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Abstract

A model for a new bidimensional sympletic mapping describing magnetic ®eld line trajectories in a tokamak perturbed by ergodic

magnetic limiter coils is presented. Numerical examples of these trajectories, computed for plasma described by large aspect-ratio

equilibria, simulate the main characteristics of trajectories in the toroidal geometry. Also the importance of the symplecticity of the new

mapping regarding certain features of non-linear dynamical analysis, for which a large number of iterations is necessary, is shown.

Thus, some standard algorithms, such as the Lyapunov exponents and the rotational transforms, are applied with precision in order to

characterize regular and chaotic regions in the parameter space, improving the study of bifurcations, routes to chaos, and di�usion in

this system. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Tokamaks have presented the best performance as magnetic con®nement devices for fusion applications.
However, for the necessary improvement in the performance of these machines, some technical di�culties
have to be solved. In particular, the presence of impurities in the plasma should be reduced to improve the
plasma con®nement [1,2]. The common sources of such impurities in tokamak plasmas are the heat and
particle loadings on the metallic chamber inner wall, causing impurity release by sputtering processes. To
avoid this problem, a cold boundary layer, induced by chaotic magnetic ®eld lines, has been used as a
plasma limiter, since it uniformizes these loadings, lowering the impurity levels within the plasma core [3,4].

The concept of an ergodic magnetic limiter was introduced in the late 1970s [5,6] and is based on the idea
that a chaotic boundary layer of ®eld lines could appear as a result of resonant magnetic disturbing ®elds
perturbing the equilibrium magnetic ®elds which contain the plasma. This magnetic ergodic limiter consists
of a grid-shaped coil wound around the tokamak vessel and conducting a current, generating these dis-
turbing ®elds [3,7].

This quite complex phenomenon can be well described by maps because the equation of the equilibrium
®eld lines (~B� d~l � 0) outside the in¯uence region of the ergodic magnetic limiter can be analytically in-
tegrated, with some minor approximations, and so we deal with a quasi-integrable system, once we consider
the in¯uence region of the limiter coils narrow enough, which is a good approximation as shown in [8].

Considering the tokmak as a toroidal chamber with major radius R0 and minor radius b (Fig. 1) we study
the magnetic ®eld line evolution analyzing a Poincar�e section which consists of a straight cut of the
tokamak vessel at the center of the ergodic magnetic limiter. The points where the ®eld line cuts this
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Poincar�e section are given in polar coordinates (r; h) with their origin located at the minor tokamak axis.
Numerical trajectories are computed considering a large aspect-ratio approximation (R0=b� 1) for the
plasma equilibrium. Even so, these trajectories simulate quite well the main characteristics of those com-
puted in exact toroidal geometry, as the poloidal asymmetry of the KAM magnetic surfaces and the typical
rotational transform radial pro®les observed in experiments [2].

Thus, the system considered in this work describes an experimental phenomenon which can be studied
with the aid of a mapping. In fact, low-dimensional mappings have been much used for studying non-linear
phenomena, such as sensibility to initial conditions and routes to chaos [9,10], in di�erent experimental
systems.

However, the study of non-linear phenomena in the system considered in this work, as well as in other
conservative systems, may require a large number of iterations for the convergence of the Lyapunov ex-
ponents and rotational transforms. Therefore, in order to compute these algorithms with precision, we
introduce in this work a symplectic mapping to compute the Poincar�e sections of the analyzed ®eld line
trajectories. Furthermore, by applying this mapping, we characterize the regular and chaotic regions in our
system and present results concerning the bifurcations and transition to chaos, in terms of relevant ex-
perimental control parameters and signi®cative initial condition sets.

Numerical examples are presented for typical parameters from the TBR-1 tokamak [8]. However, the
main conclusions obtained from these results can easily be extended to other tokamaks since all these
machines operate within the same relevant control parameter range used in the present analysis.

This paper is organized as follows: in Section 2 we study the previously existent models of the ergodic
magnetic limiter. In Section 3 we introduce our symplectic model for the mapping of the ®eld line tra-
jectories. Then we perform the dynamical analysis of the ®eld lines generated by our model, computing
Lyapunov exponents and rotational transforms [11,12] in Section 4. Section 5 is devoted to the analysis of
the model with varying initial conditions and parameters. Our conclusions are presented in Section 6.

2. The previous models

One of the ®rst models describing the magnetic ®eld line evolution in a tokamak vessel perturbed by
ergodic magnetic limiter coils is the Martin±Taylor mapping [13±15], which consists of two consecutive
bidimensional mappings. The ®rst mapping describes the evolution of the magnetic ®eld line along the
tokamak vessel (equilibrium ®eld) and is given by:

x�n � xn � syn; �1a�

y�n � yn; �1b�

where (xn; yn) are the rectangular coordinates of the initial position of the ®eld line in the Poincar�e plot,
(x�n; y

�
n ) the rectangular coordinates of the ®nal position, and

s � ÿ 2pb
q2

dq
dy

is the strength of the shear of the equilibrium ®eld (b is the minor tokamak radius and q�y� the safety factor
pro®le, which is related to the rotational transform i by q � 2p=i).

The second mapping describes the ®eld line evolution in the region of the di�user grid of `wavelength'
2pb=m with a current I in each wire of length l, and is given by

xn�1 � x�n ÿ peÿy�n cos x�n; �2a�

yn�1 � y�n � ln�cos�x�n ÿ peÿy�n cos x�n�� ÿ ln�cos x�n�; �2b�

where p � pm2lI=b2B0 measures the strength of the di�user relative to the toroidal ®eld (B0 is the intensity
of the toroidal ®eld, that is, the magnetic ®eld component along the tokamak camera). In most cases where
this mapping was analyzed the magnetic shear dq=dy was considered as being constant in the studied
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region, and in this case the mapping depends only on two dimensionless parameters p and s. It is also
important to observe that, as both cosecutive mappings have unitary Jacobians

o�x�n; y�n�
o�xn; yn�

�
� o�xn�1; yn�1�

o�x�n; y�n�
� 1

�
;

the whole mapping is area-preserving, and can be described in a Hamiltonian formulation.
Using this mapping to plot a Poincar�e section with constant parameters p and s (Fig. 2), we observe the

typical island chain structure with chaotic regions around the destroyed separatrixes and secondary island
chains around the main islands [16,17]. Although this model describes very well the qualitative behavior of
the magnetic ®eld line trajectories, it has some constraints, being the most important of them the total
neglect of toroidal e�ects, which are important in many tokamaks [18].

In order to include toroidal corrections, Viana and Caldas proposed a di�erent model for a mapping of
the magnetic ®eld lines in a tokamak under the in¯uence of ergodic magnetic limiter coils [14]. It consists
again of two consecutive mappings: one describing the evolution of the equilibrium ®eld lines, and the other
the in¯uence of the perturbation introduced by the ergodic magnetic limiter coils. In this case the per-
turbative ®eld is considered as being modulated by a delta-peak in the toroidal direction. This approxi-
mation may seem rather crude but comparisons with numerical integration over step-function models have
shown that it leads to very good results [8].

The mapping describing the equilibrium ®eld line evolution along the chamber is given by:

r�n � rn; �3a�

h�n � hn � 2pBh�rn�R0

rnB0

; �3b�

in the cylindrical case, and introducing a usual approximation of the toroidal ®eld correction in order to
take into account the equilibrium poloidal asymmetry

B/ � B0

1ÿ r
R0

cos h
�4�

Fig. 1. Essential tokamak geometry.

Fig. 2. Martin±Taylor mapping with p � 0:30 and s � 2p.
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we obtain the new angular equation with toroidal corrections

h�n � 2 arctan�k�rn� tan�X�rn� � arctan N�rn; hn��� � 2p; �5�

where R0 is the major tokamak radius and Bh�r� is the poloidal magnetic ®eld pro®le, which is related to the
safety factor by Bh�r� � B0r=R0q�r�. In order to describe the toroidal e�ects in (5) there were also de®ned
some dimensionless variables:

��rn� � r
R0

; �6a�

k�rn� � 1ÿ ��rn���������������������
1ÿ �2�rn�

p ; �6b�

X�rn� � pR0Bh�rn��1ÿ ��rn��
B0rnk�rn� ; �6c�

N�rn; hn� � k�rn� tan
hn

2

� �
: �6d�

The impulsive action of the ergodic magnetic limiter on the ®eld lines described by the mapping:

rn�1 � r�n ÿ bC
r�n
b

� �mÿ1

sin�mh�n�; �7a�

hn�1 � h�n ÿ C
r�n
b

� �mÿ2

cos�mh�n�; �7b�

where we de®ne the dimensionless constant C � l0mIl=B0pb2. Plotting Poincar�e sections of this mapping,
using the TBR-1 parameters (the main parameters are: R0 � 0:30m (major radius), b � 0:11m (minor ra-
dius), a � 0:08m (plasma radius), B0 � 0:50T (toroidal ®eld at magnetic axis), q�a� � 5 (safety factor at
plasma edge) and q�0� � 1 (safety factor at plasma core)) [19], and using a well-known empirical model for
the radial pro®le of the poloidal magnetic ®led

Bh�r� � �aBh�a�=r��1ÿ �1ÿ r2=a2�c�1� �0 < r < a�;
aBh�a�=r �a < r < b�;

�
�8�

(Fig. 3) we observe that for low limiter currents (Fig. 4a) the island chains and the general structure of the
Poincar�e plot are well described. But as we increase the limiter current (Fig. 4b) the small dissipative e�ects
become more important and although there are large regions of irregular ®eld lines, for small values for y,
these are not chaotic but are attracted to some island chain by the dissipative e�ects sooner or later. This
also results in more magnetic island destruction than expected, and so this model, although adequate for
the study of magnetic island chains at low limiter currents, cannot be used for the study at higher currents
and the dynamical analysis of chaotic ®eld lines.

3. The symplectic model

In order to perform a more accurate study of the onset of chaotic ®eld lines at the tokamak border, we
need to develop a ®eld line mapping which can be related directly to the parameters of a given tokamak and
is still symplectic [20]. As in the previous models, we split our mapping for the Poincar�e section immediately
following the ergodic limiter perturbation in two consecutive ones: the ®rst describing the equilibrium ®eld
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line trajectory along the tokamak chamber (T 1 : �rn; hn� ! �r�n; h�n�� and the second describing the e�ects of
the current coils of the ergodic limiter (T 2 : �r�n; h�n� ! �rn�1; hn�1�).

In the cylindrical approximation the equilibrium part of the Viana±Caldas mapping is already symplectic
and so we retain it without changes. But we need to introduce a mapping with toroidal corrections that
obeys the following conditions:

(a) in the limit � � r=R0 ! 0 it is reduced to the cylindrical mapping;
(b) the new safety factor pro®le q�r� must be as similar as possible to the pro®le of the Viana±Caldas
mapping, which describes very well the position of the magnetic island chains and their width at low
limiter currents;
(c) it must be obtainable from a generating function, which guarantees its symplecticity [20].
The most generic generating function which insures the properties (a) and (c) above is given by

G1���n; hn� � hn�
�
n � 2pJ���n� �

X1
l�1

al�
�l
n cosl hn; �9�

Fig. 3. Radial pro®le of the poloidal ®eld Bh with TBR-1 parameters.

Fig. 4. Poincar�e sections of the Viana±Caldas mapping with m � 6 and (a) I � 220 A, (b) I � 800 A in rectangular coordinates

(x � bh; y � bÿ r).
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where we de®ne the normalized radial coordinate � � r=R0 and the integral of the inverse safety factor

J��� �
Z �

0

dx
q�x� :

The next step is to ®t the arbitrary constants al in order to ful®ll condition (b). As a matter of fact we
veri®ed that a very good pro®le agreement can be obtained retaining only the ®rst term of the sum with
a1 � ÿ0:04 (Fig. 5a). Using the de®nition of this generating function (�n � oG1=ohn and h�n � oG1=o��n) we
obtain equilibrium mapping equations:

r�n �
rn

1ÿ a1 sin hn
; �10�

h�n � hn � 2p
q�r�n�

� a1 cos hn: �11�

Plotting the equilibrium curves obtained by this new equilibrium mapping near the center of the tokamak
vessel (Fig. 5b), we observe the poloidal asymmetry of the unperturbed ®eld. Moreover, the magnetic axis
and the geometric axis are no longer coincident, as in the Viana±Caldas mapping, but there is a dis-
placement between them. This displacement is known in the literature as the Shafranov shift [18,21] and is
well known from numerical solutions of the Grad±Shafranov equation. As in this work we are mainly
concerned about the plasma border we did not try to adjust the magnitude of the Shafranov shift to known
values, which could have been done by varying a1 or using further expansion terms.

In order to obtain a symplectic mapping for the action of the ergodic limiter coils, we retain the angular
part

hn�1 � h�n ÿ C
r�n
b

� �mÿ2

cos�mh�n�; �12�

where we use again the dimensionless constant C � l0mIw=pb2B0, and using hn�1 � oG2=orn�1 we obtain
the generating function

G2�rn�1; h
�
n� � rn�1h

�
n ÿ

Cb
mÿ 1

rn�1

b

� �mÿ1

cos�mh�n�; �13�

which leads us to the new radial equations given by

r�n �
oG2

oh�n
� rn�1 � mCb

mÿ 1

rn�1

b

� �mÿ1

sin�mh�n�: �14�

Fig. 5. (a) Safety factor pro®les for the Viana±Caldas mapping (solid line) and the symplectic mapping (dashed line); (b) Poincar�e plot

of the symplectic equilibrium mapping with toroidal corrections.
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Plotting a Poincar�e section with this symplectic mapping at low limiter current (I � 200 A) and using the
TBR-1 parameters (Fig. 6a) we can see that the magnetic island chains at the tokamak chamber edge re-
main very similar to the ones observed in the dissipative Viana±Caldas model (Fig. 4a) both in their radial
position and in their island width. They are only more curved due to the e�ects of the more realistic toroidal
corrections. But as we increase the limiter current to I � 800 A the di�erences between the Poincar�e plots
are relevant: while in the Viana±Caldas model the structure is destroyed by the small dissipative e�ects, and
so no further dynamical analysis is possible (Fig. 4b), in the symplectic mapping the island structure with all
its details and the onset of global chaos can be observed very precisely (Fig. 6b), and magni®cations of
small regions show the typical structure of generic Hamiltonian systems (Fig. 7).

4. The dynamical analysis of ®eld lines

One of the most important methods of analysis of non-linear systems is the calculation of Lyapunov
exponents, which are de®ned as [12]

kj � lim
k!1

1

k
ln aj

Yk

i�0

J i

 !










; �15�

where J i � o�ri�1; hi�1�=o�ri; hi� is the Jacobian of the ith iteration of the mapping and aj�M� the jth ei-
genvalue of a matrix M. For a symplectic mapping it is known that

P
i ki � 0 and thus for a bidimensional

symplectic mapping k1 � ÿk2. So we have two possible cases: if k1 � k2 � 0 for a given trajectory of the
system then this trajectory is regular; but, if kk1k > 0 then there is exponential divergence of nearby tra-
jectories during the evolution and the trajectory is called chaotic. Of course we cannot perform exactly the
in®nite sum in (15) for numerical calculations, but the convergence of the maximum Lyapunov exponent
occurs with good precision after just a few thousand iterations, both for regular and chaotic ®eld lines
(Fig. 8a).

Another analysis tool for systems with an angular coordinate is the safety factor, de®ned for a given
trajectory as [22]

q � lim
k!1

2pkPk
j�0�hj�1 ÿ hj�

; �16�

which describes the medium inverse angular shift at each of the k iterations, each one with D/ � 2p. The
trajectory can be classi®ed in one of the three categories, according to the value of q: if q converges to an
irrational number the trajectory is a regular closed torus along the angular coordinate; if q converges to a

Fig. 6. Poincar�e sections of the symplectic mapping with m � 6 and (a) I � 200 A, (b) I � 800 A in rectangular coordinates.
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rational number then the trajectory is either a resonant torus (for a magnetic limiter current I � 0) or
belongs to a magnetic island chain (for I > 0); ®nally, if q does not converge to a real number, the trajectory
is chaotic. In Fig. 8b we can see that for the regular trajectory q converges very quickly (as a matter of fact,
we obtain q � 5, as the regular trajectory chosen is on the 5/1 magnetic island chain), but for the chaotic
trajectory q does not converge at all.

With the aid of these two coe�cients (the Lyapunov exponent and the safety factor) we are able to
characterize completely the dynamical behavior of a given trajectory, and so we can analyze the relevant
phenomena of the transition to chaos, such as island growth and overlapping, and island destruction, as we
vary the initial conditions and parameters of our system.

5. Varying initial conditions and parameters

One of the most used methods in studying the dynamical behavior of non-linear systems is the plotting of
characteristic coe�cients (such as the Lyapunov exponents or the safety factors) for varying values of initial
conditions or control parameters [23±26]. If we want to perform a more detailed analysis of a Poincar�e
section of the symplectic mapping for an intermediate current value (Fig. 9), where we have chaotic regions,
magnetic islands, and a region of undestroyed magnetic tori, one of the possibilities is to calculate the
Lyapunov exponents and the safety factors along a horizontal line across the Poincar�e section, ®xing the
initial radial position y0 (Fig. 10). We observe that the Lyapunov exponents of the chaotic regions have
approximate medium value of hki ' 0:06, and the transition from the null exponents in the island regions to
the chaotic exponents is quite sudden, i.e., there are no less chaotic transition regions around the islands.
Along this section we can observe the crossing of ®ve magnetic islands, in whose interior the safety factors
converge: three islands of the 7=1 chain (q � 7:0), one of the 8=1 chain (q � 8:0) and one of the 13=2 chain
(q � 6:5); this last island is so small that it cannot be seen clearly in the Poincar�e section (Fig. 9) but is
clearly detected by the null Lyapunov exponents and the converging safety factors.

Another possibility is to analyze a vertical section of the Poincar�e plot of Fig. 9, ®xing the initial angular
position x0 (Fig. 11). In this case we can observe again that hki '0.06 for all chaotic regions, which means

Fig. 7. Magni®cation of detail from the Poincar�e plot of Fig. 6(b).

Fig. 8. Convergence curves of the: (a) Lyapunov exponents and (b) safety factors of a regular trajectory with x0 � 0:20m and

y0 � 0:03m (solid lines) and a chaotic trajectory with x0 � 0:20m and y0 � 0:02m (dashed lines) for the symplectic mapping with m � 6

pairs of limiter current coils and I � 800 A.
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that even the chaotic regions close to the undestroyed tori are no less chaotic than the outer chaotic regions.
As for the safety factors, they converge in three distinct regions: there is a large plateau with q � 9:0,
corresponding to the crossing of the 9=1 island chain, a very small region with q � 6:5, corresponding to the
13=2 island chain again, and ®nally there is the region of the undestroyed magnetic ®eld line tori where the
safety factors assume the irrational values of each tori, which decrease as we increase y0. As a matter of fact
there are still very small regions of non-convergence of the safety factors in this structure, corresponding to
the tiny chaotic layers around the separatrixes of the island chains which are beginning to grow of the
resonant tori, but they can be observed only performing large magni®cations.

An interesting way to analyze the growing of the magnetic island chains and the onset of chaos, as we
increase the limiter current, is to plot the value of the maximum Lyapunov exponent for varying values of
the initial radial position y0 and the limiter current I for a ®xed angular position x0 (Fig. 12). In this kind of
plot we can observe the appearance of the ®rst thin chaotic layers at about I ' 100 A, which grow and join
with others to form quite large chaotic regions as we increase the limiter current. Although this increase of
chaotic ®eld lines is very large at ®rst, for higher currents (I ' 500 A) this growing stops because the
growing of the inner magnetic surfaces of the island chains and the destruction of the outer ones coun-
terbalance each other. So we can see that analytical predictions for the growth width of magnetic island
chains, such as the square-root rule [8] are valid only for very low currents.

If we enlarge a part of this kind of plot (Fig. 13) we can see that the structure of the boundary between
chaotic and regular regions is quite irregular. There are light gray ``tongues'' entering the borders of the
dark chaotic regions, corresponding to secondary island chains which move as we increase the limiter
current and are ®nally destroyed by the growing chaotic region. As each magnetic island has smaller
secondary islands, and these islands have other even smaller secondary islands themselves, and so on, the
boundary between the regular and chaotic regions is indeed fractal.

6. Conclusions

In this work we introduced a symplectic bidimensional mapping in order to describe the Poincar�e section
of the magnetic ®eld lines in a tokamak chamber under the action of an ergodic limiter. We showed that the

Fig. 9. Poincar�e section of the symplectic mapping with m � 7 and I � 400 A.

Fig. 10. (a) Lyapunov exponents and (b) safety factors along the horizontal line in Fig. 9.
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symplecticity of the mapping is very important in order to study the chaotic dynamics at the plasma edge, at
high limiter currents. In fact, these dynamics are much modi®ed, as a consequence of combining the
symplecticity condition, required for precise computation, and the realistic poloidal asymmetry of the

Fig. 11. (a) Lyapunov exponents and (b) safety factors along the vertical line in Fig. 9.

Fig. 12. Lyapunov exponents with m � 6 and x0 � 0:05m.

Fig. 13. Magni®cation of detail of Fig. 12.
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unperturbed ®eld. Specially for high current limiters, not only new island chains are predicted by our
mapping, but also a more pronunciated poloidal asymmetry is observed. Thus, the in¯uence of an ergodic
limiter on the plasma border can be more accurately described by this mapping which enlarges the pos-
sibility of the ergodic limiter dynamical analysis, in comparison with previous symplectic mappings that
neglected toroidal corrections [13,14,27] or these that took into account these corrections but lacked the
symplecticity condition [8].

Safety factors and Lyapunov exponents were calculated, varying the initial conditions and the control
parameters, and the structure of the parameter plane showed very clearly the onset of chaos by the process
of growing and destruction of secondary magnetic islands and a fractal boundary separating regular and
chaotic regions [17]. It also revealed that at higher limiter currents the chaotic region at the plasma border
does not grow very much, but remains, approximately, at the same size.

Finally it is important to emphasize that our model allows the introduction of an arbitrary poloidal
magnetic ®eld pro®le. Therefore it is suitable for numerical simulations of future interest, such as the re-
search concerning non-monotonic pro®les [28], whose experimental importance has been discussed [29,30],
and the control of plasma-edge turbulence [3,7].
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