)

where . We expand and in powers
of and retain first-order terms only. In the large aspect ratio
limit , and supposing that in lowest order the solu-
tion does not depend on, (4) reduces to the equilibrium
equation in a cylindrical geometry. The intersections of mag-
netic surfaces const. with a toroidal plane are
not concentrical circles, but present a Shafranov shift toward the
exterior equatorial region.

To solve (4), we need to assume spatial profiles for both the
pressure and current function . In lowest order, however, it
is sufficient to assume a single profile for the toroidal current
density , as given by (5) in terms of and . So, we choose
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a peaked current profile, commonly observed in tokamak dis-
charges [2], and given by

(11)

where
total plasma current;
plasma column radius;
positive constant.

This results in

(12)

where

(13)

and

(14)

where is the dimensionless ratio between kinetic and mag-
netic pressures. It turns out that is an asymmetry
factor for the poloidal magnetic field, given by

(15)

where is the normalized internal plasma inductance by unit
length [1].

In lowest order, we have found the following (contravariant)
equilibrium magnetic field components

(16)

(17)

(18)

where is the external current that generates the equilibrium
toroidal field. It is related to the poloidal current functionin
(5) by

(19)

which gives for large aspect ratio.
Magnetic field lines of the equilibrium field spiral on mag-

netic surfaces const. Their helical paths are described
by the so-calledsafety factor , that gives the av-
erage poloidal angle swept by the field line after one complete

Fig. 1. Cross section (at' = 0) of some equilibrium magnetic surfaces of a
tokamak plasma, withb =R = 0:36, 
 = 3:0 andq � 1 at the magnetic axis.

toroidal turn. Consider the differential equations for the field
lines in polar toroidal coordinates

(20)

The poloidally averaged safety factor is given by [1]

(21)

Using (17) and (18) in (21), results in

(22)

where

(23)

In the following, we will choose at the magnetic axis and
at plasma edge ( ). We also normalize lengths

to the minor radius and choose parameters so that
and , which are values typical for tokamak

discharges [21], [18].
In Fig. 1, we show, in a surface of section , magnetic

surfaces for the equilibrium field. The magnetic surfaces are
nested tori, and we may see a Shafranov shift of the magnetic
axis (which is a degenerate zero-volume torus at) with
respect to the geometric axis at the origin (at ),
which appears due to the toroidal geometry [2]. Since the
zeroth- and first-order results practically coincide, we will
use in this work only the zeroth-order flux . Fig. 2
presents radial profiles for the poloidal [Fig. 2(a)] and toroidal
[Fig. 2(b)] equilibrium field components, using the same
parameters as in Fig. 1, as well the corresponding safety factor
parabolic profile [Fig. 2(c)]. The poloidal field component is
roughly symmetric with respect to the geometric axis, and the
corresponding asymmetry factor is not very large. The
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Fig. 2. Radial profiles for: (a) normalized poloidal equilibrium field; (b) normalized toroidal equilibrium field; (c) safety factor of a tokamak. In (c), we show
both the zeroth-(dashed line) and first-order (full line) results. Tokamak parameters are the same as in Fig. 1.

toroidal component is stronger in the internal part of the torus,
since the coils that generate it are more densely packed there.
Fig. 2(c) shows two safety factor profiles, calculated by taking
into account or neglecting first order corrections. Both have
considered the toroidal geometry; the difference is noticeable
only at the plasma edge and results in a slight magnetic surface
displacement.

III. PERTURBING MAGNETIC FIELD DUE TO RESONANT

HELICAL WINDINGS

It has been conjectured that disruptive instabilities may result
from topological changes in the magnetic surface with safety
factor [17]. An RHW may be used to produce a
resonant external perturbation with suitably chosen mode num-
bers, in order to investigate the onset of this instability and how
it could be controlled. The use of RHW with other mode num-
bers may control topological changes on other rational magnetic
surfaces, like those with [16] and [21].
In Fig. 3, we present a scheme for an RHW with mode num-
bers and , consisting of a pair of thin wires
conducting a current (in opposite senses for each conductor),
wound around the tokamak wall at . A helical coil
closes on itself after four turns along the toroidal direction and
one turn along the poloidal direction. The design of an RHW
needs to take into account the effects of the toroidal geometry.
While in a cylindrical approximation the helical pitch is con-
stant, adding toroidicity we find that the pitch is not uniform

due to the behavior of the toroidal field component, which is
stronger in the inner part of the torus [see Fig. 2(b)].

Hence, we use a winding law to best emulate the actual paths
followed by magnetic field lines, introducing a tunable param-
eter , such that the variable

(24)

is constant along a given helical winding [28]. We consider a
pair of RHWs, located at and , respectively. In
the next section we will see how to choose an appropriate value
for , taken into account the resonant perturbation to be excited.

Since the penetration time of the metallic tokamak wall is
very short (tens of microseconds for typical millisecond plasma
discharges), we will neglect its role in the obtention of the mag-
netic field generated by an RHW, described by the singular
surface current density

(25)

where is the basis vector corresponding to the angle given
by (24) (see Fig. 3). The boundary condition to be applied at the
wall is

(26)

where

(27)
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Fig. 3. Scheme of a pair of resonant helical windings with(m ; n ) = (4; 1) in a tokamak.

Neglecting the plasma response to the field generated by an
RHW, it may be considered a vacuum field, so that it is given
by , where is a magnetic
scalar potential satisfying Laplace equation. In the polar toroidal
coordinate system used here it reads

(28)

which may be formally written as an expansion in powers of the
inverse aspect ratio

(29)

where we defined the differential operators

(30)

(31)

(32)

with .
Likewise, we may expand the magnetic scalar potential as

(33)

so that, up to first-order terms, the scalar potential is given by
the following coupled system of partial differential equations

(34)

(35)

The general solution of (34) is known to be [37]

(36)

where

for ,

for .
(37)

Applying the boundary condition (26) it turns out that the lowest
order term is given by

(38)

for both internal (upper signal) and external (lower signal) re-
gions, and is the Bessel function ofth order. Since the
expansion coefficients fall down rapidly to zero asincreases,
only the term is relevant in (38). By a similar reason, we
conclude that if suffices to consider only those terms for which

in the second summation. With such simplifications,
the scalar potential produced by an RHW is

(39)
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The second coupled equation (35) is nonhomogeneous, so that
its solution may be written as

(40)

where a particular solution is

(41)

whose coefficients are

(42)

On the other hand, the general solution of the corresponding
homogeneous equation is

(43)

where

for

for .
(44)

The coefficients are obtained by using (26) again, and
solving a system of algebraic equation, resulting in

(45)

(46)

Combining the zeroth- and first-order solutions in (29), we may
write the contravariant components of the magnetic field gener-
ated by an RHW

(47)

(48)

(49)

in which we retained first order powers of the inverse aspect
ratio . Notice, however, that the zeroth order term already
contains toroidal effects, since depends on both and [see
(89)]. It is useful to compare this result with that obtained in
the limit of cylindrical geometry. In this case, we neglect the

Fig. 4. Radial component of an RHW withI =I = 0:003, (m ; n ) =
(4; 1), and� = 0; 4826. (a) Poloidal profile, withr =a = 0:91; (b) radial
profile, with � = 5�=4.

Shafranov shift such that the magnetic axis coincides with the
geometric minor axis ; and the RHW has now a
uniform pitch , so that the helical variable is simply

. In this limit, (47)–(49) reduce to those ob-
tained in early works [38].

In Fig. 4(a), we show a poloidal profile of the radial compo-
nent of the field generated by an RHW with ,

, , and at a fixed radial position
. Other parameters are the same as those used

in Fig. 1. We note that the poloidal perturbing field in the in-
ternal region (low ) is smaller than in the external region due
to the effect of the toroidal curvature on the pitch of the RHW.
Fig. 4(b) shows a radial profile of the poloidally averaged radial
component, for similar parameters. It falls down rapidly when
the radius decreases, so that only the plasma edge region is ex-
pected to be noticeably affected by the perturbing helical field.

IV. FIELD LINE MAPPING FOR ATOKAMAK WITH RESONANT

HELICAL WINDINGS

A field line mapping is obtained by following the paths of a
given number of magnetic field lines and registering their in-
tersections with a specified const surface of section.
Hence, it is a “time”- stroboscopic sampling of the flow. The
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solenoidal character of the magnetic field implies that the mag-
netic flux through any closed curve on this plane must be con-
served, so that the field line mapping must be symplectic, or
area-preserving. In some cases, it turns to be possible to derive
an analytical form of the map equations, as we will see in the
next section for a CML. However, more often we have to solve
numerically the magnetic field line equations

, which is a very time-consuming computational task,
and poses a difficulty when one is investigating the long term
behavior of field lines, for studies of diffusivity and loss due to
collisions with the tokamak wall.

In this section, we will obtain such a map for the case of a
tokamak with RHW, using the model fields of the two preceding
sections. Initially, however, we will show how to compute the
parameter that appear in the winding law (24) of an RHW.
Using (20) and (22), the field line equations in the unperturbed
(equilibrium) configuration are

(50)

(51)

Denoting the initial conditions as , these
equations may be integrated to give, for arbitrary ,
the following relations:

(52)

(53)

where

(54)

(55)

This exact solution of the unperturbed case enables us to com-
pare the actual path of a field line at equilibrium with the path
followed by a constant pitch helix, in which
constant (Fig. 5). The difference between these paths is due to
the toroidal geometry effect. Since one is interested in the res-
onant effects, the design of an RHW should reflect the actual
path of the field lines, so we have to include this effect in the
corresponding winding law. This is accomplished by defining
another poloidal angle, as done by Boozer [32]

(56)

Fig. 5. Equilibrium magnetic field line path on a rational magnetic surface
with q = 4 : 1. The straight dashed lines correspond to a helix of constant
pitch.

which makes it possible to rewrite the winding law in the form
constant. Expanding (56) in Fourier se-

ries, and retaining only the lowest-order nonvanishing correc-
tion, we have for this new poloidal angle

(57)

where

(58)

which gives the winding law (24) with the appropriate value of
. In our case, since we are interested in obtaining a resonant

effect on the rational magnetic surface with , we need
an RHW with . This leads to , as
it was already used in Fig. 4.

We will consider the action of an RHW as a superposition
of the equilibrium (6)–(8) and perturbing fields (47)–(49), ne-
glecting the plasma response. This approximation works well,
provided we are far from marginal equilibrium states. The field
line equations in the presence of perturbation are now written in
the form

(59)

(60)

Unlike the unperturbed case, we can not find an analytical
solution for this set of differential equations, and we have to use
numerical integration (Bulirsch–Stoer method with Richardson
extrapolation [39]). We begin with a single initial condition

. Any time a field line passes through the
plane, we record the coordinates of the point and

repeat this process a large number of times, which generates an
orbit, or trajectory, in the dynamical systems language. Next,
we choose another initial condition, generate a new orbit, and
so on.
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(a)

(b)

Fig. 6. Phase portrait, in polar toroidal coordinates, of field lines for an RHW
with (m ; n ) = (4; 1), I =I = 0:001, and: (a)� = 0:4827; (b) � = 0.

In Fig. 6(a), we present a phase portrait of a
RHW in which the current is 0.1% of the total plasma

current, and , as given by (58). The Poincaré sec-
tion at was deformed to a rectangular shape for the sake
of clarity. We can identify many magnetic island chains over the
depicted portion of the plasma column (in fact, Hamiltonian dy-
namics ensures that there is an infinite number of these chains,
centered at all rational magnetic surfaces [22]). The main island
to be excited by the RHW is centered at a former magnetic sur-
face with safety factor equal to , consistently with the
mode numbers here chosen. Other noticeable islands have safety
factors 5 : 1, 3 : 1 and 2 : 1, for example. In order to see the ef-
fect of the parameter on the field line structure, we show in
Fig. 6(b) the same phase portrait, but with . It is apparent
that the number of sizeable island chains has been reduced in
this case. In particular, the 2 : 1 and3 : 1 islands have their widths
dramatically decreased. Hence, the use of a winding law such as
(24) enhances the resonant effect produced by an RHW.

The RHW current in Fig. 7(a) has been increased to 0.3% of
the plasma current and Fig. 7(b) is the corresponding case with
vanishing . We still see many island chains besides the main

(a)

(b)

Fig. 7. Phase portrait, in polar toroidal coordinates, of field lines for an RHW
with (m ; n ) = (4; 1), I =I = 0:003, and: (a)� = 0:4827; (b) � = 0.

4 : 1 one, but there are some differences. First, the islands’
widths have increased. In fact, by application of a Hamiltonian
perturbation theory, one finds that these widths increase as

[30]. Secondly, in the region near to the island sepa-
ratrix, there are thin area-filling portions where the field lines
are chaotic. Both facts are explained by standard results of
Hamiltonian dynamics, like the KAM and Poincaré–Birkhoff
theorems.

The fate of a magnetic surface, after the application of a
small perturbation, is basically determined by its safety factor
, which is the inverse of the winding number of the trajectories

lying on the surface [4]. If is an irrational number, and if
the perturbation is weak enough, the celebrated KAM theorem
states that most of these surfaces will survive, even though with
some deformation [22]. This is clearly seen in the remaining
surfaces that separate neighbor island chains, as in Fig. 6(a).
Now, if is a rational number, as the 4 : 1 chain just mentioned,
the Poincaré–Birkhoff theorem says that the corresponding
surface will disappear, leaving an even number of fixed points,
half of them stable and half unstable. The stable (or elliptic)
points are the centers of the islands, whereas the unstable (or
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hyperbolic) points are at the crossings of their separatrices.
However, after the application of a nonsymmetric perturbation,
it may be proven that these separatrices will intercept each
other an infinite number of times (homoclinic crossings)
forming a region of chaotic dynamics there, in the sense that
the corresponding Lyapunov exponent is positive [40].

In Fig. 6(b), we may already see such a region of limited
chaotic motion in the neighborhood of the separatrices of the
4 : 1 island chain. The other chains have their own chaotic re-
gions, but they are not so evident, either due to their small widths
or the initial conditions used in the phase portrait failed to gen-
erate an orbit in the chaotic region. As long as the perturbation
is small enough, however, these locally chaotic regions are sep-
arated from each other by surviving magnetic surfaces, and the
radial excursion of field lines is naturally limited by them. On
the other hand, as the perturbation strength increases, the is-
lands’ widths also increase, and the surviving surfaces are pro-
gressively engulfed by locally chaotic regions belonging to ad-
jacent island chains, as illustrated in Fig. 7(a) and (b). The ad-
jacent island chains over a given region may be so large that the
entire region around them is filled with chaotic field lines. This
eventually leads to a globally chaotic region where large-scale
chaotic excursions are possible. In the limit of very large per-
turbation strength, even the elliptic points in the islands’ centers
may lose their stability and bifurcate, generating other periodic
orbits.

V. FIELD LINE MAPPING DUE TO A CHAOTIC

MAGNETIC LIMITER

The nonsymmetric character of the magnetic field generated
by an RHW is due to the toroidal effect on the former helical
symmetry. This breaks the integrability (in the Hamiltonian
sense) of the equilibrium configuration, thus leading to all the
consequences mentioned in the last section, the most important
to us being the generation of chaotic field lines. Remember that,
from the point of view of reducing plasma-wall interactions, it
would be useful to create such a chaotic region in the peripheral
region of the plasma column. In principle, this is feasible by
using an RHW with appropriate values of , as the 4 : 1
case here studied. However, the mounting of such windings on
a tokamaks is sometimes difficult, because of the large number
of windows for diagnostic purposes along the tokamak wall.
This has led to the concept of a CML [27].

The CML design consists of one or more slices of an RHW
with adequate mode numbers, located in suitable positions along
the torus. Hence, a CML is quite different from an RHW, in the
sense that in the former the perturbing field will break the ax-
isymmetry due to an explicit -dependence. On the other hand,
for some ergodic divertors the-symmetry is broken by coils
wound around the torus over a limited poloidal range

[5]. In the following, we will consider a CML with
current rings located symmetrically along the toroidal cir-

cumference of the tokamak, each of them being a slice of length
of an RHW with mode numbers , and a winding law

given by (24) (Fig. 8). Ignoring, at first, the finite extension of
the CML rings, the magnetic field produced by such a con-
figuration was already derived in Section III. Here, it is conve-
nient to express it using the vector potential: .

Fig. 8. Scheme of a chaotic magnetic limiter in a tokamak. In detail, we show
the design of a single ring.

Here, only the lowest order solution is necessary, since for a
CML with small length , one may neglect all toroidal effects
on the field it generates. From (41) and (43), we have that the
vector potential component of interest is

(61)

from which the CML contravariant field components are given
by

(62)

(63)

and the model field will be the superposition between the equi-
librium and limiter fields: .

The magnetic field line equations (20) are, thus

(64)

(65)

where is the toroidal magnetic field on the
magnetic axis.

In order to use a Hamiltonian formulation for the field line
flow, we shall define canonical action and angle variables. The
canonical angle will be the-variable defined in (56), whereas
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its conjugate action will be defined in terms of the normalized
toroidal magnetic flux

(66)

where . Note that for any
. Expanding this action in powers of the aspect ratio gives,

for the lowest order, the variable used in related works [30].
The time-like variable will be the ignorable coordinate .

The field line equations (59) and (60) may be cast in a canon-
ical form [3]

(67)

(68)

with the Hamiltonian

(69)

However, it turns out that the length of each limiter ringis
just a small fraction of the toroidal circumference . If
is small enough, we can model the CML effect as a sequence
of delta-functions centered at each ring position [29]. So, we
suppose the following Hamiltonian of the tokamak with a CML

(70)

where and are the same as in (69).
Unlike the RHW case previously studied, the impulsive char-

acter of the perturbation enables us to analytically obtain a field
line map. In this work, we will ensure the symplectic nature of
the map by using explicit canonical action-angle variables. Ac-
cordingly, we define and as the action and angle vari-
ables, respectively, at theth crossing of a field line with the
plane , with
[41]. Viana and Caldas have used local coordinates to derive
such a map [42], which was later improved by Ullmann and
Caldas by the use of a generating function [43], since the map

may be regarded as a canonical
transformation.

Integrating the Hamilton equations (67) and (68) for the
CML, Hamiltonian (70) gives the following area-preserving
mapping for the near-integrable system

(71)

(72)

(73)

where the dimensionless perturbation parameter is

(74)

One should note, however, that there is no rigorous derivation
of the map (71)–(73) from the Hamiltonian function (70) be-
cause the integration along the delta functions is not well de-
fined. A general perturbative procedure of construction of sym-
plectic maps for Hamiltonian systems of the type (70) has been
recently developed [44], [12].

Combining the perturbing field (61) with the limiter Hamil-
tonian (70) results as

(75)

with coefficients given by

(76)

and is obtained by inverting (66). It is useful to expand
in a Fourier series the perturbing Hamiltonian in action-angle
variables

(77)

where the corresponding coefficients are

(78)

in which we defined

(79)

with

(80)

(81)

if and

if and
or

if and

if and
(82)

and is given by (54).
Fig. 9(a) shows a phase portrait of the map (71)–(73) for a

CML with current rings, each of them with being a slice
of an RHW with and , carrying
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(a)

(b)

Fig. 9. Phase portrait, in canonical coordinates, of field lines for a CML with
N = 4 rings,(m ; n ) = (4; 1), � = 0:4827, and: (a)I =I = 0:0010;
(b) I =I = 0:0015.

a current of 1.0% of the plasma current. The tokamak equi-
librium parameters are the same as in the case of RHW, as con-
sidered in the previous sections. We see again a main
island chain at , which corresponds to a normalized
radius . This means that this island chain, and the
corresponding local chaotic region around its separatrix, is lo-
cated near the plasma edge. These main islands are surrounded
by satellite chains with and , which appear
due to the toroidicity effect.

The CML current has been raised to 1.5% of the plasma cur-
rent in Fig. 9(b), showing that, for this higher limiter current, the
4 : 1 and 5 : 1 chains have already partially overlapped, fusing
their chaotic regions into a large-scale chaotic layer that extends
over a larger peripheral portion of the plasma column. In both
cases, the chaotic region, although comprising the plasma edge
region, does not reach the tokamak wall, due to the existence
of many surviving magnetic surfaces in between. If we increase
further the limiter current, the chaotic region will become even
more pronounced, as we illustrate in Fig. 10(a) forequal to
2.5% of , but it still does not reach the wall.

(a)

(b)

Fig. 10. Phase portrait, in canonical coordinates, of field lines for a CML with
N = 4 rings,(m ; n ) = (4; 1), I =I = 0:0025, and: (a)� = 0:4827;
(b) � = 0.

It turns out that there is another and cheaper way to make the
chaotic region touch the inner wall, namely to set up .
In this case, with the same current as before, the chaotic region
reaches the wall [Fig. 10(b)]. Hence, a nonzerowould require
a higher limiter current for the operation of a CML. The positive
feature of choosing an appropriate is to obtain a chaotic
region that is concentrated around a main resonance (the 4 : 1
one, in our case), but for a wide peripheric chaotic region it
would be preferable to use .

VI. CONCLUSION

Since chaotic dynamics in general implies both irregular be-
havior and loss of predictability for large times, it would be a
bad feature of real systems and much effort could be necessary
to avoid, or at least control it. However, chaotic dynamics, if
properly used, may be a useful tool in plasma fusion machines.
We have explored in this paper two aspects of this idea. In the
situations investigated in this paper, chaotic magnetic field line
behavior is generated by nonsymmetric magnetostatic perturba-
tions applied on the tokamak equilibrium field. We have consid-
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ered a tokamak equilibrium model magnetic field which is quite
realistic in the sense that it uses the following:

1) proper geometry (polar toroidal coordinates);
2) self-consistent treatment for the equilibrium magnetic

field (it is obtained by solving an equilibrium MHD
equation);

3) plasma current profile that is compatible with results of
tokamak experiments.

The first type of nonsymmetric perturbation we study is due
to RHW, whose main goal is to create a region of chaotic field
lines in the plasma column, with the purpose of studying minor
disruptive instabilities. The magnetic field generated by RHW
was analytically obtained through solving Laplace equation in
polar toroidal coordinates. A distinctive characteristic of our
model is the presence of a winding law for RHW, which re-
produces the actual paths of equilibrium field lines and gives an
enhanced resonant effect. Our results were shown in the form
of a field line map obtained by numerical integration of the cor-
responding equations. Furthermore, it is possible to obtain, in
terms of action-angle variables, a Hamiltonian formalism by
considering lowest order terms only.

The second perturbation type is due to a CML, which consists
of external current rings, designed so as to create a chaotic field
line region in the peripheral region of the plasma column, with
the purpose of controlling plasma-wall interactions. The field
line Hamiltonian for this system was obtained by supposing a
sequence of delta-function pulses, and the map was analytically
determined. It satisfies the necessary conditions described by
Balescu [4] for a consistent description of field line behavior: 1)
it is a symplectic map in the sense that the Hamiltonian structure
of the field line equations is reflected in the map, since it is
written in terms of action-angle variables; and 2) it is compatible
with toroidal geometry, since our action variableis always a
nonnegative number, i.e., a field line starting on the magnetic
axis may either remain on the axis or move to a positive,
but never to a negative . We remark that the second condition
is not fulfilled by the Chirikov–Taylor standard map [40], for
example.

A similar procedure was followed by Abdullaevet al. to ob-
tain a symplectic map that describes the dynamics of an ergodic
divertor in a toroidal system [12]. Our map for CML has proven
to be useful to study problems that need long term integration of
field line equations, like diffusion and bifurcation effects [45].
We have shown that an adequate choice of CML parameters may
create this chaotic region in the plasma edge region. When a
chaotic field line escapes from the plasma region and enters the
vacuum region that surrounds the plasma, it will eventually col-
lide with the wall, resulting in a loss of field lines. A detailed
study of field line diffusion in the plasma edge, and the ques-
tion of how field lines are lost due to collisions, is addressed in
another paper to be published elsewhere [46].

APPENDIX

Here, we describe the polar toroidal coordinate system used
in this paper to describe both equilibrium and perturbing fields.
A cylindrical system may be used to describe the
tokamak, in which the symmetry () axis is the major axis of

Fig. 11. Coordinate surfaces of the polar toroidal coordinate system, at a
' = 0 section.

the torus, is the radial distance from this axis, andis the
azimuthal angle (see Fig. 1). The local coordinates are
related to these variables by the following:

(83)

The toroidal coordinates are defined as [47]

(84)

in such a way that the coordinate surfaces on which const
are tori with minor radii , and major radii

.
The polar toroidal coordinates may be defined in

terms of the toroidal coordinates by the following [34]:

(85)

The const. curves have a pronounced curvature in the inte-
rior region of the torus, from where we start counting poloidal

angles. In Fig. 11, we depict some coordinate surfaces of
this system.

The contravariant basis vectors are

(86)
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and the contravariant metric tensor elements are

(87)

where

(88)

and . Since there are nonvanishing off-diagonal ele-
ments, this is a nonorthogonal system.

The relations between local and polar toroidal coordinates are

(89)

(90)

showing that the polar toroidal coordinates tend to the local ones
in the large aspect ratio limit .

ACKNOWLEDGMENT

I. L. Caldas wishes to thank S. McCool and W. A. Craven,
University of Texas at Austin, for the useful discussions and
valuable suggestions about CML design.

REFERENCES

[1] J. Wesson,Tokamaks. Oxford, U.K.: Oxford Univ. Press, 1982.
[2] J. P. Friedberg,Ideal Magnetohydrodynamics. New York: Plenum,

1987.
[3] K. J. Whiteman, “Invariants and stability in classical mechanics,”Rep.

Prog. Phys., vol. 40, pp. 1033–1069, 1977.
[4] R. Balescu, M. Vlad, and F. Spineanu, “Tokamap: A Hamiltonian twist

map for magnetic field lines in a toroidal geometry,”Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 58, p. 951, July 1998.

[5] S. S. Abdullaev, K. H. Finken, A. Kaleck, and K. H. Spatschek, “Twist
mapping for the dynamics of magnetic field lines in a tokamak ergodic
divertor,” Phys. Plasmas, vol. 5, p. 196, 1998.

[6] J. P. Morrison, “Magnetic field lines, Hamiltonian dynamics and non-
twist systems,”Phys. Plasmas, vol. 7, p. 2279, June 2000.

[7] S. C. McCoolet al., “Electron thermal confinement studies with applied
resonant fields on TEXT,”Nucl. Fusion, vol. 29, p. 547, 1989.

[8] P. Ghendrih, A. Grosman, and H. Capes, “Theoretical and experimental
investigations of stochastic boundaries in tokamaks,”Plasma Phys. Con-
trol. Fusion, vol. 38, pp. 1653–1724, Oct. 1996.

[9] K. H. Finken, Ed., “Special issue on dynamic ergodic divertor,” inFu-
sion Eng. Des., 1997, vol. 37, p. 335.

[10] A. Punjabi, A. Verma, and A. Boozer, “Stochastic broadening of the
separatrix of a tokamak divertor,”Phys. Rev. Lett., vol. 69, p. 3322, Dec.
1992.

[11] A. Punjabi, H. Ali, and A. Boozer, “Symmetric simple map for a
single-null divertor tokamak,”Phys. Plasmas, vol. 4, p. 337, 1997.

[12] S. S. Abdullaev, K. H. Finken, and K. H. Spatschek, “Asymptotical and
mapping methods in study of ergodic divertor magnetic field in a toroidal
system,”Phys. Plasmas, vol. 6, p. 153, Jan. 1999.

[13] H. Wobig, “Magnetic surfaces and localized perturbations in the Wen-
delstein VII–A Stellarator,”Z. Naturforsch., vol. 42a, pp. 1054–1066,
Oct. 1987.

[14] F. Karger and F. Lackner, “Resonant helical divertor,”Phys. Lett. A, vol.
61, pp. 385–387, June 1975.

[15] W. Engelhardt and W. Feneberg, “Influence of an ergodic magnetic lim-
iter on the impurity content in a tokamak,”J. Nucl. Mater., vol. 76/77,
p. 518, 1978.

[16] D. C. Robinson, “Ten years of results from the TOSCA device,”Nucl.
Fusion, vol. 25, pp. 1101–1108, 1985.

[17] Pulsator Team, “The Pulsator tokamak,”Nucl. Fusion, vol. 25, p. 1059,
1985.

[18] A. J. Wootton, B. A. Carreras, H. Matsumoto, K. McGuire, W. A. Pee-
bles, C. P. Ritz, P. W. Terry, and S. J. Sweben, “Fluctuations and anoma-
lous transport in tokamaks,”Phys. Fluids, vol. 2, p. 2879, 1990.

[19] I. H. Tan, I. L. Caldas, I. C. Nascimento, R. P. Silva, E. K. Sanada, and R.
Bruha, “Mirnov oscillations in a small tokamak,”IEEE Trans. Plasma
Sci., vol. PS-14, pp. 279–281, Mar. 1986.

[20] K. M. McGuire and D. C. Robinson, “Magnetic islands and disruptions
in a tokamak,” inProc. 9th Eur. Conf. on Controlled Fusion and Plasma
Physics, vol. 1, 1979, p. 93.

[21] A. Vannucci, I. C. Nascimento, and I. L. Caldas, “Disruptive instabilities
in the discharge of the TBR-1 tokamak,”Plasma Phys. Control. Fusion.,
vol. 31, pp. 147–156, 1989.

[22] A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic Dynamics,
2nd ed. Berlin, Germany: Springer-Verlag, 1992.

[23] A. Vannucci, O. W. Bender, I. L. Caldas, I. C. Nascimento, I. H. Tan,
and E. K. Sanada, “Influence of resonant helical windings on the
Mirnov oscillations in a small tokamak,”Nuovo Cimento D, vol. 10,
pp. 1193–1198, 1988.

[24] J. M. Finn, “The destruction of magnetic surfaces in tokamaks by current
perturbations,”Nucl. Fusion, vol. 15, p. 845, 1975.

[25] A. S. Fernandes, M. V. A. P. Heller, and I. L. Caldas, “The destruction of
magnetic surfaces by resonant helical windings,”Plasma Phys. Control.
Fusion, vol. 30, pp. 1203–1211, Oct. 1988.

[26] L. H. A. Monteiro, V. Okano, M. Y. Kucinski, and I. L. Caldas, “Mag-
netic structure of toroidal helical fields in tokamaks,”Phys. Lett. A, vol.
193, pp. 89–93, 1994.

[27] T. J. Martin and J. B. Taylor, “Ergodic behavior in a magnetic limiter,”
Plasma Phys. Control. Fusion, vol. 26, pp. 321–340, 1984.

[28] X. Y. Yu and J. S. DeGrassie, “Mapping techniques for the GA ergodic
magnetic limiter experiment on TEXT,” Fusion Res. Center, Austin, TX,
Univ. Texas Rep. FRC-292, Nov. 1986.

[29] R. L. Viana and D. B. Vasconcelos, “Field-line stochasticity in a tokamak
with an ergodic magnetic limiter,”Dyn. Stab. Syst., vol. 12, pp. 75–88,
Feb. 1997.

[30] R. L. Viana, “Chaotic magnetic field lines in a tokamak with resonant
helical windings,”Chaos Solitons Fractals, vol. 11, pp. 765–778, May
2000.

[31] W. A. Craven, “Resonant external magnetic perturbations in the Texas
experimental tokamak,” Ph.D. dissertation, Report FRCR-489, Fusion
Research Center, University of Texas at Austin, 1996.

[32] A. Boozer and A. B. Rechester, “Effect of magnetic perturbations on
divertor scrape-off width,”Phys. Fluids, vol. 21, pp. 682–680, 1978.

[33] R. Balescu, “Hamiltonian nontwist map for magnetic field lines with
locally reversed shear in toroidal geometry,”Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 58, p. 3781, Sept. 1998.

[34] M. Y. Kucinski and I. L. Caldas, “Toroidal helical fields,”Z. Natur-
forsch., vol. 42a, pp. 1124–1132, 1987.

[35] W. D. D’haeseleer, W. N. G. Hitchon, J. D. Callen, and J. L. Shohet,
Flux Coordinates and Magnetic Field Structure. Berlin, Germany:
Springer-Verlag, 1991.

[36] M. Y. Kucinski, I. L. Caldas, L. H. A. Monteiro, and V. Okano, “Toroidal
plasma equilibrium with arbitrary current distribution,”J. Plasma Phys.,
vol. 44, pp. 303–311, Oct. 1990.

[37] J. D. Jackson,Classical Electrodynamics, 2nd ed. New York: Wiley,
1975, pp. 75–78.

[38] A. I. Morozov and L. S. Solov’ev, “The strucutre of magnetic fields,” in
Reviews of Plasma Physics, M. A. Leontovich, Ed. New York: Con-
sultants Bureau, 1966, vol. 2, pp. 1–100.

[39] W. H. Press, S. A. Teukolsky, W. T. Wettering, and B. P. Flannery,
Numerical Recipes in Fortran, 2nd ed. Cambridge, U.K.: Cambridge
Univ. Press, 1992, pp. 718–727.

[40] B. V. Chirikov, “A universal instability of many dimensional oscillator
systems,”Phys. Rep., vol. 52, pp. 265–379, 1979.

[41] I. L. Caldas, J. M. Pereira, K. Ullmann, and R. L. Viana, “Magnetic
field line mappings for a tokamak with ergodic limiters,”Chaos Solitons
Fractals., vol. 7, pp. 991–1010, July 1996.

[42] R. L. Viana and I. L. Caldas, “Peripheral stochasticity in tokamaks—The
Martin–Taylor model revisited,”Z. Naturforsch., vol. 47a, pp. 941–944,
1982.

[43] K. Ullmann and I. L. Caldas, “A symplectic mapping for the ergodic
magnetic limiter and its dynamical analysis,”Chaos Solitons Fractals,
vol. 11, pp. 2129–2140, Oct. 2000.

[44] S. S. Abdullaev, “A new integration method of Hamiltonian systems by
symplectic maps,”J. Phys. A, Math. Gen., vol. 32, pp. 2745–2766, Apr.
1999.



DA SILVA et al.: THE STRUCTURE OF CHAOTIC MAGNETIC FIELD LINES IN A TOKAMAK 631

[45] E. C. da Silva, I. L. Caldas, and R. L. Viana, “Bifurcations and onset of
chaos on the ergodic magnetic limiter mapping,” Chaos Solitons Frac-
tals, submitted for publication.

[46] , “Field line diffusion and loss in a tokamak with ergodic magnetic
limiter,” Phys. Plasmas, vol. 8, pp. 2855–2865, June 2001.

[47] P. M. Morse and H. Feshbach,Methods of Theoretical Physics. New
York: McGraw-Hill, 1953, vol. 2.

Elton César da Silvawas born in 1966. He received
the B.S. degree in physics from the University of São
Paulo, São Paulo, Brazil, in 1990, and is currently pu-
rusing the Ph.D. degree.

He has been with the Technological Center of the
Brazilian Navy in São Paulo for the past six years. His
research interests include chaos theory and econo-
physics.

Iberê Luiz Caldas was born in Santos, Brazil, in
1948. He received the B.S. and Ph.D. degrees in
physics from the Institute of Physics of University
of São Paulo (IF-USP), São Paulo, Brazil, in 1970
and 1979, respectively.

In 1977–1979, 1983, 1984, and 1988, he was
a guest scientist at the Max-Planck-Institut fuer
PlasmaPhysik (Germany). Since 1995, he has been
a Full Professor at IF-USP. His research interests
include plasma physics and chaos.

Ricardo Luiz Viana received his B.S. degree in
physics from the Federal University of Parana,
Brazil, and the M.S. and Ph.D. degrees in physics
from the University of São Paulo, São Paulo, Brazil
in 1985, 1987, and 1991, respectively.

Since 1989, he has been a Professor of Physics at
the Federal University of Parana. In 1997, he was a
visiting scholar at the University Maryland, College
Park. His research interests include the area of chaos
applications in plasma physics.


