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Abstract

We proposed a simple feedback control method to suppress chaotic behavior in oscillators with limited power supply.

The small-amplitude controlling signal is applied directly to the power supply system, so as to alter the characteristic curve

of the driving motor. Numerical results are presented showing the method efficiency for a wide range of control

parameters. Moreover, we have found that, for some parameters, this kind of control may introduce coexisting periodic

attractors with complex basins of attraction and, therefore, serious problems with predictability of the final state the

system will asymptote to.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic behavior is a very common dynamical regime identified, during the last decades, in many dynamical
systems of interest in various fields like engineering [1,2], physics [3] and biochemistry [4], just to mention a
few. A dynamical system is said to be chaotic whenever its evolution is aperiodic and depends sensitively on
the initial condition. Due to these inherent difficulties for the prediction of the future state of the system,
chaotic behavior has usually been regarded as undesirable and thus to be strongly avoided, mainly in
mechanical systems designed for technological applications.

It turns out, however, that chaotic behavior, if properly handled, can be of practical interest in real-world
applications, since there is an infinite number of unstable periodic motions embedded in a chaotic attractor.
Among these infinite orbits, there may be some of them which, if properly stabilized, can yield an enhanced
system performance. The utility of chaotic motion would be thus linked to the means of control chaotic
motion in order to steer a trajectory toward such a periodic orbit.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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A major step toward the achievement of this goal occurred in 1990, when a chaos control procedure was
proposed by Ott et al. [5]. This procedure is known nowadays as the OGY method and has had a great impact
on nonlinear science. The OGY method consists on stabilizing a desired unstable periodic orbit embedded in a
chaotic attractor by using only a tiny perturbation on an available control parameter. This is in marked
contrast with usual control methods, as those used for periodic motions, for which tiny perturbations cause
only small-size effects.

The procedure introduced by the OGY method is based on the ergodic properties shared by chaotic
attractors. In fact, a chaotic attractor has an infinite number of unstable periodic orbits embedded in it and a
typical trajectory in the attractor eventually visits the neighborhood of each periodic orbit, regardless of how
small this neighborhood may be. Consequently, by controlling chaotic motion, the system can exhibit a
flexible performance by switching the time asymptotic behavior from one periodic orbit to another. This kind
of behavior can be desirable in a variety of applications, where one of these periodic orbits provides better
performance than others in a particular situation.

Another interesting chaos control strategy was proposed by Pyragas [6]. The Pyragas method also considers
the dynamical properties of a chaotic attractor to stabilize unstable periodic orbits. However, in this case the
method implementation requires a delayed feedback signal. After the appearance of OGY and Pyragas
methods, a wide variety of control chaos strategies was developed and verified experimental and numerically.

Recently, a new kind of feedback control method was proposed independently by Tereshko and co-workers
[7] and Alvarez-Ramirez et al. [8]. This method consists in suppressing chaos by using a small-amplitude
control signal, applied to alter the energy of a chaotic system so as to steer its trajectory to a stable periodic
orbit. As an example, it was considered that the double-well Duffing oscillator equation with a feedback signal
given by

€xþ 0:3 _x� xþ x3 ¼ 0:31 cosð1:2tÞ þ f ð _xÞ,

where f ðxÞ ¼ �0:06 tanhð2:0 _xÞ was chosen as the control function [7]. In a recent work we have applied this
control technique to suppress chaotic behavior in a chaotic impact oscillator [9].

These methods have been applied for systems whose energy sources are described by a harmonic function.
However, in several mechanical experiments the oscillator cannot be driven by systems whose amplitude and
frequency are arbitrarily chosen, since the forcing source has a limited available energy supply. Such energy
sources have been called non-ideal, and the corresponding system a non-ideal oscillator [10,11]. For this kind
of oscillator, the driven system cannot be considered as given a priori, but it must be taken as a consequence of
the dynamics of the whole system (oscillator and motor). In other words, a non-ideal oscillator is, in fact, the
combined dynamical system resulting from the coupling of a passive oscillator and an active oscillator which
serves as the driving source for the first one. The resulting motion will be thus the outcome of the dynamics for
the combined system. Strictly speaking, any forced oscillator would be non-ideal, since the driving must come
from a physical entity (as an external vibrator or an inbound unbalanced rotor fed by a motor) which has a
limited energy supply. Previous works were devoted to the stabilization of non-ideal oscillators using impact
dampers [12] and tuned liquid column dampers [13].

In this work, we employ the method of controlling chaos with a small-amplitude signal proposed in Refs.
[8,7] by applying it to a non-ideal oscillator. In our proposed method, the feedback signal is applied to the
power supply system instead of directly to the oscillator. In other words, the control function is not associated
with a velocity of the cart, as in the Duffing oscillator example considered in Ref. [7]. In our case, the function
is associated with a dynamical variable of the motor in such way that it represents a change in the a
characteristic curve of driven motor.

This paper is structured as follows: in Section 2 we describe the model equations for the oscillator with
limited power supply. Section 3 explores some aspects of the model dynamics from numerical simulations,
emphasizing the performance of the control method. Our conclusion is presented in Section 4.

2. Theoretical model

In the following we will consider the one-dimensional motion of a cart of mass M connected to a fixed frame
by a nonlinear spring and a dash-pot (viscous coefficient c) (Fig. 1). The nonlinear spring stiffness is given by
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Fig. 1. Schematic model of a non-ideal system.
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k1X � k2X 3, where X denotes the cart displacement with respect to some equilibrium position in the absolute
reference frame, and k1, k2 are positive elastic constants. The motion of the cart is due to an in-board non-
ideal motor with moment of inertia J and driving an unbalanced rotor. We denote by j the angular
displacement of the rotor, and model it as a particle of mass m attached to a massless rod of radius r with
respect to the rotation axis. Here ~E1 and ~E2 are damping coefficients for the rotor, which can be estimated
from the characteristic curve of the energy source (a DC motor) [12–14].

The motion of the cart is governed by the following equations [14]:

M
d2X

dt2
þ c

dX

dt
� k1X þ k2X 3 ¼ mr

d2j
dt2

sinjþ
dj
dt

� �2

cosj

" #
, (1)

ðJ þmr2Þ
d2j
dt2
¼ mr

d2X

dt2
sinjþ ~E1 � ~E2

dj
dt
þUð _jÞ, (2)

where Uð _jÞ is a controlling function which, in the spirit of Refs. [8,7], alters the oscillator energy to stabilize
chaotic oscillations into a desired periodic orbit. The difference between the method we adopt in this paper
and the OGY technique is that the periodic orbit which we aim to stabilize does not necessarily exist in the
unperturbed system (i.e., the periodic orbit needs not to be embedded in the uncontrolled chaotic attractor).

The general idea of the control method developed in Refs. [8,7] is that the transition to chaotic attractors, as
a system parameter is varied, increases the oscillator energy, averaged over a characteristic period. Many
chaotic attractors arise from period-doubling bifurcation cascades, and periodic orbits have higher averaged
energy the higher are their periods. Hence, the control strategy is to modify the oscillator energy by using the
controlling function Uð _jÞ so as to stabilize higher (lower)-energy period orbits by increasing (decreasing) the
averaged oscillator energy.

It is convenient to work with dimensionless positions and time, according to the following definitions:

X ! x �
X

r
, (3)

Y ! y �
Y

r
, (4)

t! t � t

ffiffiffiffiffiffi
k1

M

r
, (5)

in such a way that Eqs. (1) and (2) are rewritten in the following form:

€xþ b _x� xþ dx3 ¼ �1ð €j sinjþ _j2 cosjÞ, (6)
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€j ¼ �2 €x sinjþ E1 � E2 _jþ uð _jÞ, (7)

where the dots stand for differentiation with respect to the scaled time t, and the following abbreviations were
introduced:

b �
cffiffiffiffiffiffiffiffiffiffi

k1M
p ; d �

k2

k1
r2; �1 �

m

M
, (8)

�2 �
mr2

J þmr2
; E1 �

~E1M

k1ðJ þmr2Þ
; E2 �

~E2M

J þmr2

ffiffiffiffiffiffi
M

k1

r
, (9)

and the controlling function is given by

uð _jÞ ¼ �k tanhðZð _j� xÞÞ, (10)

where k, Z, and x are parameters characterizing the control through modification in the oscillator energy.
This choice of controlling function is not unique, but it must be compatible with dynamical requirements.

Firstly, in order to avoid undesirable instabilities stemming from the new dynamics, the control should be
represented by a bounded function of the velocities. We also require that uð _jÞ be an odd function of its
arguments. Finally, we choose u such that the control effect vanishes a for specific velocity. The tanh function
of Eq. (10) has been suggested in Ref. [7]. The control amplitude parameter k is varied so as to change the
averaged oscillator energy to values corresponding to desired stable periodic orbits.

3. Dynamical analysis of the non-ideal system with controller

For numerical simulations, we fix the scaled parameter values as b ¼ 0:02, �1 ¼ 0:05, d ¼ 1:0, �2 ¼ 0:25,
E1 ¼ 2:1, and E2 ¼ 1:6. Fig. 2 shows phase portraits for the cart motion (velocity versus displacement of the
cart). When there is no control acting on the system, we found for this set of parameter values two coexisting
attractors in the phase plane: a periodic ðC1Þ and a chaotic one ðC2Þ. When the control is activated, the change
in the formerly existent periodic attractor ðC1Þ is practically not noticeable (this new periodic attractor is not
shown in Fig. 2). Nevertheless, the chaotic attractor is replaced by one of the two newborn periodic attractors
(represented in Fig. 2 by the black curves immersed in the chaotic attractor depicted in gray), named as D1

and D2, respectively.
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Fig. 2. Velocity versus displacement of the cart showing a chaotic attractor ðC2Þ and three periodic attractors (C1, D1, D2). Gray curves

represent the situation without control, whereas black curves refer to the application of a control function with parameters k ¼ 0:2,
Z ¼ 50:0 and x ¼ 1:3.
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In order to find appropriate values of the parameter x in Eq. (10) that specify the phase of our control
function, we plot in Fig. 3(a) the evolution of variable _j for the chaotic attractor C2 (shown in Fig. 2). From
our numerical tests we estimated that the parameter x should take on a value about 1:3, in order to assure that
the control function be effective. Thus, with this value of x, the energy source function, defined as

Mð _jÞ ¼ E1 � E2 _j� k tanh½Zð _j� xÞ�, (11)

can increase or decrease as required to keep the system under control.
In Fig. 3(b), we note the alteration of characteristic curve of the energy source (DC motor) due to control.

Without the control the motor oscillation can be described by a characteristic curve given by the evolution of
the energy source function M. This characteristic curve is changed by the feedback control, as shown in Fig.
3(b). This change depends on the chosen parameters k, Z, and x.

In order to characterize quantitatively the attractors involved in this study, we computed the Lyapunov
exponents by using Gram–Schmidt orthonormalization, as found in the Wolf–Swift–Swinney–Vastano
algorithm [15]. Fig. 4 shows the time evolution of the three largest Lyapunov exponents for the uncontrolled
chaotic attractor C2 (Fig. 4(a)) and the controlled periodic attractor D1 (Fig. 4(b)). As expected, for the
chaotic attractor, one of the Lyapunov exponents is a positive number, whereas for the periodic attractor,
there are no positive exponents. Table 1 contains all the stationary values of the Lyapunov exponents for these
four attractors.

Fig. 5(a) exhibits the basins of attraction of the uncontrolled attractors C1 and C2 shown in Fig. 2. The
basin of the periodic attractor, C1, is depicted in gray and the chaotic attractor, C2, in white, for a grid of
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Fig. 3. (a) Time evolution of the rotor velocity for the chaotic attractor shown in Fig. 2; (b) energy source function Mð _jÞ for the

uncontrolled (solid line) and the controlled case (dashed line) for the same parameters of the previous figure.
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Fig. 4. Time evolution of the three largest Lyapunov exponents for the attractors shown in Fig. 2, C2 (a) and D1 (b).
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Table 1

Lyapunov exponents for the non-ideal system

C1 C2 D1 D2

0.0005 0.1053 �0.0003 �0.0005

�0.1033 �0.0003 �0.0072 �0.0069

�0.1035 �0.1396 �0.0066 �0.0067

�1.4244 �1.5958 �10.9327 �10.9299

(a) (b)
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Fig. 5. Basins of attractors for the attractors shown in Fig. 2: (a) C1 (gray) and C2 (white); (b) C1 (gray), D1 (white) and D2 (black).
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400� 400 pixels. In this case, there are two distinct regions with a smooth boundary. When we applied the
control method, as mentioned before, the chaotic regime has been replaced by either one of the two previously
existent periodic regimes (D1 or D2, shown in Fig. 2), the periodic regime, C1, being kept practically
unchanged. Therefore, for the controlled system, there are three periodic attractors (D1, D2 and the modified
C1) whose basins of attractions are presented in Fig. 5(b).

The gray region depicted in Fig. 5(b) represents the basin of the modified attractor C1, and it turns out that
its overall aspect is similar to that attractor for the case without control. However, the filamentary extension in
the right side of Fig. 5(b) becomes larger than in the uncontrolled case, for which it is not visible in Fig. 5(a)
due to insufficient graphical resolution. In addition, as can be seen in Fig. 6, where a magnification of a small
box selected inside of Fig. 5(b), the basin structures of the periodic attractors, D1 and D2, are very complex
with a fractal boundary [16]. Consequently, there is an undesirable effect of the final-state sensitivity in the
phase space.

Figs. 7(a) and (b) present bifurcation diagrams in which the asymptotic dynamical state of the cart, after a
transient regime, is plotted against the parameters of the control function k and Z. As we can see, the control
function used in this paper works efficiently to suppress chaotic motion and steer the system dynamics to a
stable low-period attractor for wide ranges of the control function parameters.
4. Conclusions

We presented a procedure to suppress chaotic behavior in non-ideal oscillators using a small-amplitude
signal associated with the power supply in such a way that the control signal alters the characteristic curve of
the motor. This method is based in the fact that, altering the averaged energy of the oscillator, one can steer
the system trajectories from a chaotic attractor to a periodic orbit which would give improved system
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Fig. 7. Bifurcation diagram of the cart displacement in terms of the control parameters (a) k, for Z ¼ 50; (b) Z, for k ¼ 0:2.
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Fig. 6. Magnification of a portion of the Fig. 5(b) showing finer details of the basin structure.
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performance. In the application presented, the proposed method works efficiently for a large range of control
parameters.

However, as in other feedback controls, the control strategy used in this work may introduce coexisting
attractors whose basins of attraction form a complex structure. These complex basins introduce a certain
degree of unpredictability on the final controlled state. This may be a serious problem if one of the attractors
corresponds to an undesired behavior. To avoid that, the dynamics could be further explored to determine the
most appropriated phase space region, outside the complex basin structure, to start applying the feedback
control. Knowing this region would allow us to use a targeting method to improve the control efficiency. For
example, the control could be applied whenever the trajectory approaches the desired periodic attractor. In the
system considered in this work, this particular procedure could be easily followed.
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