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We investigated the transition to wave turbulence in a spatially extended three-wave interacting
model, where a spatially homogeneous state undergoing chaotic dynamics undergoes spatial
mode excitation. The transition to this weakly turbulent state can be regarded as the loss of
synchronization of chaos of mode oscillators describing the spatial dynamics.
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1. Introduction

The onset of turbulence is one of the outstanding
problems of theoretical physics [Landau & Lifshitz,
1987; Frisch, 1995]. A seminal contribution to this
study was brought about by Ruelle and Takens, who
described the onset of turbulence as a sequence of
Hopf bifurcations yielding a chaotic attractor in the
system phase space [Ruelle & Takens, 1971; New-
house et al., 1978]. In spite of the recent progress
in turbulence theory, wave turbulence still presents
a number of theoretical challenges, one of them
being the onset of turbulence. Wave turbulence
occurs in systems of nonlinear dispersive waves,
where energy transfer occurs chiefly among reso-
nant sets of waves [Zakharov et al., 2004]. Wave
turbulence is present in a plethora of physically rel-
evant systems like capillary waves [Schröder et al.,
1996], magnetized plasmas [Musher et al., 1995],
superfluid helium [Kolmakov & Pokrowsky, 1995],
nonlinear optics [Dyachenko et al., 1992], acous-
tic waves [Zakharov & Sagdeev, 1970], astrophysics
[Sridhar & Goldreich, 1994], among others.

In most applications of wave turbulence, the
wave amplitudes are relatively weak, such that only

quadratic nonlinearities need to be considered.
Hence the dynamical features of more complicated
models can be retained by simpler models, like
the resonant three-wave interacting wave [Kaup
et al., 1979]. Such system occurs in fluid dynam-
ics [Turner, 1996; Li, 2007], plasma physics [Chian
et al., 1994; Chian & Rizzato, 1994] and nonlinear
optics [Rundquist et al., 1998; Stegeman & Segev,
1999; Picozzi & Haeltermann, 2001]. The nonlinear
three-wave model describes the exchange of energy
among a high-frequency (parent) wave and its side-
band (daughters) with quadratic interactions, as
well as with a spatial diffusion term. The model yet
contains an energy source term which can be phe-
nomenologically introduced from a linear growth
rate for the parent wave.

We identify the onset of wave turbulence as
the excitation of spatial Fourier modes, in the pres-
ence of an underlying temporally chaotic dynamics.
This approach can be pursued numerically by mak-
ing a pseudo-spectral decomposition of the wave
field. This procedure converts the nonlinear par-
tial differential equation into a system of coupled
nonlinear ordinary differential equations governing
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the time evolution of the Fourier mode amplitudes.
In the language of Fourier phase space, where the
state variables are the Fourier mode amplitudes,
we can assign the underlying chaotic dynamics to
the existence of a strange attractor immersed in a
low-dimensional subspace of the phase space, which
we call a homogeneous manifold. The spatial modes
correspond, in this description, to variables repre-
senting directions transversal to this homogeneous
manifold. The excitation of spatial modes follow-
ing the onset of wave turbulence is observed as
relatively sharp spikes in the corresponding modes
for the three waves. We have found that such
intermittent spikes have a statistical distribution
characteristic of the so-called on–off intermittency
[Szezech Jr. et al., 2007; Szezech Jr. et al., 2009].
Because of the spikes observed just after the onset
of turbulence, the latter can be called a bubbling
transition.

In this paper, we aim to describe the onset of
wave turbulence in the nonlinear three-wave inter-
action model by using the concept of synchroniza-
tion. Synchronization of chaotic motion is an inten-
sively studied subject, following the pioneer work
of Fujisaka and Yamada [1983], Afraimovich et al.
[1986] and Pecora and Carroll [1990]. In general
terms, synchronization is a process of adjustment
of rhythms of oscillators due to their interactions,
which can occur even if their dynamics is chaotic
[Pikovsky et al., 2001]. Synchronization of chaos
has been observed in both numerical and labora-
tory experiments. We are particularly interested in
chaotic phase synchronization, for which we can
define a geometrical phase to each oscillator, in such
a way that, due to the interaction between the oscil-
lators, their phases are equal, whereas their ampli-
tudes may not remain correlated at all.

Before the transition to wave turbulence, the
wave amplitudes (in the real space, rather than in
the Fourier mode amplitude space) are spatially
homogeneous. Since we have performed a pseudo-
spectral Fourier expansion with a finite number of
modes, we have the same number of discretized
points in the real space. In the spatially homoge-
neous state, each spatial point can be regarded as a
nonlinear oscillator. This behavior turns out to be
similar to relaxation oscillations observed in self-
sustained systems of the type described by the van
der Pol equation. Due to the temporally chaotic
dynamics which pumps the time evolution of spatial
mode amplitudes, a spatially homogeneous state

can be regarded as a set of chaotic oscillators
exhibiting phase synchronization. If the oscillators
lose phase synchronization, there is spatial mode
excitation and turbulent behavior sets in. Hence,
it is possible to investigate the onset of bubbling
by applying numerical diagnostics of chaotic phase
synchronization.

The rest of this paper is organized as follows:
Sec. 2 describes the spatially extended three-wave
interacting model and the Fourier mode expansion
we create in order to work with a set of ordinary dif-
ferential equations governing the time evolution of
the amplitudes. Section 3 is devoted to discussing
the concept of chaotic phase synchronization and
how it relates with the excitation of spatial modes,
as well as the first positive Lyapunov exponents
and their finite-time fluctuations. Our conclusions
appear in the last section.

2. Spatially Extended Three-Wave
Interacting Model

We will study a paradigmatic model of low-
dimensional chaos, which consists of three disper-
sive monochromatic waves propagating along the
x-direction, whose complex amplitudes are denoted
Aα, α = 1, 2, 3. These waves form a triplet, for their
wave numbers and frequencies must satisfy reso-
nance conditions

k3 = k1 + k2, (1)

Ωk3 = Ωk1 − Ωk2 − δ, (2)

where δ is a small frequency mismatch introduced
because the frequencies obtained from the linear
dispersion relations may not be matched even for
perfectly matched wave vectors. This effect occurs
quite often in laser–plasma interactions, where it
can enhance the linear growth rate [Lopes & Riz-
zato, 1999]. For the same token, wave vector mis-
matches could also be taken into account, but since
it is formally equivalent to frequency mismatch it
suffices to analyze the latter.

Each wave has a constant group velocity vgα =
dΩkα/dkα, given by its linear dispersion relation,
and we shall assume in this paper that vg2 > vg1 >
vg3. This is consistent with a scenario where A1(x, t)
stands for the parent wave amplitude, A2(x, t)
and A3(x, t) being the corresponding quantities for
the faster and slower daughter waves, respectively
[Kaup et al., 1979]. In the case of nonlinear wave
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interactions in nonmagnetized plasmas, A1 may
stand, for example, for a transverse electromagnetic
wave, A2 an ion-acoustic wave, and A3 is a Lang-
muir wave (anti-Stokes mode) [Chian et al., 1994].

We also suppose that the nonlinearities present
in the wave interactions are sufficiently weak, such
that only quadratic terms in the wave amplitudes
need to be considered. In this case, the three-wave
system can be described by the following Hamilto-
nian density [Lopes & Rizzato, 1999]

H = −A1A
∗
2A

∗
3 + A∗

1A2A3 + iδ|A3|2

−
3∑

α=1

vgαA∗
α

∂Aα

∂x
, (3)

such that the equations governing the spatio-
temporal dynamics of the system are obtained from

∂Aα

∂t
=

δH

δA∗
α

, (4)

∂A∗
α

∂t
= − δH

δAα
, (5)

where H =
∫

dxH and the functional derivative is

δ

δAα
≡ ∂

∂Aα
− ∂

∂x

∂

∂

(
∂Aα

∂x

) . (6)

Since the Hamiltonian H does not depend
explicitly on time, it is a conserved quantity. We
can introduce phenomenologically wave growth and
dissipation by adding growth and decay rates: the
coefficients ν1 > 0 and ν2,3 < 0 represent energy
injection (through wave 1) and dissipation (through
waves 2 and 3), respectively. This sign convention
follows from a linear analysis in which the par-
ent wave is supposed to grow exponentially with
time, whereas the daughter waves are expected to
decay exponentially in each cycle. Diffusion is also
introduced by a Laplacian term in the parent wave,
which provides a cutoff in the linear wave growth,
being essential to nonlinear saturation

With such modifications, the equations govern-
ing the dynamics of the resonant three-wave inter-
action are [Kaup et al., 1979; Chow et al., 1992]

∂A1

∂t
+ vg1

∂A1

∂x
= A2A3 + ν1A1 + D

∂2A1

∂x2
, (7)

∂A2

∂t
+ vg2

∂A2

∂x
= −A1A

∗
3 + ν2A2, (8)

∂A3

∂t
+ vg3

∂A3

∂x
= iδA3 − A1A

∗
2 + ν3A3, (9)

where D is a diffusion coefficient.
We perform a Fourier decomposition in the

wave amplitudes by using a one-dimensional box
of length L with periodic boundary conditions and
retaining N modes.

Aα(x, t) =
N/2∑

n=−(N/2)+1

|aα,n(t)|

× exp{i[κα,nx + φα,n(t)]}, (α = 1, 2, 3),

(10)

where aα,n(t) is the time-dependent Fourier coeffi-
cient corresponding to the mode number

κα,n =
2πn

L
. (11)

The time evolution of these Fourier mode
amplitudes are governed by a truncated system of
3N coupled ordinary differential equations

ȧ1n(t) = (ν1 − ivg1kn − Dkn
2)a1n

+F [A2A3], (12)

ȧ2n(t) = (ν2 − ivg2)a2n −F [A1A
∗
3], (13)

ȧ3n(t) = (ν3 − ivg3kn + iδ3)a3n

−F [A1A
∗
2], (14)

where the symbol F denotes the discrete Fourier
transform (actually computed from the FFT algo-
rithm). This is so because the product of wave
amplitudes is computed faster in the real space
(even taking into account two calls to FFT routine)
than in Fourier space (where it would need a time-
consuming convolution integral). The parent wave
has a positive linear growth rate and pumps energy
to the daughter waves. We kept the group veloci-
ties, frequency mismatch, and diffusion coefficient
at fixed values: vg1 = 0.0, vg2 = 1.0, vg3 = −1.0,
δ = 0.1, and D = 1.0, respectively, corresponding
to the so-called solitonic regime [Kaup et al., 1979].
The growth rate will be fixed as ν1 = 0.1, and the
decay rate ν2 = ν3 are negative, the tunable param-
eter being used.

The box length was chosen such that L = 2π/
κ1,1 = 2π/0.89. The initial conditions were chosen
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as F1,0(0) = 0.500 + i0.000, and F2,±1(0) = 0.001 +
i0.001, where

Fα,n(t) = aα,n(t)eiφα,n(t), (15)

all the other modes being set to zero.

3. Synchronization of Oscillators and
the Excitation of Spatial Modes

The system (12)–(14) was numerically integrated
using routines from the LSODE package [Hind-
march, 1983], yielding a set of 3N complex mode
amplitudes aα,n(t) in Fourier space, which are
gathered again using Eq. (10) to give the wave
amplitudes in the real space Aα(x, t). In the pseudo-
spectral Fourier expansion (10) we have used a finite
number of modes, thus there is a same number of
discretized points in the real space. Let us choose a
number of these points xi, consider the wave ampli-
tudes at such points |Aα(xi, t)|. In the dynamical
system language, each spatial point can be regarded
as a nonlinear oscillator evolving in time accord-
ing to the partial differential equations (7)–(9).
Moreover, due to the diffusive term in (7), these

oscillators are locally coupled, in the sense that each
oscillator interacts with its nearest-neighbors.

Previous works have shown the existence of a
spatially homogeneous state in this system, under-
going a temporally chaotic evolution. In such a spa-
tially homogeneous state, each spatial point can
be regarded as a nonlinear oscillator exhibiting
complete synchronization of chaos, i.e.

Aα(x1, t) = Aα(x2, t) = · · · = Aα(xN , t), (16)

for all times (the time dependence will be implicitly
understood from now on). The existence of this syn-
chronized state can be placed into evidence by draw-
ing return plots of |Aα(xi)| versus |Aα(xj)|, where xi

and xj are two distinct points. Considering a fixed
xi for i = 1 we have depicted in Figs. 1(a)–1(d), a
sample of return plots for sites j = 8, 16, 24 and 32,
respectively. The control parameter takes on a value
ν2,3 = −1.8 for which the existence of a spatially
homogeneous state has been previously observed.
In these return plots, the completely synchronized
state is represented by the concentration of points
along the main diagonal line |A1(xi)| = |A1(xj)|.

(a) (b)

(c) (d)

Fig. 1. Return plots of |A1(xi)| versus |A1(xj)| in the case where the control parameter is ν2,3 = −1.8 for i = 1 and (a) j = 8;
(b) j = 16; (c) j = 24; (d) j = 32.

1250234-4

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

2.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
O

T
. L

IB
 I

N
FO

R
M

A
T

IO
N

 L
L

C
 o

n 
01

/2
9/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 29, 2012 3:28 WSPC/S0218-1274 1250234

Synchronization of Chaos and the Transition to Wave Turbulence

(a) (b)

(c) (d)

Fig. 2. Return plots of |A1(xi)| versus |A1(xj)| in the case where the control parameter is ν2,3 = −3.6 for i = 1 and (a) j = 8;
(b) j = 16; (c) j = 24; (d) j = 32.

On the other hand, for another value ν2,3 =
−3.6, we have observed the excitation of spatial
modes. Since the dynamics is already chaotic in the
homogeneous state, these spatial modes represent
a weakly turbulent state, in which we have spatio-
temporal chaos. From the point of view of the cou-
pled oscillators, they are no longer synchronized, as
illustrated by the return plots of Fig. 2. The excur-
sions of the return plot points out of the diagonal
line are thus a manifestation of the spatial mode
excitation in the spatially extended system.

Since Aα(xj) are complex numbers, such that
besides the amplitude they can also be described by
a phase angle

ϕα,n(t) = arctan
{

Im[Aα,n(t)]
Re[Aα,n(t)]

}
. (17)

We remark that this kind of geometric definition of
phase is possible here since we have a funnel attrac-
tor [Lopes & Chian, 1996] similar to that observed
in projections of chaotic trajectories of the Rössler
oscillator [Osipov et al., 2003].

A completely synchronized state (16) can
be either described by the synchronization of

amplitudes or as the synchronization of the respec-
tive phases. In the latter sense, a sensitive diag-
nostic of synchronization is the complex order
parameter introduced by Kuramoto [1984]

zα(t) = Rα(t) exp(iΦα(t))

≡ 1
N

N/2∑
n=−(N/2)+1

exp(iϕα,n(t)), (18)

where Rα(t) and Φα(t), α = 1, 2, 3, are the ampli-
tude and angle, respectively, of a centroid phase
vector for a one-dimensional chain with periodic
boundary conditions. Since our attractor is funnel-
like the phase is uniquely determined by Eq. (17)
and so the Kuramoto order parameter can be
accurately determined.

The average of the order parameter magnitude

Rα = lim
T→∞

1
T

∫ T

n=0
Rα(t)dt, (19)

is computed over a time interval large enough to
warrant that an asymptotic state has been achieved
by the system. A synchronized chaotic state for
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all oscillators, signaling a purely temporal dynam-
ics for the spatially homogeneous state, is charac-
terized by Rα = 1, since there occurs a coherent
superposition of the phase vectors with the same
amplitude at each time for all discrete spatial loca-
tions. The lower is the value of Rα, the less the spa-
tial coherence of the system state. If the oscillators
were completely incoherent, then the phase vectors
would be randomly distributed with respect to their
angles, such that Rα = 0 in the limit of infinitely
many oscillators. In other words, the breakdown of
the totally synchronized state is a criterion for the
appearance of spatial modes, which marks the onset
of wave turbulence through this bubbling transition.

In Figs. 3(a) and 3(b), we plot the bifurca-
tion diagram for |A1(x1, t)| and the average order
parameter for the parent wave R1, respectively, as
a function of the decay rate of the daughter waves
ν2,3. Within the numerical accuracy the oscillators
lose chaotic synchronization (i.e. there is spatial
mode excitation) for values of the decay rate higher
than νCR ≈ −1.96, which is the value for which
R1 ceases to be equal to the unity [Fig. 3(b)]. The
(purely temporal) dynamics in the homogeneous
manifold can be either periodic or chaotic, as shown
by Fig. 3(a): it starts as a period-1 orbit for small

Fig. 3. (a) Bifurcation diagram for |A1(1, t)| as a function
of the decay rate ν2,3. (b) Time-averaged order parameter

for parent wave versus decay rate for T = 2 × 105, after 104

transient iterations.

values of |ν2,3| and undergoes a period-doubling
bifurcation cascade to chaotic bands which disap-
pear due to an interior crisis and are followed by a
period-3 window. The loss of chaotic synchroniza-
tion occurs just after a three-band chaotic attractor
suffers an internal crisis and merges into a single
large chaotic orbit at νCR.

The dynamics for ν2,3 < νCR is mainly chaotic,
interspersed with small periodic windows. Most of
the chaotic dynamics is associated with the exci-
tation of spatial modes, since the order parame-
ter magnitude there is different from the unity. It
is worth emphasizing, though, that chaotic behav-
ior of the oscillators in the spatially homogeneous
state is a necessary condition for spatial modes to be
excited, since we get R1 = 1 whenever the dynam-
ics goes periodic. The spatially homogeneous state
would act as a kind of stochastic pump, imparting
energy to a growing number of spatial modes after
the onset of wave turbulence.

A further numerical verification of the loss
of synchronization in the spatially homogeneous
state is the computation of the Lyapunov spectrum
related to the mode dynamics in the Fourier phase
space. Since each Fourier mode for the three inter-
acting waves is a degree of freedom in this space,
there are 6N Lyapunov exponents, computed using
Gram–Schmidt reorthonormalization [Wolf et al.,
1985; Yamada & Okhitani, 1988]. The largest Lya-
punov exponent, denoted as λ1, refers to the chaotic
dynamics in the spatially homogeneous state. If the
oscillators are synchronized, they share the same
value of λ1. The second Lyapunov exponent λ2 is
related to the off-synchronized dynamics, or the
spatial mode excitation. Since the Lyapunov spec-
trum is ordered, it suffices that λ2 > 0 for the char-
acterization of a spatial mode excitation.

The time evolution of the two largest exponents
(out of 6N modes considered) is depicted in Fig. 4.
When the control parameter ν2,3 takes on values for
which the dynamics in the spatially homogeneous
state is nonchaotic [Fig. 4(a)] the largest exponent
(λ1) decays to zero as a power-law, which is an indi-
cation that asymptotes to zero as the time increases.
On the other hand, the second largest exponent
(λ2) decays exponentially to zero, which indicates
that it is asymptotically negative. In Fig. 4(b) λ1

is asymptotically positive, while λ2 decays to zero
as a power-law, hence asymptotes to zero. Hence
the dynamics on M is chaotic and transversely sta-
ble. After the excitation of spatial modes [Fig. 4(c)]
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Fig. 4. Time evolution of the two largest Lyapunov expo-
nents (λ1: black points; λ2: red points) of the dynamical
system formed by 6N Fourier modes for (a) ν2,3 = −1.5;
(b) −1.8; (c) −3.6.

the two largest exponents are positive. The ripples
observed in the latter figure for λ2 are due to the
long time the trajectory stays in the vicinity of
the spatially homogeneous state. Nevertheless, the
asymptotic value of λ2 is positive, meaning that the
homogeneous state is transversely unstable.

Moreover, useful information can be obtained
from a detailed examination of the second largest
exponent, which turns out to be the maximal
transversal exponent (λ2). The fluctuations of the
maximal transversal exponent are quantified by the
finite time exponent λ̃2(t), which are computed like
those in Fig. 4, but using a finite value of t. The
infinite-time limit of λ̃2(t) equals λ2. Since the val-
ues taken by λ̃2(t) typically depend on the initial
condition, we consider a random sample of initial
conditions outside the spatially homogeneous state
and compute the corresponding values of λ̃2(t).
Using the recurrent dynamics it suffices to follow
a single trajectory of a large number of steps, and
the time-t exponents are evaluated from consec-
utive and nonoverlapping length-t sections of the
trajectory [Szezech et al., 2011].

Given such a sequence of values of λ̃2(t) for,
e.g. t = 300, we compute the probability distribu-
tion function P (λ̃2(300)). In Fig. 5 we show numer-
ical approximations of this probability distribution
function for different values of the control parameter

-0.1 0 0.1

 λ
∼

2 

0

0.2

0.4

0.6

0.8

1

P
( λ∼ 2 

(3
00

))

Fig. 5. Probability distribution function of the time-300
maximal transversal Lyapunov exponent for different values
of the decay rate of the daughter waves: ν2,3 = −1.5 (blue);
1.8 (red); 3.6 (black).

ν2,3. For ν2,3 = −1.5 (blue curve in Fig. 5) all
the values of λ̃2(t) are negative, which indicates
that the fluctuations of the corresponding expo-
nent represent shrinking distances in phase space
with respect to the spatially homogeneous state.
As ν2,3 increases, there are also positive fluctua-
tions of these exponents, since there is a positive
tail in the corresponding distribution function (red
curve in Fig. 5). Such positive fluctuations repre-
sent expanding distances with respect to the homo-
geneous state.

Actually for ν2,3 � −1.96 half of the time-
t exponents are positive, which characterizes a
blowout bifurcation, i.e. the loss of transversal sta-
bility of the spatially homogeneous state. Since the
average of the finite-time exponents, for t large
enough, is equal to the infinite-time exponent,
the blowout bifurcation occurs when the infinite-
time (second largest) Lyapunov exponent crosses
zero, as the control parameter is varied. If we fur-
ther increase the latter, the probability distribution
drifts slowly towards positive values of λ̃2(t) (black
curve in Fig. 5).

4. Conclusions

The transition to weak wave turbulence in a spa-
tially extended three-wave nonlinearly interacting
model has been proved to occur due to the loss
of transversal stability of a spatially homogeneous
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state undergoing temporally chaotic dynamics. The
latter fuels the spatial mode excitation, whose onset
is marked by the loss of transversal stability of
some periodic orbit embedded in the chaotic attrac-
tor representing the spatially homogeneous state. In
this work, we analyzed this situation from the point
of view of the loss of synchronization of individual
oscillators which comprise the spatially homoge-
neous state. These oscillators come from the dis-
cretization of the spatial variable which follows from
using a pseudo-spectral method to solve the non-
linear partial differential equations governing the
spatiotemporal behavior of the system. The onset
of wave turbulence is the point where the oscilla-
tors lose phase synchronization, where a geometri-
cal phase has been defined for the motion along the
chaotic attractor representing the spatially homo-
geneous state. We have used, for characterizing
this process, a complex order parameter which is
extremely sensitive and thus can yield precise esti-
mates of the threshold of weak turbulence in such
systems.

We have made a Lyapunov analysis of this
system in the Fourier phase space, where each direc-
tion refers to a given mode in a spectral decomposi-
tion of the wave fields. The spatially homogeneous
state represents a three-dimensional subspace in
this space, with a chaotic trajectory. The remaining
directions are called transversal with respect to this
subspace. On ordering the Lyapunov exponents, the
maximal one λ1 refers to an expanding direction in
the homogeneous subspace. Since the latter does
not allow for a hyperchaotic attractor, however, the
second positive one λ2 is the maximal transversal
exponent. We studied the finite-time fluctuations of
this transversal exponent and found that the homo-
geneous subspace loses transversal stability when λ2

(which is the average of the finite-time fluctuations)
crosses zero, which is called a blowout bifurcation.
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