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We study a symplectic chain with a non-local form of coupling by means of a standard map
lattice where the interaction strength decreases with the lattice distance as a power-law, in
such a way that one can pass continuously from a local (nearest-neighbor) to a global
(mean-field) type of coupling. We investigate the formation of map clusters, or spatially
coherent structures generated by the system dynamics. Such clusters are found to be
related to stickiness of chaotic phase-space trajectories near periodic island remnants,
and also to the behavior of the diffusion coefficient. An approximate two-dimensional
map is derived to explain some of the features of this connection.
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1. Introduction

The standard map (SM), also called Chirikov–Taylor map, besides being a paradigmatic dynamical system, describes a
variety of situations of physical interest [1]. It is a two-dimensional area-preserving map p#p0 ¼ pþ ðK=2pÞ sinð2pxÞ;
x#x0 ¼ xþ p0; ðmod 1Þ, where K is a measure of the non-linearity of the system, and ðp; xÞ are canonical variables which
may play different roles as this map is used in physical applications.

In plasma physics, the SM models the interaction between a charged particle and an electrostatic plane wave train [2,3],
the behavior of drift orbits in tokamaks in the presence of drift waves [4]; and it is useful as a lowest-order description of the
magnetic-field line structure in plasma confinement systems [5]. In accelerator physics, SM describes the interaction of a
charged particle in a cyclotron under the influence of a periodic potential applied to a small region [6]. In optics, the SM
was found to characterize the chaotic evolution of the polarization in optical fibers with modulated birefringence [7]. The
quantum periodically kicked rotator, the classical limit of which is described by the SM, is one of the most intensively inves-
tigated models of quantum chaos [8].

Since the SM is widely used as a paradigmatic system for studying Hamiltonian dynamics, chains of coupled SM can be
considered as representative examples of volume-preserving and spatially extended systems. A physically interesting exam-
ple would be a chain of coupled driven rotators, for which the coupling is modulated through a sequence of delta-pulsed
kicks. One possible realization consists of an array of pendula with coils on them. If a short current pulse flows through
the coils, the interaction force among the pendula will act during a short time interval and thus can be approximated with
a delta function [9].

Lattices of locally coupled SM, for which each map interacts with their nearest-neighbors, have been studied as mod-
els of higher-dimensional Hamiltonian systems. Unlike the isolated SM, for which the dynamics is fairly well-understood
due to standard mathematical results like Poincaré-Birkhoff and KAM theorems [10], systems of coupled SM exhibit a far
more complex dynamics, since KAM tori no longer divide the phase-space and thus the whole chaotic layer can be con-
nected, generating phenomena like Arnold diffusion [1]. Since Arnold diffusion is extremely slow [11,12], the timescale
in which we have to work turns to be too large to allow the use of perturbative approaches. Kaneko and Konishi shown
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that, in locally coupled SM lattices, anomalous diffusion exists only up to a crossover time, beyond which the diffusion
becomes of a Gaussian nature [13,14]. This was explained by the fast decay of the spatial correlations over the lattice,
such that the number of degrees of freedom relevant to diffusion is considerably less than the lattice size. Hence in the
thermodynamic limit the system exhibits size independence and intensive behavior. Diffusion in phase-space was also
investigated for globally coupled SM lattices [15,16]. There has been found extensive behavior in the limit of a strongly
chaotic regime in such a way that, within this global regime, the spatial correlations are negligible and the diffusion is
size-dependent.

Gyorgyi and coworkers have shown that the measure of the system phase-space occupied by periodic islands versus that
occupied by chaotic trajectories decays rapidly with the number of coupled maps [17]. If the number of degrees of freedom
(which, in a coupled SM lattice, is twice the number of maps) is too large, the characteristics of diffusion are expected to
depend largely on the measure occupied by chaotic orbits, which turns to be extremely difficult to evaluate directly. Hence
we must resort to indirect methods to evaluate the measure of the phase-space occupied by chaotic orbits, like the Lyapunov
spectrum and the metric (Kolmogorov–Sinai) entropy.

In order to put into a unified framework both local (nearest-neighbor) and global (mean-field) coupling schemes, we
introduced a non-local coupling prescription where a given site interacts with all neighbors, the corresponding strength
decaying with the lattice in a power-law fashion. In this paper, we analyze the dependence of the Lyapunov spectrum
and entropy on the coupling parameters, namely the strength and effective range. Our results show different scaling behav-
iors with coupling strength and range, which are compatible with phase-space changes observed in the numerically obtained
Poincaré maps.

The dynamics generated by SM coupled lattices, although being chiefly chaotic, also presents a dependence on rem-
nants of periodic islands embedded in the chaotic phase-space region [18]. This dependence is manifested in the so-
called stickiness effect, which makes chaotic trajectories to spend a typically long time in the vicinity of the periodic
island remnants, with a non-exponentially small probability. The sticky trajectory segments are also called flights
[19], which can be studied by means of finite-time Lyapunov exponents [20]. If we consider a finite-time interval a cha-
otic orbit with stickiness can be viewed as a dynamical trap, which affects the transport properties characteristic of cha-
otic motion [21]. In particular, the diffusion is considerably reduced in comparison with a uniformly hyperbolic chaotic
region [22].

There are other detectable effects of stickiness in lattices of coupled SM, like the formation of map clusters, which rep-
resent spatially coherent regions with similar temporal evolutions. Clustering in symplectic map lattices has been de-
scribed in globally coupled SM by Konishi and Kaneko [15], who also revealed their finite lifetime and fractal geometric
structure. For general dissipative coupled map lattices, clustering is related to the formation of one or more synchronized
patterns, and is a typical feature of global couplings [23]. In this paper, we present numerical evidence that clustering is an
observable manifestation of stickiness in coupled symplectic map lattices. Cluster formation through stickiness of chaotic
trajectories is closely related to the coupling properties, and this effect is enhanced as the coupling becomes more of a
global nature. Some aspects of the relation between clustering and stickiness are revealed through an approximate
two-dimensional map.

The rest of the paper is organized as follows: in Section 2, we introduce the coupled map lattice model and some of
its properties. The Lyapunov spectrum and the corresponding entropy for this model are shown in Section 3. Section 4
analyzes cluster formation and the stickiness of chaotic trajectories. Section 5 considers phase-space diffusion, whereas
in Section 6 we explore some properties of an approximate two-dimensional map describing the dynamics in the vicinity
of island centers, in order to explain some features of stickness. The last section contains our conclusions.
2. Map lattice with non-local coupling

Let us consider a one-dimensional lattice of N sites, each of them with two state variables at discrete time n : pðiÞn and xðiÞn ,
where i ¼ 1;2; . . . N runs over the lattice sites. The time evolution at each site is governed by the SM, modified by the non-
local coupling with the other sites, and given by Rogers and Wille [24]
pðiÞnþ1 ¼ pðiÞn þ
K

2p
ffiffiffiffiffiffiffiffiffiffi
gðaÞ

p XN0
j¼1

1
ja

sin 2pðxðiþjÞ
n � xðiÞn Þ

� �
þ sin 2pðxði�jÞ

n � xðiÞn Þ
� �� �

; ð1Þ

xðiÞnþ1 ¼ xðiÞn þ pðiÞnþ1; ð2Þ
where x 2 ½�1=2;þ1=2�;N0 ¼ ðN � 1Þ=2, with N odd; and K > 0 plays the double role of being the coupling strength and the
non-linearity parameter. Hence the isolated SM does not follow from the K ! 0 limit in Eq. (1).

The coupling is non-local because the summation in (1) runs over all the neighbors of a given site, but the intensity of the
coupling decays with the lattice distance as a power-law, the corresponding normalization factor being
gðaÞ ¼ 2
XN0
j¼1

1
ja
: ð3Þ
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The parameter a > 0 represents the effective range of the interaction in such a way that, on varying a, we can pass con-
tinuously from a global to a local type of coupling.

Let us consider the two limiting cases of this coupling prescription. If we take a!1, there follows that all values of j
would give vanishing contributions to the coupling term, except the case j ¼ 1. Accordingly, we have that g! 2, and our
coupling reduces to a local, or Laplacian form
pðiÞnþ1 ¼ pðiÞn þ
K

2p
ffiffiffi
2
p sin 2pðxðiþ1Þ

n � xðiÞn Þ
� �

þ sin 2pðxði�1Þ
n � xðiÞn Þ

� �� �
; ð4Þ

xðiÞnþ1 ¼ xðiÞn þ pðiÞnþ1; ð5Þ
in which a given site interacts only with its nearest-neighbors. Apart from the unessential factor
ffiffiffi
2
p

, this is the type of cou-
pling used in Ref. [13].

In the a! 0 limit of Eqs. (1) and (2), we have g ¼ 2N0 ¼ N � 1 and the strength of interaction is the same for all neighbors
of a given site, making for a ‘‘mean-field” global type of coupling:
pðiÞnþ1 ¼ pðiÞn þ
K

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

XN

j¼1;j–i

sin 2pðxðjÞn � xðiÞn Þ
� �

; ð6Þ

xðiÞnþ1 ¼ xðiÞn þ pðiÞnþ1; ð7Þ
which was used in Ref. [14]. We also mention that Gyorgyi et al. have used a different form of global coupling, in which the
coupling term is separated from the non-linearity of the isolated map [17].

Eqs. (1) and (2) represent a volume-preserving dynamical system in the 2N-dimensional phase-space, i.e., the Jacobian
determinant is equal to the unity and the symplectic area
XN

i¼1

dpðiÞn ^ dxðiÞn ¼
XN

i¼1

dpðiÞnþ1 ^ dxðiÞnþ1; ð8Þ
where ^ denotes the exterior product, is conserved with respect to the time evolution of the system. Consequently, we can
write down an explicit time-dependent Hamiltonian for this system, which reads
H ¼ 1
2

XN

i¼1

½pðiÞ�2 � K

ð2pÞ2
ffiffiffiffiffiffiffiffiffiffi
gðaÞ

p �
XN

i¼1

XN0
j¼1

1
ja

cos 2pðxðiþjÞ
n � xðiÞn Þ

� �
þ cos 2pðxði�jÞ

n � xðiÞn Þ
� �� � Xþ1

n¼�1
dðt � nÞ; ð9Þ
in such a way that the continuous-time limit of the map equations yields the canonical equations
dpðiÞ

dt
¼ � oH

oxðiÞ
; ð10Þ

dxðiÞ

dt
¼ oH

opðiÞ
: ð11Þ
Besides the symplectic area, the system given by Eqs. (1) and (2) also preserves the total momentum
XN

i¼1

pðiÞnþ1 ¼
XN

i¼1

pðiÞn ¼ const:; ð12Þ
such that the phase-space trajectories lie on a ð2N � 2Þ-dimensional hyper-plane.
In the numerical simulations we choose random initial conditions ðxðiÞ0 ; p

ðiÞ
0 Þ and periodic boundary conditions

ðxði�NÞ
n ; pði�NÞ

n Þ ¼ ðxðiÞn ; p
ðiÞ
n Þ for a lattice of N ¼ 25 maps. Due to the coupling between sites for K–0, trajectories are free to move

through a 48-dimensional phase-space since invariant tori no longer divide the energetically available region. Two-dimen-
sional projections of the phase-space, ðxðiÞ; pðiÞÞ, typically show a large number of orbits which encircle marginally stable
points lying on the line p ¼ 0 (Fig. 1).

In order to compare such orbits with those expected for an isolated SM, in Fig. 2(a) we depict a phase portrait (pn versus xn)
for an isolated SM with K ¼ 0:5. The latter has fixed points at ðp; xÞ ¼ ð0;0Þ and ð0;�1=2Þ, which are, respectively, a center
and a hyperbolic saddle. Since K is non-zero we have thin regions of chaotic dynamics due to non-integrability. In particular,
for K > Kc � 1 all the invariant tori are broken down and a wide chaotic region begins to show up, allowing for large excur-
sions of the p-variable [Fig. 2(c)].

These results are to be compared with Fig. 2(b) and (d), where we choose one of the coupled maps, say i ¼ 10, and show
5,000 points of a same trajectory in the corresponding phase-space projection (pnð10Þ versus xnð10Þ), with the same values
of K as from Fig. 2(a) and (c). For small K [Fig. 2(b)] the origin of the chosen projection now is a non-linear center,
surrounded by some tori. Other projections, however, would show different features since the coupled system mixes up
the dynamics of all sites. A higher value of K, on the other hand, leaves an almost totally chaotic region [Fig. 2(b)].



Fig. 1. Phase-space projections pðiÞ � xðiÞ for sites i ¼ 1 and i ¼ 3 showing some orbits encircling marginally stable points on the line p ¼ 0 for the coupled
SM lattice with a ¼ 0:0 and K ¼ 0:5.

Fig. 2. Phase plane for an isolated standard map with (a) K ¼ 0:5 and (c) K ¼ 1:5. Phase-space projection pð10Þ versus xð10Þ for (b) K ¼ 0:5 and (d) K ¼ 1:5. A
single trajectory with 5000 points is shown with initial conditions xð10Þ

0 ¼ �0:004864 and pð10Þ
0 ¼ �0:003857.
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In general we expect such a wide chaotic region with a few tori interspersed, such that large-scale excursions occur with
diffusion in the action variable.
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3. Lyapunov spectrum

A lattice with N coupled two-dimensional maps is a 2N-dimensional dynamical system, and the corresponding Lyapunov
spectrum has 2N exponents, one for each independent eigendirection in the tangent space: k1 ¼ kmax > k2 > . . . > k2N . Since
the coupled map lattice (1) and (2) preserves phase-space volumes, the sum of all exponents vanishes:
X2N

i¼1

ki ¼ 0: ð13Þ
In fact, it turns out that the exponent cancel in pairs, kNþi ¼ �kN�iþ1 for i ¼ 1;2; . . . 2N, such that kN ¼ kNþ1 ¼ 0 and the spec-
trum is symmetric.

Representative examples of the Lyapunov spectrum are depicted in Fig. 3, where the Lyapunov exponents for a lattice of
N ¼ 25 coupled maps (1) and (2) are shown for two coupling strengths and different values of the range parameter. When K
takes on a small value [Fig. 3(a)] the spectrum is practically the same for all values of a but a ¼ 0 (the global mean-field case),
for which the absolute values of the Lyapunov exponents are larger than for the other cases. This can be regarded as a con-
sequence of the long-ranging interactions which occurs in global couplings thanks to the number and intensity of the con-
nections (all sites interact mutually with equal intensity). Local couplings, on the other hand, have a short interaction range
and thus a weaker lattice diffusion, thus diminishing the absolute value of the Lyapunov exponents. For larger K [Fig. 3(b)]
these observations remain valid, but there are more differences among the spectra for local couplings.

In the spectra shown in Fig. 3 many Lyapunov exponents are positive, hence a quantity of interest is the lattice-averaged
value of the positive Lyapunov exponents [25]
h ¼ 1
N

Xki>0

i¼1

ki; ð14Þ
which is related to the area under the curve of the spectra of Fig. 3. According to Pesin’s formula, if certain necessary con-
ditions apply, the quantity h equals the density of Kolmogorov–Sinai (KS) entropy [26]. However, this equality holds rigor-
ously only if the system would possess a SRB (Sinai–Ruelle–Bowen) measure, which is continuous along unstable directions
of periodic orbits [27]. Such measures are known only for a few map lattices [28] but, in spite of this, h turns to be useful as a
measure of the chaotic instability in the system phase-space, i.e., the growth rate related to the expanding eigendirections.
Due to the volume-preservation, �h is thus the shrinking rate related to the contracting eigendirections.

We averaged the entropy density over a number of different initial patterns, and analyze its dependence on the coupling
strength � and effective range a. Fig. 4 shows a plot of hhi versus K for different values of the range parameter. In all cases
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Fig. 3. Spectrum of the Lyapunov exponents for a lattice of N ¼ 25 coupled standard maps with (a) K ¼ 0:7; (b) K ¼ 5:0.



Fig. 4. Density of KS-entropy for a lattice of N ¼ 25 coupled standard maps versus coupling strength for different values of the range parameter. The solid
curves are least-squares fits.
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considered the averaged entropy density increases monotonically with K; the numerical results being well-fitted by qua-
dratic functions hhi � a1K � a2K2, with 0:1 K a1 K 0:3 and a2 � 10�2. The a ¼ 0 case bears the largest values of the entropy
for a fixed K, as we have just discussed. Moreover, if K is small the differences of hhi among distinct values of a are small, and
increase as K builds up, in agreement with Fig. 3.

There is another feature of interest here, and which also follows from the results depicted in Fig. 5, where the average
entropy is plotted against the range parameter. For a given K-value, the entropy takes on a maximum value for a ¼ 0; then
0 1 2 3 4 5 6
α
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Fig. 5. Density of KS-entropy for a lattice of N ¼ 25 coupled standard maps versus range parameter for K ¼ 5:0.
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decreases to a minimum for a ¼ 1 and increases again for higher values of a, but never to achieve the value it had before for
a ¼ 0. The reason for this non-monotonic behavior with a lies in the intricacies of the spatio-temporal dynamics of the cou-
pled system, but we can make some guesses based on previous facts known for certain dissipative map lattices with coupling
prescription similar to that used in the present work.

In lattices of coupled chaotic piecewise linear and logistic maps at outer crisis, there was observed a transition from syn-
chronized to non-synchronized behavior for a � 1 [29]. For the globally dissipative systems obtained for 0 < aK 1 the syn-
chronized attractor lies in a low-dimensional manifold in the phase-space, thus yielding a dramatic dimensional reduction.
The entropy density, being divided by the number of positive exponents (just one positive exponent along the synchroniza-
tion manifold), turns out to be very small for synchronized states. A SM lattice cannot exhibit synchronized motion, but we
have observed a kind of coherent behavior for a near unity, which bears some similarities with synchronized states. The en-
tropy decreases as we achieve these coherent states even though there is no dimensional reduction at all due to the sym-
plectic nature of the coupled lattice. Moreover, the chaotic instability is reduced due to a dynamical effect named
stickiness, which occurs for the chaotic regime in the neighborhood of remnant periodic islands. Both situations are to be
quantitatively discussed in the next section.
4. Clustering and stickiness

The symplectic nature of the coupled map lattice treated in this paper prevents it from having attractors in phase-space,
and synchronization of chaos is thus impossible to attain, at least in its original sense. We observe, however, spatio-temporal
patters which, if not synchronized at all, do present coherent dynamics related to the formation of clusters of chaotic trajec-
tories in the high-dimensional phase-space of the coupled map lattice. Such clusters are characterized by similar, yet not
equal, values of the position variable. More precisely, in a M-cluster a given number M of coupled maps satisfy
jxðiÞn � xðjÞn j < C; ð15Þ
where i; j ¼ 1;2; . . . M 6 N and C � jxðiÞn j is a small tolerance level. Notice that no mention is made to the momentum vari-
ables in the definition above, which means that we consider clustered states one or more rotors with similar values of their
angular position, regardless of their momenta. If we regard the maps as describing particles in a one-dimensional chain, clus-
tered states would correspond to localized bunches of particles which may or may not have different velocities. Using peri-
odic boundary conditions, we may think of those particles as initially randomly distributed along a unit circle, and they
gradually move together to form a cluster, in which the particles show mutually oscillatory behavior.

Hence a clustered state is not a synchronized state of the system, since only half of the phase variables are considered.
Moreover, due to the symplectic property there is no attracting state for trajectories, and hence no synchronization manifold
can be defined for such a system. Nevertheless, since clustered states in a symplectic lattice resemble synchronized states in
a locally dissipative lattice, we can resort to a numerical diagnostic provided by the order parameter introduced by Kuramoto
[29,30],
Zn ¼
1
N

XN

j¼1

expð2pixðjÞn Þ
�����

�����
2

; ð16Þ
for a given time n. A similar quantity, with the normalization factor 1=
ffiffiffiffi
N
p

instead of 1=N, has been called degree of clustering
by Konishi and Kaneko [15]. We can interpret Zn as the amplitude of a centroid phase vector which denotes the angular posi-
tions 2pxðiÞn of particles distributed along a chain with periodic boundary conditions.

If all the states are so fully clustered that the values of xðiÞn are exactly the same for all times, then the superposition of
phase vectors with the same amplitude at each time for all lattice sites yields Z ¼ 1. On the other hand, when the site ampli-
tudes xðjÞn are uniformly distributed over the lattice, the centroid phase vector amplitude vanishes and Z ¼ 0. Moreover, if the
positions xðiÞn are so uncorrelated that they can be considered as essentially random variables, one has Z ¼ ð1=NÞ � 1 for large
N. We can define clustered motion as that for which Z > ð1=NÞ. However, a handy criterion is that partially or non-clustered
states correspond to low values of the order parameter ð0 < Z K 0:2Þ, whereas totally or nearly fully clustered states corre-
spond to values close to the unity ð0:8 K Z < 1Þ.

Fig. 6 exhibits an example of clustered states in a lattice with K ¼ 0:1 and a ¼ 0 (global coupling), for which we have chosen
a phase-space projection for a fixed ði ¼ 10Þ site. A trajectory orbits around the origin for �2 	 104 iterations and then wan-
ders chaotically over a wider region [Fig. 6(a)]. While the trajectory orbits around the origin, the order parameter fluctuates in
the interval 0:8 K Z K 0:9, what characterizes clustered motion [Fig. 6(b)]. After the trajectory escapes, the orbital motion
starts wandering erratically through the chaotic sea, and the order parameter drops to values fluctuating between 0 and
0.2, indicating absence of clustering. Essentially the same conclusions can be drawn from lattices with an almost local cou-
pling (large a) [Fig. 7], which also exhibit clustered trajectories which eventually escape from the vicinity of remnant islands.

The origin of the orbiting behavior that generates clustering in the previous example is a well-known phenomenon in
symplectic maps named stickiness. When a chaotic trajectory is close enough to outer quasi-periodic KAM tori belonging
to island remnants embedded in the chaotic sea, it follows the orbiting nature of trajectories on tori (i.e., the chaotic trajec-
tory sticks to the tori) [18]. Since there is no longer a KAM torus there, however, the trajectory eventually leaves this region



Fig. 6. (a) Phase-space projection pð10Þ versus xð10Þ for K ¼ 0:1 and a ¼ 0. (b) Time evolution of the corresponding order parameter.
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and wanders through the available phase-space region. In fact, the trajectories near the origin in Fig. 6(a) are orbiting around
the existent tori [cf. also Fig. 2(b)]. For large K such tori occupy a small but non-zero fraction of the phase-space, and thus
may not be easily detected due to insufficient numerical and/or graphical resolution. In spite of this, such tori exerts a con-
siderable influence on chaotic motion through stickiness.

The stickiness phenomenon has been intensively studied in symplectic system with few degrees of freedom [18,19,21,22].
Stickiness of chaotic trajectories for a finite time creates a dynamical trap which is responsible for an effective transport bar-
rier in dynamical systems of interest in plasma fusion research [31]. Our numerical results, of which Figs. 6 and 7 are rep-
resentative examples, support the key hypothesis that the stickiness of chaotic trajectories to periodic island remnants
manifests spatially in the form of clusters[15].

5. Diffusion

A characteristic feature of high-dimensional conservative dynamical system is the diffusion of chaotic trajectories along
the energetically available phase-space. If these chaotic orbits are uniformly random, as in a gas of hard spheres, the diffusion
is generally assumed to be Gaussian, or coming from a Markov process, for which there is essentially no time correlations.
The possible formation of clustered states, on the other hand, introduces long-time correlations in the dynamics, since such
clusters have a finite lifetime and may be considered as meta-stable states. A chaotic trajectory may be trapped for some
time in such a cluster and then switch to another one, in a kind of chaotic itineracy. Such episodes make the diffusion to
deviate from the normal Gaussian approximation.

One of the difficulties experienced in studying high-dimensional conservative system lies in the large timescales neces-
sary to evidence the deviations from the Gaussian approximation due to, for example, trapping in clustered states. This is
specially true for weak non-integrability, since the diffusion rate has the Nekhoroshev upper bound expð�1=KaÞ, where K
is the strength of non-linearity and a > 0. For small K the timescale involved in diffusive process can be extremely large.

In order to investigate numerically the influence of coupling parameters in the momentum diffusion rate we define the
diffusion coefficient
D ¼ lim
n!1

1
N

XN

i¼1

1
n

pðiÞn � pðiÞ0

h i2
* +

; ð17Þ
where h� � �i is an average taken over many initial conditions yielding independent chaotic orbits. In general the average qua-
dratic deviation increases with time as a power-law ½pðiÞn � pðiÞ0 �

2 / nbþ1, such that b ¼ 0 characterizes the Gaussian diffusion,
whereas the cases for which b–0 are referred to as of anomalous diffusion. The diffusion coefficient has a stationary value in



Fig. 7. (a) Phase-space projection pð10Þ versus xð10Þ for K ¼ 0:1 and a ¼ 6. (b) Time evolution of the corresponding order parameter.
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the former situation, whereas in the latter we can write D / nb, where positive (negative) values of the exponent characterize
super-diffusive (sub-diffusive) processes.

In the a ¼ 0 case of the CML, given by Eqs. (6) and (7), we can write the momentum displacement at each time as
pðiÞnþ1 � pðiÞn

��� ���2 ¼ K2

4p2ðN � 1Þ
XN

j¼1;j–i

sin 2pðxðjÞn � xðiÞn Þ
� ������

�����
2

: ð18Þ
Supposing that Gaussian diffusion takes place, and assuming that the phases xðiÞn are so randomly distributed that they can be
taken as statistically independent, we approximate the spatial average in the above equation by an ensemble average equal
to 1/2 (random-phase approximation), such that one finds a quadratic dependence in K for the (quasi-linear) diffusion
coefficient
DQL ¼
K2

8p2 : ð19Þ
Let us consider the more general case of arbitrary range parameter a. In Fig. 8, we follow the time evolution of the diffusion
coefficient for different values of a. When a ¼ 6 we are practically in the local regime where only the nearest-neighbors of a
given site count. Apart from small-amplitude fluctuations, the diffusion coefficient appears to have a stationary value close to
that predicted by the quasi-linear value (for K ¼ 1) DQL � 0:0127; hence Gaussian diffusion sets in for this case. For lower
values of a we observe that the diffusion coefficient remains to be Gaussian but with lower stationary values. This indicates
that, although the chaotic excursion of phase-space trajectories is chiefly random its time rate is lowered due to the influence
of stickness. The trajectories may be trapped for some time in the neighborhood of some periodic island, leading to cluster-
ing, and this reduces the diffusion coefficient. Accordingly, lower values of the diffusion coefficient are achieved when a ¼ 1,
when the effect of stickness and clustering are the most preeminent, as we have argued in the previous section. As we ap-
proach the a ¼ 0 case the diffusion coefficient increases again to a value near the quasi-linear approximation (19).

These findings are confirmed by Fig. 9, where we plotted the average diffusion coefficient hDi after some transient time is
discarded (such that this average is a numerical approximation to the stationary value of D) versus the a parameter for a dif-
ferent value of the non-linearity parameter ðK ¼ 5:0Þ. The stationary value of the diffusion coefficient for large a takes on
values near the predicted quasi-linear limit DQL � 0:317 and decreases with a as before, until it reaches a minimum value
for a ¼ 1 and resumes increasing until a ¼ 0. We stress the remarkable similitude between Figs. 9 and 5, what suggests a
strong connection between the diffusion and entropy due to the presence of clustering and stickness.

Another sequence of numerical experiments is illustrated by Fig. 10, where we plotted the time-averaged value of the
diffusion coefficient (as an approximation of its stationary value) as a function of the non-linearity parameter K and different



Fig. 8. Time evolution of the diffusion coefficient for a lattice of N ¼ 25 coupled standard maps, with K ¼ 1 and selected values of a.

Fig. 9. Average diffusion coefficient for a lattice of N ¼ 25 coupled standard maps, with K ¼ 5:0, as a function of the range parameter a.
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values of a. We see that in all cases considered hDi increases quadratically with K and, as we approach large values of a we
have essentially the same dependence possessed by the quasi-linear approximation (19). These results are in accordance
with previous findings of Konishi and Kaneko, who predicted D / K-, with - ¼ 2 for K J 1 and - � 5 for K K 1 for locally
coupled lattices (the a!1 limit in our case) [13,14]. By way of contrast, the diffusion coefficient was found to increase with
K as a stretched exponential D / K expð�nK�bÞ, where b � 0:5 and n > 0 for globally coupled lattices of small sizes (the a! 0)
[14]. If K is large enough the exponential dependence could be neglected such that D would scale linearly with K. However,
our results suggest that this almost linear dependence holds only for small values of K, at least for a lattice with N ¼ 25 maps,
hence substantially larger than the values (up to N ¼ 6) used in Ref. [14].



Fig. 10. Average diffusion coefficient for a lattice of N ¼ 25 coupled standard maps as a function of the non-linearity parameter K for selected values of the
range parameter a.
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We conclude that the stickiness and clustering do not alter the Gaussian character of the diffusion of phase-space trajec-
tories process but only its time rate, lowering the stationary values achieved by the diffusion coefficient. This is compatible
with the picture we made of trajectories being trapped for some time in the neighborhood of islands and then reinjected in
the energetically available chaotic region. Anomalous diffusion can be exist only up to some crossover time (inversely pro-
portional to the diffusion coefficient), beyond which the diffusion is Gaussian [13].

6. Approximate two-dimensional map

Since we have focused on the clustering phenomenon related to the stickiness of the trajectory around the origin (0,0), we
can study the properties of this orbiting behavior by obtaining an approximate form of the system in that region. We can
rewrite Eqs. (1) and (2) in the following form
pðiÞnþ1 ¼ pðiÞn þFðiÞ
n ðxnÞ; ð20Þ

xðiÞnþ1 ¼ xðiÞn þ pðiÞnþ1; ð21Þ
where
FðiÞ
n ðxnÞ 


K

2p
ffiffiffiffiffiffiffiffiffiffi
gðaÞ

p XN0
j¼1

1
ja

sin 2pðxðiþjÞ
n � xðiÞn Þ

� �
þ sin 2pðxði�jÞ

n � xðiÞn Þ
� �� �

ð22Þ
is a time-dependent coupling term which depends on the values of all site amplitudes. If the trajectories are near the origin
both xðiÞn and pðiÞn take on small values and we can approximate the coupling term as follows
FðiÞ
n ðxnÞ � �C2xðiÞn þ C1

XN0
j¼1

xðiþjÞ
n þ xði�jÞ

n

ja
; ð23Þ
where we define
C1 

K

gðaÞ ; C2 ¼ gðaÞC1: ð24Þ
For large a the normalization factor g�1=2 remains constant at a value of �0.9 regardless of the lattice size. In general, the
factor decreases with as N grows up, and for the extreme case of a ¼ 0 it tends to a value of �0.1. Hence a ‘‘safe” interval
for the variation of this factor is [0,0.8], which means that gJ 1:56. If g is large enough, it may follow that C2 is much larger
than C1 and thus we can also neglect the summation term in the coupling term (23). In such cases the system can be approx-
imately described by a two-dimensional area-preserving map
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pðiÞnþ1 ¼ pðiÞn � C2xðiÞn ; ð25Þ
xðiÞnþ1 ¼ xðiÞn þ pðiÞnþ1; ðmod 1Þ; ð26Þ
which has the origin (0,0) as its only fixed point, whose stability is determined by the eigenvalues of its Jacobian matrix,
namely
n1;2 ¼
2� C2

2
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� C2

2

� 	2
s

; ð27Þ
such that (0,0) is a linear center inasmuch C2 < 4. Within this approximation, the values of ðxðiÞn ; p
ðiÞ
n Þ are assumed to be close

to the elliptic fixed points of the coupled map lattice.
Some phase portraits obtained through iterating the piecewise linear map above are shown in Fig. 11(a)–(d) for different

values of the parameter C2. For C2 < 4 the fixed point is a linear center, the trajectories encircling it in its neighborhood
[Fig. 11(a) and (b)]. When C2 ¼ 4 there occurs a bifurcation and the origin becomes an unstable saddle point [Fig. 11(c)].
When C2 > 4 this point becomes embedded into a chaotic orbit, which is possible thanks to the modulo 1 prescription pres-
ent in Eq. (26) [Fig. 11(d)] (the map is actually piecewise linear).

These results can be compared with those shown in Fig. 12(a)–(d), where we plot the phase-space projection pð10Þ versus
xð10Þ of the coupled SM lattice (1) and (2) for a ¼ 0 and selected values of K. For smaller K-values chaotic trajectories exhibit
sticky behavior, during a given time, while remaining near to the fixed point at origin [Fig. 12(a) and (b)], and are approx-
imately described by the closed trajectories encircling the origin in the piecewise linear map (25) and (26) when C2 is small
enough. We stress, however, that stickiness is a transient phenomenon in the coupled SM lattice and thus this analogy can-
not be pushed too far, since in the two-dimensional map the iterations are bound to closed orbits for all further times.

When K is close to Kc � 0:86 it appears that the origin is undergoing a change of stability, the sticky orbits being more
flattened into the diagonal of the phase-space projection shown [Fig. 12(c)]. Finally, for K > Kc , it turns out that the dynamics
near the origin is chaotic for the coupled SM lattice [Fig. 12(d)], just like it occurs for the piecewise linear map [see also
Fig. 11(d)]. Comparing the results obtained with the coupled SM lattice with those for the piecewise linear map, we can
relate the critical K-value for the loss of stability of the origin for the CML with the similar transition observed in the
two-dimensional map, the latter occurring for ðC2Þcrit ¼ 4, such that
Kc ¼
4ffiffiffigp ; ð28Þ
Fig. 11. Phase portraits of the piecewise linear map (25) and (26) for C2 ¼ (a) 2.0; (b) 3.5; (c) 4.0; (d) 5.0.



Fig. 12. Phase-space projection pð10Þ versus xð10Þ for a ¼ 0 and K ¼ (a) 0.3; (b) 0.8; (c) 0.86; and (d) 1.0. In all figures there is one orbit with 5	 104 points
starting from the initial condition xð10Þ

0 ¼ �0:023;pð10Þ
0 ¼ �0:033.
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where we also used Eq. (24). For a lattice of fixed size there follows that, in the limits of local (nearest-neighbor) and global
(mean-field) couplings, this critical value is given by
Kc ¼
4=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

if a ¼ 0;ffiffiffi
8
p

if a!1:

(
ð29Þ
In fact, for a ¼ 0 and N ¼ 25 maps, as considered in Fig. 12, there results that Kc ¼ 0:816 which is close to the value guessed
by inspecting Fig. 12(c). On the other hand, if we consider a locally coupled lattice, as in Fig. 13, there results that Kc ¼ 2:828
for the same number of maps, which is twice the actual value of 1.45 which comes from analyzing the situation depicted in
Fig. 13(c). Figs. 13(a), (b), and (d) represent cases for which K is less and greater than Kc , respectively. This discrepancy is due
to the breakup of the approximation represented by the piecewise linear map with respect to the actual coupled SM lattice.

7. Conclusions

We have considered a conservative chain of standard maps with a non-local coupling for which the interaction strength
decays with the lattice distance as a power-law. The limiting cases of local and global couplings were previously considered
in Refs. [13,14] as paradigmatic examples of Hamiltonian systems with a large number of degrees of freedom, and more eas-
ily tractable from the computational point of view than physical systems appearing in statistical mechanical or astronomical
contexts. Our work represents a step towards generalizing such treatment to Hamiltonian systems with long-range interac-
tions, such as gravitational or electromagnetic forces, which naturally lead to an inverse power-law dependence for the po-
tential energy.

Non-integrable Hamiltonian systems of physical interest, although presenting chiefly chaotic phase-space trajectories,
are strongly influenced by non-chaotic orbits. There are ordered phases, or clusters, with spatially coherent behavior, even
though the time behavior may be chaotic. Such clusters have a finite lifetime, since the chaotic trajectories are free to even-
tually wander through a large energetically accessible portion of the phase-space, the latter being spatially incoherent. We
have analyzed the dependence of the chaotic instability with the coupling parameters, and observed an enhanced chaotic
diffusion in globally coupled lattices, when compared with couplings with smaller effective interaction range. We also found
that, for some coupling ranges there is a decrease of the chaotic instability, which we related to the existence of clusters.

We have provided numerical evidence that the underlying mechanism of clustering is the stickiness of the chaotic trajec-
tories close enough to remnants of periodic islands embedded in the chaotic sea. An approximate low-dimensional map was



Fig. 13. Phase-space projection pð10Þ versus xð10Þ for a ¼ 6 and K ¼ (a) 0.7; (b) 1.4; (c) 1.5; and (d) 1.7. In all figures there is one orbit with 5	 104 points
starting from the initial condition: xð10Þ

0 ¼ �0:013; pð10Þ
0 ¼ �0:033.
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derived to investigate this relation. We found that stickiness ceases when the global fixed point of the coupled map lattice
becomes unstable, what occurs for a critical value of the coupling strength. In terms of our low-dimensional map this cor-
responds to a bifurcation, from which we were able to predict correctly the critical value of the coupling strength for the loss
of stickiness in the global coupled lattice. For local coupling this approximate description shows different results, what indi-
cates that the low-dimensional approximation is better as the effective interaction range increases.

The connection between stickiness and clustering, which was the main point of this paper, has also other consequences
for the spatio-temporal dynamics of the coupled map lattice. We also verified that the behavior of the phase-space diffusion
is influenced by clustering in a similar way as the Lyapunov spectrum, with respect to variations of the coupling parameters.
The diffusion process remains to be essentially Gaussian such that there is a stationary value of the diffusion coefficient
which, for local couplings, takes on a value close to that predicted by random-phase approximation. As the range parameter
decreases and clustering becomes significant, the diffusion rate is lowered and achieves a minimum at a ¼ 1, similarly to the
behavior observed for the entropy. The trapping effect caused by the chaotic region immediately near the periodic islands
causes a retardation of the diffusion process without altering its non-anomalous character. Finally, we conjecture that the
different timescales present in diffusion phenomena can explain the existence of stable and meta-stable spatial structures
present in the phase-space, which is a relevant investigation for prospective applications in statistical mechanics and
astronomy.

Acknowledgements

This work was made possible by partial financial support from the following Brazilian government agencies: CNPq,
CAPES, FAPESP, and Fundação Araucária. The numerical computations were performed in the NAUTILUS cluster of the Uni-
versidade Federal do Parana.

References

[1] Chirikov BV. Phys Rep 1979;52:263.
[2] Rechester AB, White RB. Phys Rev Lett 1980;44:1586.
[3] Schmidt G. Phys Rev A 1980;22:2849.
[4] Rechester AB, Rosenbluth MN. Phys Rev Lett 1978;40:38;

Rechester AB, Rosenbluth MN, White RB. J Phys 1980;41:C3–C351.
[5] Rosenbluth MN, Sagdeev RZ, Taylor JB, Zaslavsky GM. Nucl Fusion 1966;6:297.
[6] Zaslavsky GM, Chirikov BV. Usp Fiziol Nauk 1972;14:195 [Sov Phys Usp 1972;114:549].



C.F. Woellner et al. / Chaos, Solitons and Fractals 41 (2009) 2201–2215 2215
[7] Caglioti E, Trillo S, Wabnitz S. Opt Lett 1987;12:1044.
[8] Milburn GJ, Dyrting S. Philos Mag B 2000;80:2023.
[9] Abel M, Flash S, Pikowsky A. Phys D 1988;119:4.

[10] Lichtenberg AJ, Lieberman MA. Regular and chaotic motion. Berlin, Heidelberg, New York: Springer Verlag; 1992.
[11] Nekhoroshev NN. Russ Math Surv 1977;32:65.
[12] Bennetin G, Gallavotti G. J Stat Phys 1986;44:293.
[13] Kaneko K, Konishi T. Phys Rev A 1989;40:6130.
[14] Konishi T, Kaneko K. J Phys A 1990;23:L715.
[15] Konishi T, Kaneko K. J Phys A 1992;25:6283.
[16] Kaneko K, Konishi T. Phys D 1994;146.
[17] Gyorgyi G, Ling FM, Schmidt G. Phys Rev A 1989;40:5311.
[18] Zaslawsky GM, Edelman M, Niyazov BA. Chaos 1997;7:159.
[19] Zaslawsky GM, Edelman M. Phys Rev E 2005;72:036204.
[20] Szezech Jr JD, Lopes SR, Viana RL. Phys Lett A 2005;335:394.
[21] Barash O, Dana I. Phys Rev E 2005;71:036222.
[22] Zaslawsky GM. Phys Rep 2002;371:461.
[23] Kaneko K. Phys Rev Lett 1989;63:219;

Kaneko K. Phys Rev Lett 1989;65:1391;
Kaneko K. Phys D 1990;41:137.

[24] Rogers JL, Wille LT. Phys Rev E 1996;54:R2193.
[25] Carretero-González R, Ørstavik S, Huke J, Broomhead DS, Stark J. Chaos 1999;9:466.
[26] Pesin YB. Russ Math Surv 1977;32:55.
[27] Ruelle D. Chaotic evolution and strange attractors. Cambridge: Cambridge University Press; 1989.
[28] Bricmont J, Kupiainen A. Phys D 1997;103:18.
[29] Kuramoto Y. Chemical oscillations waves and turbulence. Berlin, Heidelberg, New York: Springer Verlag; 1984.
[30] de Souza Pinto SE, Viana RL. Phys Rev E 2000;61:5154.
[31] Roberto M, da Silva EC, Caldas IL, Viana RL. Phys Plasmas 2004;11:214.


	Clustering and diffusion in a symplectic map lattice with non-local coupling
	Introduction
	Map lattice with non-local coupling
	Lyapunov spectrum
	Clustering and stickiness
	Diffusion
	Approximate two-dimensional map
	Conclusions
	Acknowledgements
	References


